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Abstract We adopt the energy momentum relation of
charged particles to study the thermodynamics laws and weak
cosmic censorship conjecture of D-dimensional f (R) AdS
black holes in different phase spaces by considering charged
particle absorption. In the normal phase space, it turns out
that the laws of thermodynamic and the weak cosmic cen-
sorship conjecture are valid. In the extended phase space,
though the first law of thermodynamics is valid, the second
law of thermodynamics is invalid. More interestingly, the
weak cosmic censorship conjecture is shown to be violated
only in higher-dimensional near-extremal f (R) AdS black
holes. In addition, the magnitudes of the violations for both
the second law and weak cosmic censorship conjecture are
dependent on the charge Q, constant scalar curvature f ′(R0),
AdS radius l, dimension parameters p, and their variations.

1 Introduction

The event horizon is indispensable for a black hole, since not
only both the temperature and entropy are related to it, but
also the singularity of the black hole should be completely
obscured by the event horizon. If the singularity of the black
hole exposed or the event horizon is destroyed, the bare sin-
gularity will destroy the causal relationship in the spacetime.
In order to avoid the occurrence of this phenomenon, Pen-
rose proposed the weak cosmic censorship conjecture [1,2],
which supposed that the singularity of the black hole was
always hidden by the event horizon. Though the weak cos-
mic censorship conjecture seems to be reasonable, there is
no general method to prove the correctness of this conjec-
ture so far. Hence, it is necessary to test the validity of this
conjecture for different types of black holes. An alternative
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thought procedure was developed by Wald to test the stability
of event horizons of black holes interacting with test particles
or fields [3]. Based on this idea, it was found that the particle
with sufficient charge and angular momentum would not be
absorbed by the extremal Kerr–Newman black hole. In other
words, the event horizon of the extremal Kerr–Newman black
hole could not be destroyed by the particle, and the weak cos-
mic censorship conjecture is still valid. Then, this result was
also generalised to scalar field [4,5]. Nevertheless, Hubeny
pointed out that the near-extremal Reissner–Nordström black
hole would be overcharged by absorbing the particle, thereby,
the weak cosmic censorship conjecture would be invalid [6].
Similarly, the near-extremal Kerr black hole could be over-
spun, and the event horizon was also unstable [7,8]. Later,
when the back-reaction and self-force effects were taken into
account [6,9–12], the conjecture was found to be valid for
the near-extremal Reissner–Nordström black hole and the
near-extremal Kerr black hole. Hence, the check of the weak
cosmic censorship remains one of the most essential open
topics in classical general relativity. At present, there have
been a lot of studies concentrating on the weak cosmic cen-
sorship conjecture in different spacetime [13–41].

Recently, Ref. [42] stated that the laws of thermodynamics
and weak cosmic censorship conjecture can be tested when
the charged particle dropped into the black hole. Based on his
work, the first law of thermodynamics of higher-dimensional
Reissner–Nordström black hole was found to be valid under
charged particle absorption. Furthermore, they found that the
extremal black hole kept the initial state and was not over-
charged. Therefore, it was claimed that the weak cosmic cen-
sorship conjecture was valid in the extended phase space.
However, one can see that the second law of thermodynam-
ics is not valid under the absorption which would only be
seen in the case considering the pressure and volume term.
The cosmological constant is a parameter which plays an
important role in determining the asymptotic topology of a
black hole spacetime, and it set to be a constant value in the
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action of Einstein gravity. In fact, imposing the cosmological
constant as a dynamical variable is prevails now. In this case,
thermodynamics was studied more widely in the expended
phase spaces where the cosmological constant is identified
as thermodynamic pressure [43], and its conjugate is found
to be thermodynamic volume [44–46]. Soon after, the laws
of thermodynamics and weak cosmic censorship conjecture
were checked in the Born-Infeld AdS black holes and phan-
tom Reissner–Nordström black holes [29,31] in the different
phase spaces. Differently from the study in Ref. [42], they
did not employ any approximation, and found that extremal
black holes change into non-extremal black holes for the
absorbed particle. Similarly, they also found the violation of
the second law of thermodynamics in the expended phase
spaces.

Among the researches mentioned above, the weak cos-
mic censorship conjecture of higher-dimensional f (R) black
holes under charged particle absorption has not yet been
reported. As well as known, the f (R) gravity as a highly
valued model of modified general relativity is very impor-
tant, it may provide a feasible explanation for the accelerated
expansion of the universe [47–59]. When one considers f (R)

theory as a modification of general relativity, it is fairly essen-
tial to study the features of black holes in this theory, and the
thermodynamics of the black hole is also an essential subject
in the theory of gravity. In view of this, various investigations
have been discussed with respected to the thermodynamics
in the f (R) spacetimes [60–66]. In these studies, they found
that the laws of thermodynamics of f (R) black hole were
accurate. Motivated by these facts, our aim is to promote
the work of Ref. [42] to the higher-dimensional f (R) AdS
black hole, where a more accurate calculation is presented.
We will use the test particle model to study the thermody-
namic laws and weak cosmic censorship conjecture of the
higher-dimensional f (R) black holes. What’s more, we will
also explore whether f (R) gravity parameters will affect the
second law and weak cosmic censorship conjecture. As a
result, we find that the first law is still valid in different phase
spaces, and the extremal black holes are still extremal after
an absorption of the external particle. However, the second
law is violated in the extended phase space though it is valid
in the normal phase space. More importantly, we also find
that the weak cosmic censorship conjecture is valid under the
case of without pressure, while for the case with pressure, the
weak cosmic censorship conjecture is violable, depending on
f ′(R0) gravitational parameters.

The remainder of this article is organized as follows. In
Sect. 2, we introduce higher-dimensional f (R) AdS black
holes and its first law of thermodynamics. In Sect. 3, the
motion of charged particle in higher-dimensional f (R) AdS
black holes is investigated. In Sect. 4, the laws of thermo-
dynamics of higher-dimensional f (R) AdS black holes are
checked in the different phase spaces. In Sect. 5, the valid-

ity of the weak cosmic censorship conjecture in different
phase spaces are checked with a more accurately examine.
In Sect. 6, we briefly summarize our results. In this paper,
we will set G = c = 1.

2 A brief review on the higher-dimensional f (R) black
holes

Except for the simple and general Lagrangian model, f (R)

gravity also take into account arbitrary function of Ricci
scalar. However, the standard Maxwell energy-momentum
tensor is not traceless in higher dimensions. Hence, it is
important to find that the higher-dimensional black hole solu-
tions in R+ f (R) gravity coupled to standard Maxwell field.
In general, the conformally invariant Maxwell action in arbi-
trary dimensions is given by [67]

Sm = −
∫

dDx
√
g

(
FμνF

μν
) p, (1)

in which p is a positive integer, i.e, p ∈ N. Fμν = ∂μAν −
∂ν Aμ is the electromagnetic tensor, where Aμ stands for the
electromagnetic potential. It can be evidenced that the energy
momentum tensor is traceless when D = 4p. In the special
case p = 1, the above equation is reduced to the standard
Maxwell action. Therefore, the action of R+ f (R) gravity in
D-dimensional spacetime coupled to a conformally invariant
Maxwell field reads

S =
∫
M

dDx
√
g

[
R + f (R) − (

FμνF
μν

) p] , (2)

where f (R) is an arbitrary function of scalar curvature R.
Then, D-dimensional black hole metric is described as follow
[60]

ds2 = −W (r)dt2 + dr2

W (r)
+ r2d�2

D−2, (3)

and

W (r) = 1 − 2m

rD−3 + q2

r D−2 ×
(−2q2

)(D−4)/4

(1 + f ′ (R0))

− R0r2

D(D − 1)
. (4)

It is important to note that the above black hole solutions
hold for the dimensions which are multiples of four, since
the assumption of traceless energy-momentum tensor is cru-
cial for deriving an accurate solution of the black hole in
the gravitational force of f (R) coupled to the matter field.
Hence, the solution exist only for D = 4p dimensions. In
order to have a real solution we should follow the restric-
tion D = 4p, i.e., D = 4, 8, 12, . . . , which means that p
should be only a positive integer [60]. In accordance with
Ref. [60], the above solution is asymptotically AdS when
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R0 = −D(D − 1)/ l2. In addition, the parameters m and q
are integration constants which are related to the mass M and
electric charge Q, and we have [60]

M = (D − 2)�D−2

8π
m

(
1 + f ′ (R0)

)
, (5)

Q = D(−2)(D−4)/4q(D−2)/2�D−2

16π
√

1 + f ′ (R0)
. (6)

As one can see from Eq. (4), the solution is ill-defined for
f ′ (R0) = −1. In the other hands, there would be inner and
outer horizons and an extreme black hole or naked singularity
due to different choices of parameters when 1 + f ′ (R0) >

0. However, for the case 1 + f ′ (R0) < 0, the conserved
quantities such as mass would be negative, making this case
nonphysical, thus this is not a physical case and we do not
consider this situation [60,62]. At the outer event horizon
r = rh , the Hawking temperature Th , entropy Sh , and electric
potential �h are obtained as [62]

Th = 1

4π

(
∂W (rh)

∂rh

)

=
((

1 + f ′ (R0)
) × [

2rh2(D − 1) + 2l2(D − 3)
] + (−2q2

)D/4
rh2−Dl2

)

8l2πrh (1 + f ′ (R0))
,

(7)

Sh =
∫ rh

0
T−1

(
∂M

∂rh

)
Q
drh = rh D−2�D−2

4

(
1 + f ′ (R0)

)
, (8)

�h = q

rh

√
1 + f ′ (R0), (9)

where �D−2 denotes the volume of the unit (D− 2)-sphere.
Therefore, the first law of thermodynamics at the cosmolog-
ical horizon is expressed as [62]

dM = ThdSh + �hdQ. (10)

In the extended thermodynamic phase space, the cosmolog-
ical constant is identified as the thermodynamic pressure
while its conjugate quantity is regarded as the thermody-
namic volume. The pressure is defined as

P = −�

8π
= (D − 1)(D − 2)

16πl2
. (11)

The expression of the cosmological constant in the D-
dimensional spacetime is � = − (D−1)(D−2)

2l2
, where l is the

radius of the AdS space. Therefore, the relation between �

and R0 is R0 = 2D�
D−2 , which can be reduced to the relation

R0 = 4� when D = 4. Based on Eqs. (4), (5) and (11), one
can derive

Vh =
(

∂M

∂P

)
S,Q

=
(
1 + f ′ (R0)

)
rh D−1�D−2

D − 1
. (12)

Due to the effect of f (R) gravity, the expression of Eq. (12)
includeds an extra factor 1+ f (R0). What is more, these ther-
modynamic quantities obeys the first law of thermodynamics

in the extended phase space, which is [62]

dM = ThdSh + �hdQ + VhdP. (13)

And, the following Smarr relation is also satisfied

M = D − 2

D − 3
ThSh + (D − 2)2

D(D − 3)
�hQ − 2

D − 3
Vh P. (14)

In the extended phase space, the mass of black holes should
be interpreted as enthalpy. The relation among the enthalpy,
internal energy and pressure is

M = Uh + PVh, (15)

where Uh is internal energy. Hence, the change of the mass
makes re-balance not only for the horizon and electric charge,
but also the AdS radius in PVh term.

3 Charged particle absorption in higher dimensional
charged f (R) black holes

In this section, we are going to consider the dynamic behav-
ior of the charged particle which is near the event horizon,
and we focus on the dynamic behavior of a charged particle
swallowed by the black hole and its energy-momentum rela-
tionship. In this process, we are mainly consider the scalar
particle, and the motion of scattered particles satisfy the
Hamilton–Jacobi equation of curved spacetime, which is

gμν
(
pμ − eAμ

)
(pν − eAν) + mb

2 = 0, (16)

and

pμ = ∂μI, (17)

where mb and e are the rest mass and charge of the particle
respectively, pμ is the momentum of the particle, and I is the
Hamilton action of the particle. Taking into account the sym-
metries of the spacetime, the Hamilton action of the moving
particle can be separated into

I = −ωt + Ir (r) +
d−3∑
i=1

Iθi (θi ) + Lψ, (18)

in which the conserved quantities ω and L are energy and
angular momentum of particle, which are assumed from the
translation symmetries of the metric in Eq. (3), and they are
conserved quantities of spacetime in the gravitational sys-
tem. In addition, Ir (r) and Iθi (θi ) are the radial-directional
component and θ -directional component of the action respec-
tively. Owing to D-dimensional solution, the black hole
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includes a D − 2-dimensional sphere �D−2, and the angu-
lar momentum L corresponding to the translation symmetry
of the last angle coordinate of �D−2. Then, the (D − 2)-
dimensional sphere can be written as

hi j dx
i dx j = D−2

�
i=1

(
�i

j=1 sin2 θ j−1

)
dθ2

i , θD−2 ≡ ψ.

(19)

To solve the Hamilton–Jacobi equation, we can use the con-
travariant metric of the black hole, with help of Eq. (3), we
obtain

gμν∂μ∂ν = −W (r)−1 (∂t )
2 + W (r) (∂r )

2

+ r−2
D−2
�
i=1

(
�i

j=1 sin−2 θ j−1

) (
∂θi

) 2. (20)

Substituting above equations into Eq. (16), the Hamilton–
Jacobi equation can be re-expressed as

−mb
2 = − 1

W (r)
(−ω − eAt )

2 + W (r) (∂r I (r))
2

+ r−2
D−3
�
i=1

(
�i

j=1 sin−2 θ j−1

) (
∂θi I (θi )

) 2

+ r−2
(
�D−2

j=1 sin−2 θ j−1

)
L2. (21)

We can separate Eq. (21) by introducing a variable R. There-
fore, the radial and angular components are

− r2

W (r)
(−ω − eAt )

2 + r2W (r) (∂r I (r))
2 + r2mb

2 = −R,

(22)
D−3
�
i=1

(
�i

j=1 sin−2 θ j−1

) (
∂θi I (θi )

) 2

+
(
�D−2

j=1 sin−2 θ j−1

)
L2 = R. (23)

The radial- and θ -directional equations are sufficient to
obtain the relation between energy and electric charge of
the particle. In addition, we are interested only in the loca-
tion at the horizon. Concretely, we pay attention to the
radial momentum of the particle, that is, we consider angular
moment L is a constant depending on the trajectory of the
particle. Furthermore, we obtain the radial momentum

pr ≡ grr∂r I (r)

= W (r)

√
−mb

2r2 − R
r2W (r)

+ 1

W (r)2 (−ω − eAt ) 2. (24)

AsR is eliminated, near the event horizon where W (r) → 0,
the above equation is reduced to

ω = �he + prh . (25)

Here, Eq. (25) is the relation between conserved quantities
and momenta for a given radial location rh . For a special
case ω = �he, the energy of the black hole does not change.
However, for the case ω < �he, the energy of the black
hole flows out the horizon, which leads to the superradia-
tion occurs [33]. Therefore, it is stressed that a positive sign
should be endowed in front of prh in order to assure a posi-
tive time direction, which means we should chose ω ≥ �he
[68]. Hence, in the positive direction of time, the energy and
momentum of the particle are positive.

4 Thermodynamic of the higher dimensional f (R)
black holes under charged particle absorption

Black holes can be viewed as thermodynamic systems since
they do not only have temperature and entropy, but also
energy and chemical potential. In Refs. [60,62], thermody-
namics of higher-dimensional f (R) AdS black holes in dif-
ferent phase spaces have been reported. In this section, we
would like to generalize those research to the thermodynam-
ics under charged particle absorption. Absorbing a charged
particle, the higher dimensional charged f (R) black hole is
varied by the same quantity as that of the particle, and the
variations of the black hole energy and charge can be calcu-
lated. Subsequently, we can further study the validity of the
laws of thermodynamics in different phase spaces under the
particle absorption.

4.1 Thermodynamics in the normal phase space

In the process of absorption, the energy and electric charge
of a particle are equal to the change of internal energy and
charge of the black hole. In the normal phase space, the mass
was interpreted as internal energy, that is

ω = dM, e = dQ. (26)

Using this relation, the energy momentum relation in Eq. (25)
can be expressed as

dM = q

rh

√
1 + f ′ (R0)dQ + prh . (27)

Obviously, we need find the variation of entropy in order to
rewrite Eq. (27) to the first law of thermodynamics. There-
fore, in accordance with Eq. (8), as the charged particle is
absorbed by the black hole, the variation of entropy can be
written as

dSh = 1

4
(D − 2)

(
1 + f ′ (R0)

)
rh

D−3�D−2drh, (28)
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where drh is the variation of event horizon of the black hole.
The event horizon changes as it absorbs a particle, and this
give rise to a change ofW (r). Thus, the change ofdWh satisfy

dWh = ∂Wh

∂M
dM + ∂Wh

∂Q
dQ + ∂Wh

∂rh
drh = 0,

Wh = W (M, Q, rh) . (29)

In the normal phase space, the cosmological constant is fixed.
The initial state of black hole is represented by (M, Q, rh),
where

∂Wh

∂M
= − 16 πrh3−D

(D − 2) (1 + f ′ (R0)) �D−2
dM,

∂Wh

∂Q
= − 2

D
4 −1Drh2−DA

(D − 2) (1 + f ′ (R0)) Q
dQ,

∂Wh

∂rh
= 1

2
rh

⎛
⎝ 4

l2
+

rh−D
(

32(D − 3)Mπrh + 2
d
4 (D − 2)2A�D−2

)

(D − 2) (1 + f ′ (R0)) �D−2

⎞
⎠ drh ,

(30)

and

A =
(

−π
4

D−2

(
− (−1)− D

4 25− D
4
√

1 + f ′ (R0)Q

D�D−2

)
4

D−2

)
D/4.

(31)

Combining Eqs. (27) and (29), dM and dQ will be removed,
and we can get drh directly

drh =
(D − 2)−1l2rh3

(
32πprhrh + 32

√
1 + f ′ (R0)BdQ + 2

D
4 DA�D−2Q−1dQ

)
(

2(D − 1) (1 + f ′ (R0)) rh2+D + l2
(

2(D − 3) (1 + f ′ (R0)) rh D + 2
D
4 rh2A

))
�D−2

, (32)

where

B = π
D

D−2

(
− (−1)− D

4 25− D
4
√

1 + f ′ (R0)Q

D�D−2

)
2

D−2 . (33)

Substituting Eqs. (32) into (28), which yields dSh is

dSh =
(
1 + f ′ (R0)

)
l2r D

(
32πprhQr + 32

√
1 + f ′ (R0)QBdQ + 2

D
4 DA�D−2dQ

)

4Q
(

2(D − 1) (1 + f ′ (R0)) r2+D + l2
(

2(D − 3) (1 + f ′ (R0)) r D + 2
D
4 r2A

)) . (34)

In addition, we chose D = 4p, i.e, D = 4, 8, 12, . . ., as we
mentioned already. Therefore, we will consider D = 4p in
what follows.

Incorporating Eqs. (7) and (34), we get

ThdSh = prh . (35)

We further discuss the thermodynamics of black hole. From
Eqs. (7), (9) and (34), we have

dM = �hdQ + ThdSh . (36)

Obviously, one can see that as the charged particle dropped
into a higher dimensional charged f (R) black hole, the first
law of thermodynamics is valid in the normal phase space.
That is, Eq. (36) has evidenced that the coincidence between
the variation of D-dimensional f (R) black hole and the first
law of thermodynamics under the charged particle absorp-
tion.

Since the absorption is an irreversible process, the entropy
of final state should be greater than initial state of the black
hole. In other words, the variation of entropy should satisfy
dSh > 0 under the charged particle absorption. Therefore, we
will check the validity of the second law of thermodynamics
by Eq. (34).

For the extremal black holes, we find the variation of
the entropy is divergent. The divergence of the variation
of entropy is meaningless. Therefore, we mainly focus on
the case of near-extremal black holes, and study the vari-
ation of entropy numerically in the restrictions which are
D = 4p and 1 + f ′(R0) > 0. It is worth noting that the
meaningful critical specific volume exist only when p is
odd, it means p = 4, 8, 12, . . . Here, we set Q = 1.5 and
�d−2 = l = prh = 1 as example. When f ′ (R0) = −0.8,
f ′ (R0) = −0.5 and f ′ (R0) = 0.5 respectively, we get the

corresponding extremal mass for different values of p. The
mass of the non-extremal black hole should be larger than that
of the extremal black hole. Hence, the corresponding values
of rh and dSh for different values of mass M are obtained
too, as shown in Tables 1, 2, and 3.

From these tables, the value of extremal mass changed

with the value of f ′(R0). It can be seen that as the value
of f ′(R0) increases, the extremal mass and dSh increases
too, but the value of rh decreases. In addition, the event hori-
zon of the black hole increases with the variation of mass
for the same f ′(R0), but the value of dSh decreases. Fortu-
nately, the results show that when the mass is greater than the
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Table 1 The relation between dSh , M and rh of p = 1

f ′ (R0) = −0.8 f ′ (R0) = −0.5 f ′ (R0) = 0.5

M rh dSh M rh dSh M rh dSh

1.168928 3.27626 410.57 2.922318 3.27488 908.91 8.766953 3.27442 1527.9

1.169 3.29521 48.5158 2.923 3.31530 25.2907 8.767 3.28007 163.50

1.17 3.35631 12.9644 2.93 3.41385 7.83383 8.77 3.32447 20.805

1.2 3.72504 2.75001 2.95 3.54121 4.32582 8.78 3.37899 10.273

1.3 4.21406 1.54538 2.98 3.66171 3.1249 8.8 3.44173 6.6116

1.5 4.78312 1.11093 3.0 3.72504 2.75001 8.9 3.61329 3.5054

1.8 5.36741 0.89819 4.0 5.00001 1.01689 9.0 3.72504 2.7500

Table 2 The relation between dSh , M and rh of p = 3

f ′ (R0) = −0.8 f ′ (R0) = −0.5 f ′ (R0) = 0.5

M rh dSh M rh dSh M rh dSh

0.595532 0.96297 112.422 1.067116 0.93129 238.571 2.147727 0.89475 439.291

0.596 0.97437 4.95563 1.068 0.94289 4.85363 2.148 0.89913 11.7763

0.65 1.07592 0.87591 1.07 0.95219 2.87462 2.15 0.90747 4.35482

0.68 1.0994 0.80227 1.25 1.07475 0.78099 2.18 0.94108 1.47651

0.7 1.11213 0.77289 1.5 1.1338 0.69313 2.2 0.95287 1.25892

0.8 1.15853 0.70133 1.8 1.17755 0.65818 2.5 1.03055 0.79185

0.9 1.19062 0.67074 2.0 1.19955 0.64537 2.8 1.0692 0.72313

Table 3 The relation between
dSh , M and rh of p = 5

f ′ (R0) = −0.8 f ′ (R0) = −0.5 f ′ (R0) = 0.5

M rh dSh M rh dSh M rh dSh

0.550584 0.94753 0.71137 0.935858 0.92729 0.71331 1.7437 0.87262 34.5235

0.551 0.94834 0.69971 0.936 0.92745 0.71090 1.768 0.90363 0.71417

0.56 0.96185 0.56598 0.94 0.93164 0.65539 1.77 0.90479 0.69672

0.6 0.99315 0.44083 0.95 0.94002 0.57657 1.8 0.91802 0.56245

0.7 1.02988 0.38878 0.98 0.95705 0.48544 1.9 0.94275 0.45323

0.8 1.05127 0.37393 0.99 0.96136 0.47044 2.0 0.95800 0.42044

0.9 1.06674 0.36657 2.0 1.07275 0.35823 3.0 1.02204 0.36658

extremal mass, the variation of entropy is always positive .
This implies that the second law of thermodynamics is valid
for the near-extremal f (R) black holes in the normal phase
space.

In order to make our result clearer and more visible, we
also can obtain the relation betweendSh and rh under the con-
dition −1 < f ′ (R0) for different values of p, which shown
in Fig. 1. It shows clearly that the value of dSh decreases
with the variation of rh , but there is always dSh > 0. This
result is consistent with the result of the above tables. So, the
second law of thermodynamics is valid for D-dimensional
f (R) charged black hole (near- or non-extremal case ) in the
normal phase space.

4.2 Thermodynamics in the extended phase space

In the extended phase space, since we are going to discuss the
thermodynamics of the black hole by introducing the pres-
sure, the mass should be interpreted as enthalpy rather than
internal energy. In addition, other thermodynamic quantities
can be obtained through thermodynamic identities. In other
words, we should use Eq. (15), that is

M = Uh + PVh . (37)

Therefore, based on the energy conservation and charge con-
servation, the energy relation of Eq. (25) becomes

ω = dUh = d(M − PVh), e = dQ (38)
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Fig. 1 The relation between dSh and rh for the condition −1 < f ′ (R0)

Then, we can obtain

d(M − PVh) = q

rh

√
1 + f ′ (R0)dQ + prh . (39)

Equation (39) is different from that in the normal phase space
where the increase of energy is related to the mass of the black

hole. Similarly, the event horizon and function W (h) will
change due to the charged particle absorption. The variation
of horizon radius can be obtained from the variation of metric
function W (M, Q, l, rh). So, the dWh is,

dWh = ∂Wh

∂M
dM + ∂Wh

∂Q
dQ + ∂Wh

∂rh
drh + ∂Wh

∂l
dl = 0,

Wh = f (M, Q, l, rh), (40)

and

∂Wh

∂M
= − 16 πrh3−D

(D − 2) (1 + f ′ (R0)) �D−2
dM,

∂Wh

∂Q
= − 2

D
4 −1Drh2−DA

(D − 2) (1 + f ′ (R0)) Q
dQ,

∂Wh

∂rh
= 1

2
rh

⎛
⎝ 4

l2
+

rh−D
(

32(D − 3)Mπrh + 2
d
4 (D − 2)2A�D−2

)

(D − 2) (1 + f ′ (R0)) �D−2

⎞
⎠ drh ,

∂Wh

∂l
= − 2rh2

l3
dl. (41)

Substituting Eqs. (39) into (40), we get

drh = 16(−1)− D
4 rh2−D

(D − 1) (1 + f ′ (R0)) �D−2

(
prhrhAC − rh

(
−(−1)

D
4 π + AC

)
dM + X

)
(
D−3
rh

+ (−1)− D
4 (D − 1)rh

(
(−1)

D
4 − AD

)
l−2 + (1 + f ′ (R0)) −12

D
4 −1rh1−DA

) , (42)

where

C = π− 2
−2+D

(
− (−1)−D/425− D

4
√

1 + f ′ (R0)Q

D�D−2

)
D

2−D , (43)

D = π
D

2−D

(
− (−1)−D/425− D

4
√

1 + f ′ (R0)Q

D�D−2

)
D

2−D , (44)

X = (2l)−3(D − 2)
(
1 + f ′ (R0)

)
r D

(
(−1)

D
4 − AD

)
�D−2dl.

(45)

From Eq. (42), the variations of entropy and volume can be
expressed as

dSh =
4rh−1(−1)− D

4

(
prhrhAC − rh

(
AC − (−1)

D
4 π

)
dM + X

)

D−3
rh

+ (−1)− D
4 (D − 1)rh

(
(−1)

D
4 − AD

)
l−2 + (1 + f ′ (R0)) −12

D
4 −1rh1−DA

, (46)

and

dV h =
16(D − 2)−1(−1)− D

4

(∣∣prh
∣∣ rhAC − r

(
AC − (−1)

D
4 π

)
dM + X

)

D−3
rh

+ (−1)− D
4 (D − 1)rh

(
(−1)

D
4 − AD

)
l−2 + (1 + f , (R0)) −12−1+ D

4 rh1−DA
. (47)

With the help of Eqs. (7), (11), (46) and (47), we can get the
following relation

ThdSh − PdV h = prh, (48)
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Table 4 The relation between
dSh , M and rh of p = 1

f ′ (R0) = −0.8 f ′ (R0) = −0.5 f ′ (R0) = 0.5

M rh dSh M rh dSh M rh dSh

1.168927 3.27393 −1.2797 2.922318 3.27488 −1.2809 8.766953 3.27442 −1.2803

1.17 3.35631 −1.3809 3.5 4.53012 −3.4896 8.767 3.28007 −1.2871

5.5 8.62368 −28.687 10.5 7.79934 −20.246 10.5 4.53012 −3.4896

53.25 18.8087 −54346 130 18.6595 −11452 395.5 18.7473 −21537

55.5 19.0714 10361.7 135 18.8971 47252 405.5 18.9049 40634

65.5 20.1597 2014.54 155 19.8173 2613.63 415.5 19.0599 10911

75.5 21.1416 1295.5 200 1151.23 21.5552 515.5 20.4876 1677

Table 5 The relation between
dSh , M and rh of p = 3

f ′ (R0) = −0.8 f ′ (R0) = −0.5 f ′ (R0) = 0.5

M rh dSh M rh dSh M rh dSh

0.595532 0.96297 −1.1990 1.067116 0.93129 −1.2330 2.147727 0.89475 −1.2805

0.599 0.99412 −2.5564 1.068 0.94289 −1.6147 2.148 0.89913 −1.4242

0.6 0.99823 −2.9 1.1 0.99852 −59.821 2.2015 0.95364 −29.968

0.6075 1.01954 −7.1647 1.10225 1.00061 −655.3 2.20955 0.95758 −595.4

0.6175 1.03807 −1302.7 1.1025 1.00083 20355 2.210985 0.95826 276.22

0.617925 1.03873 277.301 1.2 1.05667 3.52123 2.5 1.03055 2.77183

0.8 1.15853 2.42865 1.5 1.1338 2.2210 2.8 1.0692 2.23741

and

dU = �dQ + ThdSh − PdV . (49)

We can prove that the above physical quantities satisfy the
first law of thermodynamics. That is,

dM = ThdSh + �hdQ + VhdP, (50)

which is consistent with Eq. (13). Therefore, the first law
of thermodynamics in the higher-dimensional charged f (R)

black hole is well recovered when a charged particle is
absorbed.

The satisfaction of the first law of thermodynamics does
not mean that the second law is also satisfied, especially in the
extended phase space. Hence, we will investigate the second
law of thermodynamics of the higher-dimensional charged
f (R) black hole by use Eq. (46) in the extended phase space.
For the extremal black holes, the variation of entropy takes
on the form

dSh = − 4πprhl
2

(D − 1)rh
. (51)

In Eq. (51), there is a minus sign. That is, the entropy
decreases in the chronological direction for the extremal
black hole, and this result does not support the second law of
thermodynamics under the consideration of PVh term. Then,
we focus on the near-extremal black holes. Similarly, since
Eq. (46) includes a bunch of parameters, for simplicity and
without loss of generality, we also set l = prh = �d−2 = 1

and Q = 1.5. For different values of the parameters p and
f ′(R0), we can get different mass of the extremal black holes,
and the corresponding value of rh and dSh are also obtained,
which are listed in Tables 4, 5, and 6.

From these tables, we find that the variation of entropy
is more sophisticated, and the value of dSh is not a sim-
ple monotonic relationship such as that in the normal phase
space, there is always a divergent point. Although the value
of dSh decrease as the mass increase, the value of dSh have
positive and negative regions. When the mass approaches
to extremal mass, the value of dSh is negative, which means
that the second law of thermodynamics is invalid for the near-
extremal f (R) black hole. In the other hands, when the mass
is larger than the extremal mass, the change of entropy is pos-
itive, therefore, this result supports the second law of thermo-
dynamics for the non-extremal f (R) black hole. In addition,
the result demonstrates that the location of the divergence
point is different when the value of f ′(R0) is changed, that
is, there is a great connection between the divergence point
and the value of f ′(R0). When the value of f ′(R0) increased,
the later the divergent point appears. The relation between
dSh , rh and f ′(R0) can be plotted while p is change, which
is shown in Fig. 2.

From these figures, we find that there is always a phase
transition point which divides dSh into positive and negative
regions, this result is consistent with the conclusion of the
above tables. Furthermore, the result shows that dSh is neg-
ative when the event horizon radius is smaller than the phase
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Table 6 The relation between
dSh , M and rh of p = 5

f ′ (R0) = −0.8 f ′ (R0) = −0.5 f ′ (R0) = 0.5

M rh dSh M rh dSh M rh dSh

0.550584 0.94753 −37.169 0.935858 0.92729 −7708 1.743696 0.87231 −0.7639

0.550985 0.94831 −181.37 0.93589 0.92732 1389.57 1.744 0.87596 −0.9112

0.55122 0.94875 156.465 0.9359 0.92734 777.866 1.76589 0.90235 −259.54

0.55211 0.95038 20.2037 0.94 0.93164 8.53264 1.768589 0.90398 22.67

0.56 0.96185 3.19932 1.0 0.96526 1.38722 1.8 0.91802 2.56467

0.6 0.99315 1.30405 1.25 1.01645 0.92943 2 0.95800 1.07527

0.985 1.07729 0.88591 1.5 1.04181 0.87806 5 1.07024 0.82968

Fig. 2 The relation between dSh and rh for the condition −1 < f ′ (R0)

transition point. Therefore, we can also conclude that the sec-
ond law of thermodynamics is not valid in the extended phase
space for the near-extremal black hole under charged particle
absorption. Obviously, the result also shows that the magni-
tudes of the violation for the second law of thermodynamics
is related to the parameters l, p, Q, f ′(R0),�d−2.

5 The weak cosmic censorship conjecture of the higher
dimensional f (R) black holes

In this section, we investigate the validity of the weak cos-
mic censorship conjecture for the higher-dimensional f (R)

black hole, and we intend to explore what the final state is as
the charged particle is absorbed by the higher-dimensional
charged f (R) black hole in different phase spaces. As the
extremal black hole is in a state in which its mass has the
maximum charge, it is feasible to overcharge the black hole
by adding the charged particle. In the other words, the event
horizon will disappear, which makes the singularity of the
black hole exposed in the spacetime. Hence, we should check
whether there is an event horizon at the final state of the black
hole. For the black hole, the metric function W (r) has a min-
imum point W (rmin). And, there at least is a positive real root
for the equation W (rmin) = 0, the final states still black hole
and the weak cosmic censorship conjecture still holds. Oth-
erwise, the weak cosmic censorship conjecture is invalid. So,
near the locations of the minimum value rmin, the following

relations are satisfied

W (r)|r=rmin ≡ Wmin = δ ≤ 0, ∂rW (r)|r=rmin ≡ W ′
min = 0,

(∂r )
2 f (r)|r=rmin > 0. (52)

The minimum value of the function W (r) is δ. For the
case of extremal black hole δ = 0, and the location of
the event horizon is coincident with that of the minimum
value of the function W (rmin). For the case of near-extremal
black hole, δ is a very small negative value. When charged
particle dropped into the black hole, the change of the
conserved quantities of the black hole can be written as
W (M+dM, Q+dQ, l+dl). Correspondingly, the position
of the minimum point of function W (rmin) and event horizon
change into rmin → rmin + drmin, rh → rh + drh respec-
tively. Then, there is also a shift for the value of W (rmin),
which is denoted as dWmin. At the new lowest point , we
have

∂rW |r=rmin+drmin = W ′
min + dW ′

min = 0. (53)

5.1 Weak cosmic censorship conjecture in the normal
phase space

In the normal phase space, we will study the change of
W (rmin ) as charged particle absorbed. At rmin +drmin , with
the help of condition W ′

min = 0 in Eq. (53), we have a relation
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dW ′
min = 0, which implying

dW ′
min = ∂W ′

min

∂M
dM + ∂W ′

min

∂Q
dQ + ∂W ′

min

∂rmin
drmin = 0.

(54)

In addition, at the new minimum point, W (rmin + drmin )

can be expressed as

W (rmin + drmin ) = Wmin + dWmin , (55)

where

dWmin = ∂Wmin

∂M
dM + ∂Wmin

∂Q
dQ. (56)

For the extremal black hole, Wmin = δ = 0 and the temper-
ature is zero Th = 0. Substituting Eqs. (27) into (56), we can
get

dWmin = 0. (57)

This implies that Wmin + dWmin = 0, which means that the
final state of the extremal black hole still an extremal black
hole with the new mass and charge when particle absorbed.
Hence, the existence of the event horizon ensures that the sin-
gularity is not naked in this black hole, and the weak cosmic
censorship conjecture is valid. For the near-extremal black
hole, we have

rh = rmin + ε, δ → δε, (58)

where 0 < ε 	 1, and the minimum value δε is a very
small negative value with respect to ε. Then, the Eq. (27) is
rewritten in terms of ε and rmin, which is

dM = B
√

1 + f ′ (R0) dQ

πrmin

+ (D − 1)
(
1 + f ′ (R0)

)
rmin

2+D�D−2

16l2πrmin
4(D − 2)−1 drmin

+
(

2
D
4 Armin

2 + 2(D − 3)
(
1 + f ′ (R0)

)
rmin

D
)

�D−2

32 πrmin
4(D − 2)−1 drmin

− B
√

1 + f ′ (R0) ε

πrmin
2 dQ

+ (D − 1)
(
1 + f ′ (R0)

)
rmin

2+D�D−2ε

16l2πrmin
5(D − 2)−1

drmin

−
(

2
D
4 A(D − 1)rmin

2 + 2(D − 3)
(
1 + f ′ (R0)

)
rmin

D
)

�D−2ε

32 πrmin
5(D − 2)−1

drmin

+ O(ε)2. (59)

Substituting Eqs. (59) into (56), and consider the condition
D = 4p, p ∈ N, we can obtain

dWmin = O(ε)2. (60)

Then, for the near-extremal black hole, the Eq. (55) becomes

W (rmin + drmin ) = δε + O(ε)2. (61)

For the special case where ε = 0 in Eq. (61), we can have
W (rmin + drmin ) = 0. Interestingly, this result is consis-
tent with the result of the extremal case. Hence, Eq. (57) is
further confirmed. However, we still does not estimate the
value magnitudes between |δε | and O(ε)2, when the value
of δε was not zero. Therefore, for the near-extremal black
hole, we can not simply ignore the contribution of O(ε)2 to
Eq. (61) since δε is also a small quantity, so we need a more
precise calculation. To the second order, we find

W (rmin + ε) = (D − 1) rmin
2

(D − 3) l2

+ 2(D − 3)
(
1 + f ′ (R0)

)
rmin

D + 2
D
4 rmin

2A
2(D − 3) (1 + f ′ (R0)) rmin

D

+
(
4(−1 + D)

(
1 + f ′ (R0)

)
rmin

D − 2D/4(D − 2)l2A)
ε2

4rmin
D (1 + f ′ (R0)) l2

+ O(ε)3. (62)

Hence, we can get

δε = −
(
4(−1 + D)

(
1 + f ′ (R0)

)
rmin

D − 2D/4(D − 2)l2A)
ε2

4rmin
D (1 + f ′ (R0)) l2

− O(ε)3. (63)

Similarly, to the second order, dWmin can be expanded as

dWmin = −
(
4 − 5D + D2

)
ε2

rminl2
drmin − 2

D
4 ε2

rmin
(D+1)l2

(D − 2)l2
(
−(8π)

4
D−2 λ1

)
D
4 drmin

+2
8+6D+D2

4(D−2) π
D

D−2 ε2r−1−D
min

((
6 − 5D + D2

)
l2 + (D − 1)Dr2

min

)
λ1drmin

(−1)− D
4

(
(D − 3)l2 + (−1 + D)r2

min

) + O(ε)3, (64)

where
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λ1 =
((

−2− 12
D−2 π− 4

D−2

(
−21− D

4 rmin
D−2

(
(D − 3)l2 + (D − 1)rmin

2
)

l2

)
D
4

)
1
4 (D−2)

)
4

D−2 . (65)

It is easy to find that the relation between δε and O(ε)2. For
simplicity, we redefine

WN = δε + O(ε)2

ε2 . (66)

In order to make the results gain an intuitive understanding,
the result of Eq. (66) is plotted, which is shown in Fig. 3.

Fortunately, for different values of p, there is always
WN < 0 in Fig. 3. In other words, the result shows that
W (rmin + drmin ) = δε+O(ε)2 < 0, which means the weak
cosmic censorship conjecture for the near-extremal higher
dimensional charged f (R) black hole is valid under charged
particles absorption in the normal phase space.

5.2 Weak cosmic censorship conjecture in the extended
phase space

In the expended phase space, l is a variable which leads to
the conserved quantity such as mass M , charge Q, and AdS
radius l will transform into (M + dM, Q + dQ, l + dl) as
a charged particle swallowed by the black hole. Therefore,
according Eq. (53), we can also get

dW ′
min = ∂W ′

min

∂M
dM + ∂W ′

min

∂Q
dQ + ∂W ′

min

∂rmin
drmin

+ ∂W ′
min

∂l
dl = 0. (67)

In addition, at the new minimum point, we obtain

W (rmin + drmin ) = Wmin + dWmin , (68)

and

dWmin = ∂Wmin

∂M
dM + ∂Wmin

∂Q
dQ + ∂Wmin

∂l
dl. (69)

Deserve to be mentioned, Eq. (68) is dissimilar from Eq. (55)
due to the emergence of the cosmological constant. For the
extremal black hole, rmin locates at rh , so Eq. (54) can be
applied. In this case, we also have Wmin = δ = 0, inserting
Eq. (54) into Eq. (69), we can get

dWmin = 0. (70)

In accordance with Eq. (70), we also get Wmin +dWmin = 0.
It shows clearly that there is not any change inW (rmin + drmin)

for the extremal black holes so that the black hole has hori-
zon after the absorption in the extended phase space. There-
fore, the weak cosmic censorship conjecture is valid for the
extremal higher-dimensional charged f (R) black holes. It
is interesting to note that this conclusion has not different
with that in the normal phase space, the black hole keeps
its configuration after the absorption. Hence, the extremal
black hole still extremal black hole with the contribution of
pressure, that is, the particle with sufficient momentum and
charge would not overcharge extremal higher-dimensional
f (R) black hole in the extended phase space.

Similarly, for the near-extremal black hole, we also utilize
rh = rmin + ε, we can expand Eq. (54) at rmin , which leads
to

dM =
√

1 + f ′ (R0)π
1

8D−1 λ2

rmin
dQ − (8D − 1)�D−2

(
1 + f ′ (R0)

)
rmin

16D−1dl

4l3π

+ (8D − 1)(16D − 1)
(
1 + f ′ (R0)

)
�D−2rmin

16D−2

8l2π
drmin −

√
1 + f ′ (R0) π

1
8D−1 λ2

8 rmin
2 dQ

+
(8D − 1)

(
2(16D − 3)

(
1 + f ′ (R0)

)
rmin

16D−2 + 16D
(
−π

2
8D−1 λ2

)4D
)

�D−2

16 πrmin
2 drmin

− (8D − 1)(16D − 1)
(
1 + f ′ (R0)

)
rmin

16D−2ε

4l3π
dl

+
(8D − 1)

(
4

(
3 − 28D + 64D2

) (
1 + f ′ (R0)

)
rmin

16D−2 − 16d
(
−π

2
8−1D λ2

)4D
)

�D−2ε

8 πrmin
3 drmin

+O(ε)2, (71)
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Fig. 3 The value of WN for l = 1, Q = 2, �D−2 = 1

where

λ2 =
(

− (−1)−4D21−4D
√

1 + f ′ (R0)Q

�D−2 D

)
1

−1+8D . (72)

Using Eqs. (71) and (69), we have

dWmin = −(16D − 1)rmin

l2
drmin + 8

√
1 + f ′ (R0)π

8D
8D−1 λ2dQ

(8D − 1) (1 + f ′ (R0))�D−2rmin
16D−1

−

(
2(16D − 3)

(
1 + f ′ (R0)

)
rmin

16D + 16drmin
2
(
−π

2
−1+8D λ2

)4D
)

2 (1 + f ′ (R0)) rmin
16D+1 drmin

−
4

(
2
√

1 + f ′ (R0)π
1+ 1

−1+8D QD + 16DD
(
−π

2
−1+8D λ2

)4D
�D−2

)
dQ

(8D − 1) (1 + f ′ (R0)) Q�D−2rmin
16D−2

−

(
4

(
3 − 28D + 64D2

) (
1 + f ′ (R0)

)
rmin

16D−2 − 16D
(
−π

2
−1+8D λ2

)4D
)

ε

(1 + f ′ (R0)) rmin
16D drmin

+ 2(16D − 1)rminε

l3�D−2
dl − l2

(
1 − 24D + 128D2

)
ε

l3
drmin + O(ε)2. (73)

In addition, For the extremal black hole, we have W (rh) = 0.
Hence, we can get

Q = −
(−1)D/42

D
4 −2D

(
−2− 12

D−2 π− 4
−2+D λ3

)
1
4 (D−2)�D−2√

1 + f ′ (R0)
,

(74)

and

dQ = −
(−1)D/42

D
4 −2(D − 2)

(
−2− 12

−2+D π− 4
−2+D λ3

)
1
4 (−2+D)

√
1 + f ′ (R0)lrmin

(
(D − 3)l2 + (D − 1)rmin

2
)

×
(
l
((

6 − 5D + D2
)
l2 + (D − 1)drmin

2
)
drmin − 2(D − 1) r3dl

)
�D−2√

1 + f ′ (R0)lrmin
(
(D − 3)l2 + (D − 1)rmin

2
) , (75)

where

λ3 =
(

− 21− D
4

(
1 + f ′ (R0)

)
rmin

D−2
(
(D − 3)l2 + (D − 1)rmin

2
)

l2

)
4/D .

(76)

With the help of Eqs. (73), (74) and (75), and the condition
D = 4p, p ∈ N. We finally get

dWmin = O(ε)2. (77)

In the extended phase space, the minimum value of the near-
extremal black hole is
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Fig. 4 The value of WE for Q = 2, l = 1, �D−2 = 1

Wmin + dWmin = δε + O(ε)2. (78)

Obviously, when we considered the condition δε → 0, ε → 0
for Eq. (78), we can get the expression Wmin + dWmin = 0,
which is reduced to the extremal case in Eq. (70). For the near-
extremal black hole, to determine the final states precisely,
we also perform higher-order expansion, which is

dWmin = −
(
2 − 3D + D2

)
ε2

l3
dl −

(((
6 − 5D + D2

)
l2 + (D − 1)Dr2

)
ldrmin − 2(D − 1)rmin

3dl
)
λ4ε

2

2 (1 + f ′ (R0)) rmin
3+Dl3

(
(D − 3)l2 + (D − 1)rmin

2
)

+
(
11D − 6D2 + D3 − 6

)
ε2drmin

2 rminl2
+

(
47D − 12D2 + D3 − 60

)
ε2drmin

2 rmin
3

+ 3λ4ε
2drmin

2 (1 + f ′ (R0)) rmin
3+Dl2

+ O(ε)3, (79)

where

λ4 = l2rmin
2(−1)

D
4 2

D(D+10)
4(D−2) π

D
D−2

(
−2

12
2−D π

4
2−D λ3

)
D
4 .

(80)

In this case, we can use Eqs. (63) and (79) to define

WE = δε + O(ε)2

ε2 . (81)

Now, in order to visually represent the positive and negative
conditions of WE , we plot Fig. 4 for different values of p. In
these figures, we find that the result is nothing but interesting.

When p = 1, which means the four dimensions f (R)

black hole, there is no parameter f ′(R0) in the final result
of WE . It can be seen clearly that there is always WE < 0,
which is shown in Fig. 4a. Nevertheless, for the case of p > 1,
that is, higher dimensional f (R) black holes, the parameter
f ′(R0) makes a contribution to the final result WE which
leads toWE may be positive in the final state, which is shown
in Fig. 4b, c. In this case, there is not a horizon to cover
the singularity and the weak cosmic censorship conjecture is

violated in the extended phase space. In addition, our result
demonstrate that the magnitudes of the violation is different
for the value of parameter f ′(R0), p, drmin. In general terms,
the configuration of WE is different for different values of
these parameters, and the magnitudes of the violation is also
related to those of the parameters.

6 Discussion and conclusions

In this paper, we obtained the energy-momentum relation
as the charged particle dropped into the higher dimensional
charged f (R) black holes by using the Hamilton–Jacobi
equation. Based on this relationship, we have verified the
thermodynamic laws of black holes under charged parti-
cle absorption. In addition, we further examined the valid-
ity of the weak cosmic censorship conjecture in the higher-
dimensional f (R) AdS black holes.

In the normal phase space, we found that the first law
of thermodynamics was valid when the charged particle
dropped into the higher-dimensional f (R) AdS black holes.
Additionally, for the second law of thermodynamics, the
result shows that the variation of the entropy always increased
whether it is extremal or non-extremal black holes, which
means the second law of thermodynamics is valid in the nor-
mal phase space. According to a more accurate calculate of
the shift of the metric function W (rmin) under charged par-
ticle absorption, the result shows that the final configuration
of the black hole does not change, when the extremal f (R)
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black hole absorbed the charged particle. In other words, the
extremal higher-dimensional f (R) AdS black holes can not
be overcharged in the course of the absorption, and the event
horizon of the black hole still holds. In addition, for the case
of near-extremal black hole, the minimum value is still nega-
tive under charged particle absorption. That is, in both cases,
the weak cosmic censorship conjecture are all valid.

In the extended phase space, when the cosmological
parameter is identified as a variable which is interpreted
as a pressure, the results of thermodynamic laws and weak
cosmic censorship conjecture are fairly different from that
obtained in the normal phase space. In this case, we find that
the first law of thermodynamics is valid under charged parti-
cle absorption. However, the results show that the second law
of thermodynamics is invalid for extremal and near-extremal
black holes. The thermodynamic properties of a black hole,
such as the Hawking temperature, Bekenstein–Hawking
entropy, and thermodynamic potentials, are all defined on its
horizon, especially, the horizon area of the black hole is pro-
portional to the Bekenstein–Hawking entropy, which means
the thermodynamics of a black hole are strongly dependent
on the stability of its horizon. Studying the stability of the
horizon is necessary for the validity of the weak cosmic cen-
sorship conjecture, and this conjecture was originally pro-
posed for a stable horizon to prevent the breakdown of the
causality at a naked singularity. Thus, we need to further
prove the validity of the conjecture when the second law
appears to be violated with the pressure term. Therefore,
we judged the existences of the event horizon by evaluating
the minimum value of the function W (r). In this paper, our
results show that the function W (r) does not also change for
the extremal black hole. That is, extremal higher-dimensional
f (R) AdS black holes can not be destroyed in the course of
the absorption process, and the weak cosmic censorship con-
jecture is still valid in the extended phase space. Interestingly,
for the near-extremal higher-dimensional f (R) black holes,
the shift of the minimum value is quite different from that
in the case without the pressure term. Different with Ref.
[42], the effect of the second-order small O(ε2) to the final
result is presented in our calculation, where the figures of
the relation between δε and O(ε2) is plotted. In this case,
the result shows that there is still W (rmin + drmin) < 0 in
the case of p = 1, where the parameter f ′(R) does not
makes a contribution to W (rmin + drmin). That is, the weak
cosmic censorship conjecture is valid in the 4-dimensional
near-extremal f (R) black holes. However, for the higher-
dimensional f (R) AdS black hole where p > 1, our results
show that W (rmin + drmin) > 0, and we find that param-
eter f ′(R) makes a contribution to W (rmin + drmin). It is
worth noting that this result is quite different from that with-
out parameters f ′(R) in the final state. In other words, the
weak cosmic censorship conjecture may be invalid when the
charged particle dropped into the higher-dimensional near-

extremal f (R) black holes. In a conclusion, it implies that
the violations of the cosmic censorship conjecture depending
on the parameter f ′(R0), and the magnitudes of those viola-
tions are relevant to those of the parameters. Therefore, the
parameter f ′(R0) plays a very important role, and its effect to
the weak cosmic censorship conjecture cannot be neglected.
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