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Abstract In this paper, we use the “complexity equals
action” (CA) conjecture to evaluate the holographic com-
plexity in some multiple-horzion black holes for the gravita-
tional theory coupled to a first-order source-free electrody-
namics. Motivated by the vanishing result of the purely mag-
netic black hole founded by Goto et al., we investigate the
complexity in a static charged black hole with source-free
electrodynamics and find that this vanishing feature of the
late-time rate is universal for a purely static magnetic black
hole. But this result shows some unexpected features of the
late-time growth rate. We show how the inclusion of a bound-
ary term for the first-order electromagnetic field to the total
action can make the holographic complexity be well-defined
and obtain a general expression of the late-time complexity
growth rate with these boundary terms. However, the choice
of these additional boundary terms is dependent on the spe-
cific gravitational theory as well as the black hole geometries.
To show this, we apply our late-time result to some explicit
cases and show how to choose the proportional constant of
the additional boundary term to make the complexity be well-
defined in the zero-charge limit. Typically, we investigate the
static magnetic black holes in Einstein gravity coupled to a
first-order electrodynamics and find that there is a general
relationship between the proper proportional constant and
the Lagrangian function h(F) of the electromagnetic field: if
h(F) is a convergent function, the choice of the proportional
constant is independent on explicit expressions of h(F) and
it should be chosen as 4/3; if h(F) is a divergent function, the
proportional constant is dependent on the asymptotic index
of the Lagrangian function.

a e-mail: mingzhang@mail.bnu.edu.cn
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1 Introduction

In recent years, there has been a growing interest in the topic
of “quantum complexity”, which is defined as the minimum
number of gates required to obtain a target state starting
from a reference state [1,2]. From the holographic viewpoint,
Brown et al. suggested that the quantum complexity of the
state in the boundary theory is dual to some bulk gravitational
quantities which are called “holographic complexity”. Then,
the two conjectures, “complexity equals volume” (CV) [2,3]
and “complexity equals action” (CA) [4,5], were proposed.
They aroused researchers’ widespread attention to both holo-
graphic complexity and circuit complexity in quantum field
theory, e.g. [6–63].

In present work, we only focus on the CA conjecture,
which states that the quantum complexity of a particular state
|ψ(tL , tR)〉 on the boundary is given by

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-7661-z&domain=pdf
http://orcid.org/0000-0003-3355-1020
mailto:mingzhang@mail.bnu.edu.cn


85 Page 2 of 12 Eur. Phys. J. C (2020) 80 :85

C (|ψ(tL , tR)〉) ≡ IWDW

π h̄
. (1.1)

Here IWDW is the on-shell action in the corresponding
Wheeler–DeWitt (WDW) patch, which is enclosed by the
past and future light sheets sent into the bulk spacetime from
the timeslices tL and tR .

By studying a simple class of systems known as random
quantum circuits with N qubits, it has been shown that for
generic circuits, after a short period of transient initial behav-
ior, the complexity grows linearly in time, and finally satu-
rates at a maximum value. In the context of AdS/CFT, we
need to set N to be very large. Then, it can be generally
argued that at late times, this quantum complexity should
continue to grow with a rate given by [2,3]

dC

dt
∼ T S, (1.2)

where the entropy represents the width of the circuit and the
temperature is an obvious choice for the local rate at which
a particular qubit interacts.

Recently, Goto et al. [47] investigated the CA complexity
for dyonic Reissner–Nordstrom-AdS (RN-AdS) black holes
in 4-dimensional Einstein-Maxwell gravity. They found
some surprising results that the complexity of the dyonic
black holes cannot return to that of the neutral case under the
zero-charge limit and the growth rate vanishes at late times
when this dyonic black hole only carries a magnetic charge.
These results do not agree with the general expectation (1.2)
for the quantum system. Moreover, from the perspective of
the boundary CFT, nothing particularly strange should hap-
pen in the zero-charge limit. Therefore, the holographic com-
plexity should also satisfy this limit. These results also show
the unexpected feature in the zero-charge limit, i.e., the limit
of complexity for the charged black hole should be as same
as the neutral counterpart.

However, this apparent failure can be alleviated when we
modify the total action with the addition of the Maxwell
boundary term [47]

IμQ = γ

4π

∫
∂M

d�a F
ab Ab (1.3)

for the Einstein–Maxwell gravity. Here γ is some propor-
tional constant which should be chosen as γ = q2

m/(q2
m−q2

e )

for the dyonic black holes to ensure that the complexity
satisfies the zero-charge limit. After that, the late-time rate
becomes finite and sensitive to the magnetic charge. More-
over, we can see that this boundary term does not affect
the equation of motion of the electromagnetic fields. It only
changes the boundary conditions in the variational principle
of the electrodynamics.

To better understand these features of CA complexity, we
might also ask whether these unexpected results are univer-
sal in the black holes with magnetic charges. If it is, how

can we introduce an appropriate boundary action to make
the holographic complexity be well-defined? Therefore, in
this paper, we would like to investigate the CA complexity
in the stationary magnetic black holes and try to find the
proportional additional boundary term to make the CA com-
plexity be well-defined especially for the purely magnetic
static black holes in Einstein gravity coupled to a first-order
electrodynamics.

The remainder of this paper is organized as follows: in
Sect. 2, we review the Iyer–Wald formalism for an invariant
gravity coupled to a first order source-free electrodynamics.
In Sect. 3, we evaluate the late-time holographic complex-
ity growth rate for the original CA conjecture as well as the
new conjecture with some additional boundary terms in a
static multiple-horizon black hole for a gravitational theory
coupled to source-free fields. In Sects. 4 and 5, we apply
our late-time result to the dyonic black hole in Maxwell-
f (R) gravity and charged dilaton black hole, individually. In
Sect. 6, we apply our result to some purely magnetic black
holes in Einstein gravity. First, we investigate some static
magnetic black holes in Einstein gravity coupled a electro-
magnetic field with some special Lagrangian functions in
Sects. 6.1 and 6.2, and show how to fix the proportional con-
stant to make the complexity be well defined in these explicit
cases. Then, in Sect. 6.3, we give a general discussion of the
static magnetic black hole in the Einstein gravity with the
first order electrodynamics. Finally, concluding remarks are
given in Sect. 6

2 Iyer–Wald formalism

In this section, we will give a brief review of the Iyer–
Wald formalism for a general 4-dimensional diffeomor-
phism invariant theory coupling a first-order electromag-
netic field and source-free scalar field, which is described
by a Lagrangian L = Lε where the dynamical field con-
sists of a Lorentz signature metric gab, gauge field Aa and a
scalar field ψ . Following the notation in [64], we use bold-
face letters to denote differential forms and collectively refer
to (gab, Aa, ψ) as φ. Then, the action can be divided into
the gravity part, gauge field part and scalar field part, i.e.,
L = Lgrav − Lem + Lψ where Lem = Lemε = h(F, ψ)ε

and Lψ = L(ψ, |∇ψ |2)ε. Here F = dA is the electromag-
netic tensor and |∇ψ |2 = ∇aψ∇aψ . The variation of the
gravitational part with respect to gab is given by

δLgrav = Eab
g (φ)δgab + d�(φ, δg), (2.1)

where Eab
g (φ) is locally constructed out of φ and its deriva-

tives and � is locally constructed out of φ, δgab and their
derivatives. The equation of motion can be read off as
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Eab
g (φ) = −1

2
T abε (2.2)

with

T ab = − 2√−g

δ
√−gLmt

δgab
= −gabLmt − 2

δLmt

δgab
, (2.3)

which is the stress-energy tensor of the matter fields. Here
we denote Lmat = Lmtε = (Lψ − Lem

)
ε. Let ζ a be the

infinitesimal generator of a diffeomorphism. Exploiting the
Bianchi identity ∇aT ab = 0, one can obtain the identically
conserved current for a generic background metric gab as

J[ζ ] = �(φ, ζ ) − ζ · Lgrav + sζ · ε, (2.4)

where saζ ≡ −T abζb and �(φ, ζ ) = �(φ,Lζ gab). Since
J is closed, there exists a Noether charge 2-form K [ζ ] such
that J[ζ ] = dK [ζ ]. With similar arguments in [64,65], this
2-form can always be expressed as

K [ζ ] = W cζ
c + Xcd∇[cζd], (2.5)

where

(
Xcd

)
c1c2

= −Eabcd
R εabc1c2 (2.6)

is the Wald entropy density with

Eabcd
R = ∂Lgrav

∂Rabcd
. (2.7)

Substituting (2.3) into (2.4), one can obtain

ζ · L = �(φ, ζ ) − dK [ζ ] + χζ · ε, (2.8)

where we denote

χa
ζ = −2

δLmt

δgab
ζb. (2.9)

Then, we consider the electromagnetic part Lem. Since
h(F, ψ) and ψ are scalar fields, all of the indexes should
be contracted. Then, the Lagrangian can be expressed as a
function of the scalar fields

F (n) = Fa1
a2 Fa2

a3 · · · Fan−1
an Fan

a1, (2.10)

i.e., Lem = h (F , ψ) with F = {F (2),F (4), · · ·F (2n), · · · }.
For latter convenience, here we also define a tensor

H (n)
ab = Fa

a2 Fa2
a3 · · · Fan−1

an Fanb. (2.11)

With these in mind, the variation of the electromagnetic part
with respect to A is given by

δLem =
∞∑
n=0

hnδ(�F (2n))

= 2
∞∑
n=0

nhn �
(
H (2n−1)
ab δFba

)

= −4

[ ∞∑
n=0

nhn � H(2n−1)

]
∧ δF

= G ∧ dδA

= −dG ∧ δA + d (G ∧ δA) .

(2.12)

where we have denoted

hn = ∂h(F , ψ)

∂F (2n)
(2.13)

and define G = �H with

H = −4

[ ∞∑
n=0

nhnH(2n−1)

]
. (2.14)

We have also used the relation

F1abF
ab
2 = −2 � (F1 ∧ �F2) (2.15)

for two 2-form F1 and F2. Since the scalar field is source-
free, the equation of motion for the electromagnetic field is
given by dG = 0, which is also equivalent to

∇a

(
Hab

)
= 0. (2.16)

Next, we turn to evaluate (2.9). If ζ is a Killing vector,
i.e., Lζ A = 0 and Lζ ψ = 0, we have

χa
ζ = −2

δh(F , ψ)

δgab
ζb − 2

δL(ψ, |∇ψ |2)
δgab

ζb

= −4
∑
n

nhn
(
H (2n−1)

)ac
Fc

bζb

− 2
∂L

∂|∇ψ |2 ∇aψLζ ψ

= HacFc
bζb

= ∇b

(
Hba Acζ

c
)

,

(2.17)

which implies

χζ · ε = d
(
Aaζ

aG
)
. (2.18)

Combing with the fact �(φ, ζ ) = 0 for the Killing vector,
Eq. (2.8) becomes

ζ · L = d
(
Aaζ

aG − K [ζ ]) . (2.19)

Moreover, the equation of motion dG = 0 implies that G
is a closed form for the on-shell field. Then, there exists a
1-form B such that G = dB when the EM field satisfies the
equation of motion. Combing the Bianchi identity dF = 0,
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the electric charge Q and magnetic charge P can be defined
as

Q =
∫
C∞

G, P =
∫
C∞

F, (2.20)

where C∞ denotes a 2-dimensional surface at the asymptotic
infinity.

3 Late-time complexity growth rate

3.1 Original CA conjecture

In this subsection, we consider a static magnetic black hole
with the Killing horizon contained a bifurcation surface. And
ξa = (∂/∂t)a is the Killing vector of this horizon. By using
this static Killing vector, we can define the electric potential
and magnetic potential


 = −Aaξ
a, � = Baξ

a . (3.1)

According to the CA conjecture, calculating the holo-
graphic complexity is equivalent to evaluating the full action
within the WDW patch. For a F (Riemanm) gravity, the full
action can be expressed as1 [8,56]

I =
∫
M
L +

∫
C
sη +

∫
N

dλsκ
∫
N

dλ(∂λs) log (lct�) ,

(3.2)

where s = Xcdεcd is the Wald entropy density, λ is the
parameter of the null generator ka on the null segment, κ

measures the failure of λ to be an affine parameter which is
derived from ka∇akb = κkb, � = ∇aka is the expansion
scalar, and lct is an arbitrary length scale. These boundary
terms are introduced to make the variational principle well-
posed.

First of all, we consider the bulk contributions of the
change of the action. As illustrated in Fig. 1, the bulk con-
tributions only come from the region δM . At the late times,
it can be generated by the Killing vector ξa through the null
boundary N which is bounded by the inner and outer hori-
zons. Then, the action change contributed by the late-time
bulk action can be shown as

δ Ibulk = IδM2 − IδM1 , (3.3)

For simplification, we will neglect the index {±}. Turning to
the bulk contribution from δM , we have

IδM =
∫

δM
L = δt

∫
N

ξ · L. (3.4)

1 It is noteworthy that this expression is not suitable for Lanczos–
Lovelock theory and the boundary terms are given by [51,52] for this
theory.

Fig. 1 Wheeler–DeWitt patch at late time of a multiple Killing hori-
zon black hole, where the dashed lines denote the cut-off surface at
asymptotic infinity, satisfying the asymptotic symmetries

Using (2.19), we have∫
N

ξ · L = −
∫
N

d (
G + K [ξ ])

= −
∫
C∞


G −
∫
C∞

K [ξ ]

+
∫
C


G +
∫
C
K [ξ ].

(3.5)

At the late times, the corner C approaches the Killing horizon
H. Since the horizon contains a bifurcation surface, the first
term in (2.5) vanishes on the horizon H, i.e.,

K = Xcd∇[cξd] = κs, (3.6)

where εab is the binormal of surface C, and ξa∇aξ
b = κξb

on the horizon. By virtue of the smoothness of the pullback
of Aa and the static condition, one can show that 
H =
− ξa Aa |H is constant in the portion of the horizon to the
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future of the bifurcation surface. For simplification, we can
choose Aaξ

a |∞ = 0. With these in mind, (3.5) becomes

∫
N

ξ · L = T S + 
HQ −
∫
C∞

K [t] (3.7)

with the entropy S = 2π
∫
�
Xcdεcd and T = κ/2π . With

these in mind, we can obtain

d I

dt
= [T S + 
HQ]−+ , (3.8)

where the index ± present the quantities evaluated at the
“outer” or first “inner” horizon.

Next, we consider the boundary and corner contributions
to action growth. Without loss of generality, we shall adopt
the affine parameter for the null generator of the null sur-
face. As a consequence, the surface term vanishes on all null
boundaries. Meanwhile, we choose la as the null generator
of the null boundaryN , in which la satisfiesLξ la = 0. Then,
the time derivative of the counterterm contributed by N van-
ishes. By considering that the entropy is a constant on the
Killing horizon, i.e., Lξ s = 0, the counterterm contributed
by the null segment on the horizon also vanishes.

The affinely null generator on the horizon can be con-
structed as ka = e−κλξa = e−κλ

(
∂
∂λ

)a
. The transformation

parameter can be shown as [56]

η(λ) = ln

(
−1

2
k · l

)
= −κλ + ln

(
−1

2
ξ · l

)
. (3.9)

Then, we have

d Icorner

dt
= d Icorner

dλ
= −T S. (3.10)

Combining those contributions, we have

lim
t→∞

dCA

dt
= 1

π h̄

(

H−Q − 
H+Q

)
(3.11)

at late times. From [52], we can see that this expression is
also satisfied for the charged black holes in Lovelock gravity.
From this expression, we can see that the late-time complex-
ity is independent of the magnetic field. The late-time rate
vanishes in the purely magnetic black hole. However, this
result will produce a puzzle in the limit of zero charges. For
the purely magnetic static black hole, in the chargeless case
P → 0, it will reduce to a neutral black hole, and most of
them capture the nonvanished late-time rate of the complex-
ity. However, according to (3.11), the late-time rate always
vanishes, which implies that the chargeless limit also vanish.
Therefore, in order to obtain an expected feature of the late-
time rate at the zero charge limit, we need to add some extra
boundary terms related to the electromagnetic field such that
the late-time rate is sensitive to the magnetic charges.

3.2 CA conjecture with some additional boundary term

3.2.1 Maxwell boundary term

In order to obtain an expected feature of the complexity, with
similar consideration of [47], we also modify the action with
the addition of the Maxwell boundary term. According to the
equation of motion for the electromagnetic field, the Maxwell
boundary term can be chosen as

IμQ = γ

∫
∂M

G ∧ A, (3.12)

where γ is a free parameter, which should be determined by
demanding that the holographic complexity shares expected
feature under the zero-charge limit. Then, the general total
action is given by

Itotal = I + IμQ. (3.13)

Adding this boundary term will give different boundary con-
ditions. If the electromagnetic field satisfies the equation of
motion dG = 0, using the Stokes’ theory, this boundary term
is equivalent to

IμQ =
∫
M
LμQ (3.14)

with

LμQ = γ G ∧ F. (3.15)

Its variation can be written as

γ −1δLμQ = δG ∧ F + G ∧ δF

= d (δB ∧ F + G ∧ δA) . (3.16)

By setting δ = Lζ for any vector field ζ , (3.16) becomes

γ −1d(ζ · LμQ) = d
(Lζ B ∧ F + G ∧ Lζ A

)
= d [(ζ · G) ∧ F + G ∧ (ζ · F)] , (3.17)

which implies that there exists a Noether charge (n−2)-form
KμQ such that

γ −1ζ · LμQ − (ζ · G) ∧ F − G ∧ (ζ · F) = dKμQ. (3.18)

By using (3.15), one can easy verify that dKμQ = 0. Then,
we have

γ −1ζ · LμQ = (ζ · G) ∧ F + G ∧ (ζ · F), (3.19)

If we set ζ to be the static Killing vector field ξ , (3.19)
can be expressed as

ξ · LμQ = γ d(
G − �F). (3.20)

where we have used dG = dF = 0.
Next, we start to evaluate its contribution to the holo-

graphic complexity. According to (3.14), evaluating this
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additional boundary term can be translated into a bulk inte-
gration. Then, with similar procedures in the former section,
the change of this additional action can be obtained by

IμQ =
∫

δM2

LμQ −
∫

δM1

LμQ = −γ δt [
HQ − �HP]−+ .

(3.21)

The total action within the WDW patch is given by

d Itotal

dt
= d

dt
(I + IμQ) = [

(1 − γ )
HQ + γ�HP
]−
+ .

(3.22)

Subsequently, the final result for the late-time complexity
growth rate becomes

lim
t→∞

dCA

dt
= 1

π h̄

[
(1 − γ )
HQ + γ�HP

]−
+ . (3.23)

3.2.2 Scalar boundary term

In this subsection, we consider the following boundary term
for the source-free scalar field

Iφ = γφ

16π

∫
∂M

Z (3.24)

with

Zbcd = εabcd
∂Lφ

∂∇aφ
φ. (3.25)

Similar with the Maxwell boundary term, this term mod-
ifies the character of the boundary condition of the scalar
field. By using the Stokes’ theory, it can be written as a bulk
integration

Iφ = γφ

16π

∫
M
dZ. (3.26)

Next, we evaluate its contribution to the WDW patch. At
the late time, the change of this contribution can be expressed
as

Iφ = γφδt

16π

∫
N2

ξ · dZ − γφδt

16π

∫
N1

ξ · dZ

= γφδt

16π

∫
N1

d(ξ · Z) − γφδt

16π

∫
N2

d(ξ · Z)

= γφδt

16π

∫
C−

ξ · Z − γφδt

16π

∫
C+

ξ · Z.

(3.27)

Since ξ vanishes and Z is well-defined on the bifurcation
surface, it is clear that ξ · Z also vanishes on the horizon,
i.e., Iφ = 0. Hence, adding this scalar boundary term does
not change the complexity growth rate at late times for the
multiple-horizon black hole.

4 Dyonic RN black hole in f (R) gravity

In this section, we first apply our late-time result to a dyonic
RN-AdS black hole for Maxwell- f (R) gravity, where the
bulk action is given by

Ibulk = 1

16π

∫
M

ε
[
f (R) − FabF

ab
]

(4.1)

with the Ricci Scalar R. Then, we have

G = 1

4π
∗ F and Q = 1

4π

∫
C∞

∗F. (4.2)

By using (3.12), the Maxwell boundary term can be
expressed as

IμQ = γ

4π

∫
∂M

A ∧ ∗F. (4.3)

According to (4.1), the equation of motion can be expressed
as

f ′(R)Rab − f (R)

2
gab − (∇a∇b − gab∇c∇c) f

′(R) = 1

2
Tab,

(4.4)

with the stress tensor of the electromagnetic field

Tab = 4FacFb
c − gabFcd F

cd . (4.5)

Next, we consider s special case, in which there exists an
R0 such that

f (R0) = R0

2
f ′(R0). (4.6)

For the special case R = R0, the equation of motion (4.4)
becomes

Rab − R0

4
gab = 1

2 f ′(R0)
Tab, (4.7)

which implies that the dynoic Reissner–Nordstrom-AdS
black hole with L2 = −12/R0 is the solution of this theory.
Its line element can be described by the following metric,

ds2 = −b(r)dt2 + dr2

b(r)
+ r2(dθ2 + sin2 θdφ2) (4.8)

with the blackening factor

b(r) = r2

L2 + 1 − 2M

r
+ q2

e + q2
m

r2 . (4.9)

The electromagnetic field can be written as

A = √
f ′(R0)

[
qm(1 − cos θ)dφ − qe

r
dt

]
,

F = √
f ′(R0)

[
−qe
r2 dt ∧ dr + qm sin θdθ ∧ dφ

]
.

(4.10)

And the Arnowitt–Deser–Misner mass is given by [66]

MF = f ′(R0)M. (4.11)
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By using these expressions, one can also obtain

G =
√

f ′(R0)

4π

(qm
r2 dt ∧ dr + qe sin θdθ ∧ dφ

)
,

B =
√

f ′(R0)

4π

[
qe(1 − cos θ)dφ + qm

r
dt

]
.

(4.12)

Then, we have

Q = √
f ′(R0)qe, 
H± = √

f ′(R0)
qe
r±

,

P = 4π
√

f ′(R0)qm, �H± =
√

f ′(R0)

4π

qm
r±

.

(4.13)

The late-time CA complexity growth rate with the Maxwell
boundary term can be expressed as

lim
t→∞

dCA

dt
= f ′(R0)

(1 − γ )q2
e + γ q2

m

π h̄r

∣∣∣∣
r−

r+

= 2MF

π h̄

(1 − γ )q2
e + γ q2

m

q2
e + q2

m
.

(4.14)

When we consider the Einstein gravity f (R) = R + 6/L2,
we can see that this result is same as that obtained by [47].
Then, in order to obtain the expected feature under the zero-
charge limit, we need to set the coefficient γ to satisfy

γ = q2
m

q2
m − q2

e
. (4.15)

5 Charged dilaton black hole

In this section, we consider the charged dilation black hole
for the Einstein gravity coupled to a dilaton field as well as
a Maxwell field,

Ibulk = 1

16π

∫
M

ε
[
R − 2(∇φ)2 − V (φ) − e−2αφF

]
,

(5.1)

where the dilaton potential V (φ) is given by [67]

V (φ) = − 2

(1 − α2)2L2

[
α2(3α2 − 1)e−2φ/α + (3 − α2)e2αφ

+8α2e(α−1/α)φ
]
. (5.2)

By using (3.12), the Maxwell boundary term and scalar
boundary term are expressed as

IμQ = γ

4π

∫
∂M

e−2αφ A ∧ �F, Iφ = γφ

4π

∫
∂M

φ � dφ.

(5.3)

Then, we consider the electrically charged dilaton black hole,
which is given by [68]

ds2= − b(r)dt2+ dr2

b(r)
+U 2(r)(dθ2+ sin2 θdφ2), (5.4)

with

b(r) =
(

1 − 2M

r

)(
1 − c

r

) 1−α2

1+α2 + U 2(r)

L2 ,

U 2(r) = r2
(

1 − c

r

) 2α2

1+α2
.

(5.5)

The electromagnetic field and dilaton field are written as

A = −qe
r
dt, F = −qe

r2 dt ∧ dr, φ = 1

α
ln

(
U (r)

r

)

(5.6)

with

q2
e = 2Mc

1 + α2 . (5.7)

By using the relation

G = qe sin θ

4π
dθ ∧ dφ (5.8)

and (5.6), we can find Q = qe and 
 = qe/r . We should note
that there is a curvature singularity at r = c in this spacetime.
The horizon is determined by f (r±) = 0. However, for the
case with α2 ≥ 1/3, there is only single horizon of this black
hole since r− ≤ c. For the case with α2 < 1/3, this geometry
describes a black hole with double horizons. In this paper,
we only consider the black hole with multiple horizons, i.e.,
here we only consider the case with α2 < 1/3. Then, the
late-time complexity growth rate (5.12) becomes

lim
t→∞

dCA

dt
= (1 − γ )q2

e

π h̄r

∣∣∣∣
r−

r+
. (5.9)

Next, we consider the scalar boundary term. By using (5.4),
we can obtain

Z = −4b(r)U 2(r)φ∂rφ sin θdt ∧ dθ ∧ dφ. (5.10)

And the scalar boundary term can be written as

Iφ = γφ

16π

∫
C+

ξ · Z − γφ

16π

∫
C−

ξ · Z

= γφ

4π
U 2(r)b(r)φ∂rφ

∣∣∣r−
r+

= 0.

(5.11)

This vanishing result has also been obtained by straight cal-
culation in [47]. The neutral case can be obtained by setting
c → 0. Then, the late-time growth rate becomes

lim
t→∞

dCA

dt
= 2M

π h̄

1 − γ

1 − α2 . (5.12)

In order to obtain the expected feature of the zero-charge
limit, we need set the coefficient γ to satisfy γ = α2.
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6 Some static magnetic black holes in Einstein gravity

In this section, we will first apply our late-time result (5.12)
to some explicit magnetic black holes in Einstein gravity and
discuss which conditions can give an expected feature of the
complexity at zero-charge limit. Then, we will generally dis-
cuss the proper condition for the static magnetic black holes
in Einstein gravity coupled to a first-order electromagnetic
field.

6.1 Bardeen black hole

In this subsection, we consider the Bardeen black hole for
the nonlinear gauge theories. The bulk action can be written
as

Ibulk = 1

16π

∫
M

ε

(
R + 6

L2 − h(F (2))

)
. (6.1)

In [69], Bardeen first proposed a black hole solution being
regular at r = 0 where the standard black hole spacetime
has a physical singularity. In this subsection, we consider the
AdS-Bardeen spacetime, which can be described by [70,71]

ds2 = −b(r)dt2 + dr2

b(r)
+ r2(dθ2 + sin2 θdφ2) (6.2)

with

b(r) = r2

L2 + 1 − 2Mr2

(r2 + q2
m)3/2 . (6.3)

This spacetime is parameterised by the mass parameter M
and the magnetic charge qm . It is not hard to verify that this
spacetime is a solution of the Einstein gravitational equation
coupled to nonlinear electromagnetic field with

h(F) = 12M

q3
m

⎛
⎝

√
−q2

mF (2)/2

1 +
√

−q2
mF (2)/2

⎞
⎠

5/2

. (6.4)

For the AdS-Bardeen solution, the electromagnetic field is
given by

A = qm(1 − cos θ)dφ, F = qm sin θdθ ∧ dφ, (6.5)

which gives

F (2) = −FabF
ab = −2q2

m

r4 . (6.6)

From (2.14), we can obtain

G = 15Mqmr4

8π(q2
m + r2)7/2 dt ∧ dr,

B = 3M

8πqm

[
1 − r5

(q2
m + r2)5/2

]
dt.

(6.7)

According to these expressions, we can find the magnetic
potential and charge,

� = 3M

8πqm

[
1 − r5

(q2
m + r2)5/2

]
,

P = 4πqm .

(6.8)

As a result, the late-time CA complexity growth rate with the
Maxwell boundary term can be expressed as

lim
t→∞

dCA

dt
= 3γ M

2π h̄

r5

(q2
m + r2)5/2

∣∣∣∣∣
r+

r−

, (6.9)

which becomes

lim
t→∞

dCA

dt
= 3γ M

2π h̄
. (6.10)

under the zero-charge limit. In order to obtain the expected
feature of the zero-charge limit, we need set the coefficient
γ = 4/3 such that

lim
t→∞

dCA

dt
= 2M

π h̄
. (6.11)

under the limit qm → 0.

6.2 Static magnetic black hole in Einstein-F (2n) gravity

In this subsection, we consider the static magnetic solution
for Einstein gravitational theory coupled a electrodynamics
with the lagrangian h(F) = (−1)nF (2n) and some positive
integral n. The equation of motion can be expressed as

Rab − 1

2
Rgab − 3

L2 gab = 1

2
Tab,

∇aH (2n−1)
ab = 0,

(6.12)

with

Tab = (−1)n−14nH (2n−1)
ac Fb

c − (−1)nF (2n)gab. (6.13)

As mentioned above, we next consider the geometry of the
static purely magnetic black hole solution. Its not hard to
verify that the spherically static solution can be written as

ds2 = −b(r)dt2 + dr2

b(r)
+ r2(dθ2 + sin2 θdφ2),

A = qm(1 − cos θ)dφ,

(6.14)

with the blackening factor

b(r) = r2

L2 + 1 − 2M

r
+ q2n

m

(4n − 3)r4n−2 . (6.15)

According to the solution (6.14), we can further obtain

F = qm sin θdθ ∧ dφ,

G = (−1)n−1 n

4π
� H(2n−1) = n

4π

q2n−1
m

r4n−2 dt ∧ dr,
(6.16)

123
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which implies

B = n

4(4n − 3)π

q2n−1
m

r4n−3 dt. (6.17)

And the magnetic potential and charge can be read off

� = n

4(4n − 3)π

q2n−1
m

r4n−3 ,

P = 4πqm .

(6.18)

Using these expressions, the late-time CA complexity rate
can be shown as

lim
t→∞

dCA

dt
= γ n

(4n − 3)π h̄

q2n
m

r4n−3

∣∣∣∣
r+

r−
. (6.19)

At the chargeless limit qm → 0, the action growth rate
becomes

lim
t→∞

dCA

dt
= 2γ nM

π h̄
. (6.20)

In order to obtain the expected feature of the zero-charge
limit, we need to set the coefficient γ to satisfy γ = 1/n.

6.3 A general discussion for the static magnetic black holes
coupled to a first-order electromagnetic field

In the former subsections, we applied our late-time result
(5.12) to some explicit cases of the magnetic black hole in
Einstein gravity and showed how to choose the boundary
terms to make the complexity be well-defined in the zero-
charge limit. From these case, we can see that the choice of
the proportional constant is dependent on the explicit case
of the electromagnetic theory as well as the spacetime back-
ground. In this subsection, we will generally study the static
magnetic black hole in Einstein gravity coupled to a first-
order electromagnetic field, where the bulk action is shown
as

Ibulk = 1

16π

∫
M

ε

(
R + 6

L2 − h(F)

)
. (6.21)

The equation of motion of the gravity part can be read off

Rab − 1

2
Rgab − 3

L2 gab = 1

2
Tab (6.22)

with

Tab = HacFbc − gabh(F), (6.23)

where Hab is defined in (2.14) with

hn = ∂h(F)

∂F (2n)
(6.24)

Here we assume that h(F) only vanishes when the electro-
magnetic field vanishes, i.e., h(F) = 0 iff F = 0. Without
loss of generality, we next consider the geometry of the static

regular magnetic black hole with the metric and electromag-
netic field ansatz

ds2 = − f (r)dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdφ2

)
,

A = qm(1 − cos θ)dφ,

(6.25)

with the blackening factor

f (r) = 1 + r2

L2 − 2m(r)

r
. (6.26)

At the zero-charge limit, this solution should reduce to the
SAdS solution, i.e.,m(r) = M when qm → 0. Moreover, we
also assume that this solution shares the similar behavior with
the SAdS black hole at the asymptotic infinity, i.e., m(r) =
M when r → ∞. Using this solution ansatz, one can further
obtain

F = qm sin θdθ ∧ dφ,

H = q(r) sin θdθ ∧ dφ,
(6.27)

with

q(r) = 4
∞∑
n=0

(−1)n−1 nhnq
2n−1
m

r4(n−1)
. (6.28)

According to the equation of motion (6.22), we find that there
are only two independent equations, i.e.,

4m′(r) − h(F)r2 = 0,

h(F)r4 − 2r3m′′(r) − qmq(r) = 0,
(6.29)

which give

q(r) = 2r2[2m′(r) − rm′′(r)]
qm

. (6.30)

Combining with (6.27), one can further find

G = q(r)

16πr2 dt ∧ dr = 2m′(r) − rm′′(r)
8πqm

dt ∧ dr, (6.31)

which implies

B = rm′(r) − 3m(r)

8πqm
dt. (6.32)

With these in mind, we can obtain

P = 4πqm, � = rm′(r) − 3m(r)

8πqm
. (6.33)

Then, the late-time CA complexity growth rate is given by

lim
t→∞

dCA

dt
= γ

[
3m(r) − h(F)r3/4

]
2π h̄

∣∣∣∣∣
r+

r−

. (6.34)

Next, we consider the zero-charge limit of the late-time rate.
From the solution ansatz, we have

F (2n) = (−1)n
2q2n

m

r4n , (6.35)
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which gives F(r+) = 0 under the zero-charge limit qm → 0.
This implies h (F(r+)) = 0 under qm → 0. Moreover, from
the blackening factor (6.26), we have

m(r−) = r−
2

+ r3−
2L2 → 0 (6.36)

under the zero charge limit. Then, the late-time complexity
growth rate (6.34) becomes

lim
t→∞

dCA

dt
= 3γ M

2π h̄
+ lim

qm→0

[
γ h(F)r3

8π h̄

]
r−

(6.37)

at the limit qm → 0. The key point to obtain (6.37) is to find
the behaviour of h (F(r−)) under the zero-charge limit. From
(6.35), we can see that h(F) can be expressed as a function
of x = qm/r2, i.e., h(F) = h(x). According to (6.29), the
mass function can be expressed as

m(r) = M + 1

4

∫ r

0
drr2h(x)

= M + q3/2
m

4

∫ x

0
dxx−5/2h(x)

= M − q3/2
m m̃(x),

(6.38)

where we denote

m̃(x) = −1

4

∫ x

0
dxx−5/2h(x). (6.39)

The asymptotic condition m(r → ∞) = M implies m̃(x →
0) = 0. Combing (6.39) with the limit (6.36), we have

m̃(x−) � M

q3/2
m

→ ∞ (6.40)

when qm → 0. Since h(x) is a smooth function, this equation
implies x− → ∞ under the zero-charge limit. Then, there are
two cases we should consider, that is, h (F) being convergent
or divergent.

(a) If h(F) is a convergent function, we have h(x−)r3− →
0 under the zero charge limit. The late-time growth
becomes

lim
t→∞

dCA

dt
= 3γ M

2π h̄
(6.41)

under the zero-charge limit. In order to obtain the
expected feature of this limit, we need to set γ = 4/3.
This implies that the choice of γ is independent on the
explicit expression of h(F) if h(F) is convergent. We can
see that the Bardeen black hole is exactly this situation.

(b) Next, we consider the case where h(F) is a divergent
function. Eq. (6.40) implies that we can only consider the
asymptotic behavior of h(x). In this paper, we suppose
that h(F) has the asymptotic behavior

h(x) � a0x
2ν = a0q2ν

m

r4ν
. (6.42)

According to the equation of motion (6.29), one can further
obtain

m(r) � M − a0q2ν
m

4(4ν − 3)r4ν−3 , (6.43)

which implies

h(F)r3− = a0q2ν
m

r4ν−3 � 4(4ν − 3)M (6.44)

at qm → 0. Then, the zero-charge limit of (6.37) gives

lim
t→∞

dCA

dt
= 2γ νM

π h̄
. (6.45)

In order to obtain the expected feature of the zero-charge
limit, we need to set the coefficient γ to satisfy γ = 1/ν.
The case of h(F) = F (2n) in the last subsection is actually
this situation with ν = n.

7 Conclusion

Motivated by [47] where the vanishing of the late-time CA
complexity rate in purely magnetic dyonic RN-AdS black
hole was found and a remedy was proposed, in this paper,
we evaluated the original CA holographic complexity in a
static multiple-horizon black hole for a gravitational the-
ory coupled to a first-order source-free electrodynamics. We
showed that the vanishing feature of the late-time rate in
the purely magnetic black hole is universal for the original
CA conjecture. But this result does not agree with the gen-
eral expectation (1.2) of the quantum system, and it also
has an unexpected feature in the zero-charge limit. How-
ever, these failures could be alleviated when we modified
the action with an additional term (Maxwell boundary term)
within the WDW patch. Based on Iyer–Wald formalism,
we generally showed the late-time complexity growth rate
after adding Maxwell boundary term. We also found that
the scalar boundary term does not change the late-time rate
for a multiple-horizon black hole with source-free electro-
dynamics. Moreover, there exists a dimensionless parameter
γ which is needed to be chosen by demanding the zero-
charge limit satisfies. To be specific, we applied our result to
the dyonic RN black hole in f (R) gravity, charged dilation
black hole, Bardeen black hole, and the static magnetic black
hole in Einstein gravity coupled a electromagnetic field with
h(F) = (−1)nF2n . We found that the proper proportional
parameter γ is dependent on specific gravitational theory
and the spacetime background. Finally, we investigated the
static magnetic black hole for the Einstein gravity coupled
to a general first-order electromagnetic field and found the
relationship between the proper proportional constant and
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the Lagrangian function h(F) of the electromagnetic field. if
h(F) is a convergent function, we need to choose γ = 4/3;
if h(F) is a divergent function with the asymptotic behavior
(6.42), we need to choose γ = ν−1. These results showed
that the appropriate proportional parameter of the additional
boundary term is dependent on the explicit theories of mag-
netic black holes. This is not surprised by the fact that dif-
ferent black holes with different electric charge have differ-
ent choices of appropriate additional boundaries as shown in
[47]. Moreover, We can also see that the unexpected results
only appear when the black holes carry an magnetic charge.
These indicate that there might be something missed for the
magnetic part when changing causal structure of the black
holes.
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