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Abstract In order to achieve a Hamiltonian-based canon-
ical derivation of the Hawking effect, one usually faces
multiple hurdles. Firstly, the spacetime foliation using
Schwarzschild time does not lead to hyper-surfaces which
are always spacelike. Secondly, the null coordinates which
are frequently used in covariant approach, do not lead to a
true matter Hamiltonian. Recently, an exact canonical deriva-
tion was presented using the so-called near-null coordinates.
However, there too one faces the difficulty of having to deal
with non-vanishing matter diffeomorphism generator as the
spatial decomposition involves a non-zero shift vector. Here
we introduce a new set of coordinates which allows one to
perform an exact canonical derivation of Hawking effect
without having to deal with matter diffeomorphism gener-
ator.

1 Introduction

An asymptotic future observer perceives thermal emission in
a black hole spacetime when one considers quantum fields
in such classical geometry. This phenomenon is known as
the Hawking effect [1]. Usually, a very large number of
microstates are needed to understand thermal emission from
a body. However, a classical black hole can be described by
only few parameters in Einstein’s general theory of relativ-
ity [2–5]. So one expects that the study of Hawking effect
in principle might allow one to understand the possible, yet
unknown, quantum theory of gravity and significant efforts
have been made to understand the Hawking effect in many
different ways [6–34].

In the canonical approaches to quantum gravity, one
decomposes the spacetime into spatial hyper-surfaces labeled
by a suitable time parameter. Consequently, in order to
explore the techniques that are often employed in such
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canonical quantization framework, it is desirable to have
a Hamiltonian-based canonical derivation of the Hawking
effect. In such an approach, however one faces multiple
hurdles. Firstly, the hyper-surfaces for fixed Schwarzschild
time are not always spacelike [35–37] and consequently
Hamiltonian dynamics is not well-posed in such coordi-
nates. Secondly, in the standard derivation of the Hawking
effect one needs to find the relation between the ingoing and
outgoing massless field modes as seen by two asymptotic
observers at the past and the future null infinity respectively
[1]. These field modes follow null trajectory and are con-
veniently described using null coordinates. However, null
coordinates do not lead to a true matter Hamiltonian that can
describe the dynamics of these modes.

In order to overcome these difficulties, recently a set of
near-null coordinates is introduced in [38] which allows one
to perform an exact canonical derivation of the Hawking
effect. Firstly, these near-null coordinates lead to a non-trivial
matter Hamiltonian which describes the dynamics of the field
modes. Secondly, these coordinates being structurally closer
to the null coordinates, allow one to follow similar methods
which are employed for null coordinates. Nevertheless, the
usage of these near-null coordinates leads to the off-diagonal
terms in the spacetime metric. The corresponding spacetime
decomposition involves both the lapse function as well as
a non-vanishing shift vector. Consequently, the dynamics of
field modes depends not just on matter Hamiltonian but also
on the matter diffeomorphism generator.

This article is organized as follows. In the Sect. 2, we
review the key aspects of a Schwarzschild black hole space-
time. Then we discuss the difficulties that one faces while
using Schwarzschild time for space-time foliation. Subse-
quently, we introduce a new set of coordinates which allows
an exact canonical derivation of the Hawking effect. The
spacetime decomposition into spatial hyper-surfaces using
these coordinates does not involve any shift vector. There-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-7660-0&domain=pdf
http://orcid.org/0000-0002-8032-638X
http://orcid.org/0000-0003-0441-318X
mailto:ghossain@iiserkol.ac.in
mailto:cs12ip026@iiserkol.ac.in


82 Page 2 of 7 Eur. Phys. J. C (2020) 80 :82

fore, the usage of these coordinates leads to a much simpler
Hamiltonian-based derivation of the Hawking effect.

2 Schwarzschild spacetime

Let us consider a Schwarzschild spacetime which is formed at
some finite past, possibly due to the collapse of a matter shell
whose exact dynamics however is not important for under-
standing the Hawking effect. The invariant distance element
in the Schwarzschild spacetime is given by

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dθ2 + r2 sin2 θdφ2,

(1)

where f (r) = (1 − rs/r) and rs = 2GM is the Schwarzschild
radius. Throughout the paper, we use natural units where
c = h̄ = 1. It is well-known that the Hawking effect is
ultimately connected with the structure of the Schwarzschild
metric in the t−r plane. Therefore, for simplicity now onward
we consider 1+1 dimensional Schwarzschild spacetime with
the metric gμν along with the invariant distance

ds2 = gμνdx
μdxν = − f (r)dt2 + f (r)−1dr2. (2)

In order to represent the Hawking quanta, here we consider a
minimally coupled massless scalar field �(x) whose dynam-
ics is governed by the action

S� =
∫

d2x

[
−1

2

√−ggμν∂μ�(x)∂ν�(x)

]
. (3)

We shall ignore the back-reaction of this scalar field on the
spacetime metric as done also in the standard derivation of
the Hawking effect [1].

3 Canonical formulation

It turns out that the Schwarzchild time t is not a good
choice of time parameter for canonical formulation as the
hyper-surfaces with a fixed Schwarzschild time t are not
always spacelike. We may easily see it from the expres-
sion ds2|dt=0 = f (r)−1dr2 where hyper-surfaces for fixed
Schwarzschild time are spacelike when r > rs and timelike
when r < rs [35–37]. In order to consider the spatial region
only outside the horizon, usually one defines the so-called
tortoise coordinate r� such that dr� = f (r)−1dr . By choos-
ing suitable constant of integration, r� can be expressed as

r� = r + rs ln (r/rs − 1) . (4)

The domain of r� being (−∞,∞), it covers only a part of the
full Schwarzschild spacetime and the corresponding metric
becomes

ds2 = f (r)
[
−dt2 + dr2

�

]
, (5)

which differs from 1 + 1 dimensional Minkowski metric by
a conformal transformation.

3.1 Null coordinates

In the standard derivation [1], the Hawking effect is real-
ized by computing the Bogoliubov transformation coeffi-
cients between the ingoing field modes that originate from
the past null infinity (I −) and the outgoing field modes that
arrive at the future null infinity (I +) respectively. For mass-
less scalar field, these field modes follow null trajectories and
are conveniently described using ingoing and outgoing null
coordinates, defined as

v = t + r� ; u = t − r�. (6)

Subsequently, using these Bogoliubov coefficients, one com-
putes the expectation value of number density operator cor-
responding to an observer near future null infinity in the vac-
uum state corresponding to an observer near past null infinity.
This expectation value turns out to be the same as the black-
body spectrum at the Hawking temperature. Therefore, these
null coordinates play key roles even in the basic formula-
tion of the Hawking effect in the covariant approach. How-
ever, these null coordinates do not lead to a true Hamiltonian
for the matter field (3) that can describe the field dynam-
ics. Consequently, these null coordinates are not suitable for
performing a Hamiltonian-based canonical derivation of the
Hawking effect.

3.2 Timelike and spacelike coordinates

In order to perform an exact canonical derivation of the
Hawking effect, a set of near-null coordinates is introduced
in Ref. [38]. In particular, a timelike coordinate τ− and a
spacelike coordinate ξ− used by an observer near the past
null infinity I −, referred to as the observer O−, are given
by

τ− = t − (1 − ε)r� ; ξ− = −t − (1 + ε)r�, (7)

where the parameter ε is taken to be small and positive such
that ε � 1 which signifies the naming of these coordinates as
‘near-null’. Similarly, one introduces another set of timelike
coordinate τ+ and spacelike coordinate ξ+ for an observer
near the future null infinity I +. These coordinates are given
by

τ+ = t + (1 − ε)r� ; ξ+ = −t + (1 + ε)r�, (8)

and the corresponding observer is referred to as the observer
O

+. We note that the domain of the coordinates τ± and ξ±
both are (−∞,∞).

123



Eur. Phys. J. C (2020) 80 :82 Page 3 of 7 82

3.2.1 Domain of the parameter ε

The main motivation for choosing the parameter ε to be very
small in Ref. [38] was to keep these coordinates structurally
‘near’ to the null coordinates so that one could employ similar
methods as used for null coordinates. However, in general,
any value of the parameter ε in the domain 0 < ε < 2 allows
one to maintain the timelike and spacelike characteristics of
the coordinates τ± and ξ± respectively. Therefore, these coor-
dinates can, in principle, be used for the study of the Hawk-
ing effect using canonical formulation in the entire allowed
domain of ε which is not necessarily small. However, such
coordinates would then loose their ‘near-null’ characteristics.
We note that for both the observers O

+ and O
−, the 1 + 1

dimensional Schwarzschild metric (5) can be expressed as

ds2 = f (r)

4

[
−αdτ 2± + βdτ±dξ± + γ dξ2±

]
, (9)

where α = (2ε + ε2), β = 2(2− ε2) and γ = (2ε − ε2). For
the small values of the parameter ε i.e. ε � 1, the parameter
β is non-vanishing. Therefore, if one foliates the spacetime
into spatial hyper-surfaces by using the time variables τ±, the
presence of the off-diagonal terms in the metric leads to non-
vanishing shift vector. This in turns forces one to deal with
the non-vanishing matter diffeomorphism generator [38].

3.2.2 Parameter ε = √
2

However, one may notice that the off-diagonal terms in the
metric (9) vanishes identically for both observers if one

chooses ε = √
2 which implies β = 0. Then the corre-

sponding metric becomes

ds2 = f (r)

4

[
−αdτ 2± + γ dξ2±

]
≡ g±

μνdx
μdxν, (10)

where α = 2(
√

2 + 1) and γ = 2(
√

2 − 1). Clearly, if we
use τ± as time parameters with ε = √

2, then the foliation
of the spacetime into spatial hyper-surfaces does not involve
any shift vector.

In order to elucidate the properties of this specific choice
of the foliation, we note that for constant τ− surfaces,
(dt/dr�) = −(

√
2−1) = − tan(π/8). In other words, in the

t − r� plane, a spatial hyper-surface with constant τ− makes
an angle of π/8 with the ingoing null surfaces with constant
v. Similarly, it is easy to see that in the t − r� plane, a spatial
hyper-surface with constant τ+ makes an angle of −π/8 with
the outoing null surfaces with constant u (see Fig. 1).

3.2.3 Relation between spatial coordinates ξ− and ξ+

In order to perform the canonical derivation of the Hawking
effect, a key task is to find the relation between the spatial
coordinates ξ− and ξ+ which are used by the two asymptotic
observers. Firstly, from the Eqs. (7, 8), we note that

dξ−|τ− = −2dr�|τ− , dξ+|τ+ = 2dr�|τ+ . (11)

However, we may emphasize here that there was no black
hole when the ingoing modes relevant for Hawking effect
left the I − as seen by the observer O−. So one should view
the coordinates (τ−, ξ−) subject to the condition rs → 0

Fig. 1 a The spacelike and
timelike hyper-surfaces for the
observer O− are drawn with
arbitrary unit using dotted red
line and solid blue line
respectively for ε = √

2. b The
spacelike and timelike
hyper-surfaces for the observer
O

+ are drawn using dotted red
line and solid blue line
respectively for ε = √

2. c The
spacelike, timelike and null
hyper-surfaces are drawn using
dotted red line, solid blue line
and dashed black line
respectively for ε = √

2. d The
angle made by the constant τ−
and τ+ hyper-surfaces in t − r�
plane for different values of the
parameter ε

(a) (c)

(b) (d)
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which implies f (r) → 1 and r� → r . Now, using the metric
(2), one can calculate the non-vanishing Christoffel symbols
given by

�t
tr = �t

r t = −�r
rr = f ′(r)

2 f (r)
; �r

tt = 1

2
f (r) f ′(r). (12)

By introducing an affine parameter σ along the null trajec-
tories which are defined by ds2 = 0, the geodesic equations
can be expressed as

d

dσ

(
f (r)

dt

dσ

)
= 0,

d2r

dσ 2 = 0. (13)

The Eq. (13) admit solutions for r as

r = Cσ + D, (14)

where C, D are constants of integration. Given affine trans-
formations are of the form σ → σ ′ = Cσ + D, the coor-
dinate r can also be viewed as an affine parameter. We have
mentioned that for the observer O

−, one should view the
coordinates (τ−, ξ−) subject to the condition rs → 0. Now
if we consider a pivotal point ξ0− on a constant τ− hyper-
surface with r0 being the corresponding value of the radial
coordinate then the Eq. (11) implies

(ξ− − ξ0−)|τ− = 2(r0 − r)|τ− , (15)

where (ξ− − ξ0−)|τ− to be viewed as the spatial separation
between any two ingoing null rays which were at the locations
ξ− and ξ0− respectively on the spatial hyper-surfaces labelled
by the time parameter τ−.

On the other hand, when the relevant outgoing modes for
Hawking radiation arrive atI +, as seen by the observerO+,
the black hole has already been formed. So if we consider a
pivotal point ξ0+ on a constant τ+ hyper-surface then using
the Eqs. (4) and (11) one can express the spatial separation
between two given outgoing null rays along the hyper-surface
as

(ξ+ − ξ0+)|τ+ = 2(r − r0)|τ+ + 2rs ln

(
1 + r − r0

r0 − rs

)
|τ+

.

(16)

We have already shown that the coordinate r along both ingo-
ing and outgoing null trajectories can be considered as affine
parameter. Therefore, using geometric optics approximation
we can relate the spatial separations of the ingoing and the
outgoing modes as

(r − r0)|τ+ = C ′(r0 − r)|τ− , (17)

where C ′ is some constant. Given this constant C ′ does not
affect the final result, then for simplicity we set this value
to be unity. By choosing ξ0− = 2(r0 − rs)|τ+ and ξ0+ =

(b)

(a) (c)

Fig. 2 a Spatial separation between two ingoing null rays along a τ−
constant hyper-surface. b Spatial separation between two outgoing null
rays along a τ+ constant hyper-surface. c The spacelike and timelike
coordinates for ε = √

2 drawn on a Penrose diagram together with a
collapsing shell of matter denoted by the shaded region

ξ0− + 2rs ln
(
ξ0−/2rs

)
in the Eq. (16), we can express it as

ξ+ = ξ− + 2rs ln

(
ξ−
2rs

)
. (18)

In the domain where |ξ−| << 2rs , we may approximate the
relation (18) between spatial coordinates ξ− and ξ+ as used
by two asymptotic observers O− and O

+ respectively, as

ξ− ≈ 2rse
ξ+/2rs . (19)

The relation (19) is the key relation which ultimately leads
to the Hawking effect.

3.2.4 Scalar matter field

We note that by using a conformally transformed spacetime
metric g0

μν such that g±
μν = 1

4γ f (r) g0
μν , the scalar field

action (3) for both the observers can be written in the form

Sϕ =
∫

dτ±dξ±
[
−1

2

√
−g0g0μν∂μϕ∂νϕ

]
, (20)

where the metric g0
μν is flat and consequently we can use

the standard techniques of Fock quantization for the matter
field. Using the time coordinates τ±, we can compute the
scalar matter Hamiltonian as

H±
ϕ =

∫
dξ± N

[
�2

2
√
q

+
√
q

2
(∂ξ±ϕ)2

]
, (21)

where the lapse function N = √
α/γ = (

√
2 + 1) and the

determinant of the spatial metric q = 1. The Poisson bracket
between the field ϕ and its conjugate momentum � for both
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the observers can be expressed as

{ϕ(τ±, ξ±),�(τ±, ξ ′±)} = δ(ξ± − ξ ′±). (22)

Using the equations of motion, the field momentum � can
be expressed as

�(τ±, ξ±) =
√
q

N
(∂τ±ϕ). (23)

3.2.5 Fourier modes

The spatial volume V± = ∫
dξ±

√
q is formally divergent.

Therefore, to avoid dealing with explicitly divergent quantity,
we choose a fiducial box with finite volume as

V± =
∫ ξ R±

ξ L±
dξ±

√
q = ξ R± − ξ L± ≡ L±, (24)

where ξ L± and ξ R± are left and right coordinate edges associ-
ated with the box. We may now define the Fourier modes for
the scalar field as [39]

ϕ(τ±, ξ±) = 1√
V±

∑
k

φ̃±
k (τ±) eikξ± ,

�(τ±, ξ±) = 1√
V±

∑
k

√
q π̃±

k (τ±) eikξ± , (25)

where complex-valued Fourier modes φ̃±
k and π̃±

k are subject
to the reality condition as we are considering the scalar field
ϕ to be a real-valued field. One may check that the Kronecker
delta and the Dirac delta can now be expressed as∫

dξ±
√
q ei(k−k′)ξ± = V±δk,k′ , (26)

∑
k

eik(ξ±−ξ ′±) = V±δ(ξ± − ξ ′±)/
√
q. (27)

The Eqs. (26) and (27) together allow the values of the
wave-vector to be k ∈ {kl |kl = 2πl/L±} with l being
a non-zero integer. Using Fourier modes, the scalar field
Hamiltonian (21) for both the observers can be expressed
as H±

ϕ = ∑
k NH±

k where the Hamiltonian density for the
kth mode is

H±
k = 1

2
π̃±
k π̃±

−k + 1

2
|k|2φ̃±

k φ̃±
−k . (28)

The Poisson bracket between the Fourier modes and their
conjugate momenta can be expressed as

{φ̃±
k , π̃±

−k′ } = δk,k′ . (29)

3.2.6 Relation between Fourier modes

In order to establish the relation between the Fourier modes
of two asymptotic observers, firstly we note that the mat-
ter field being scalar, it can be expressed in general as
ϕ(τ−(τ+, ξ+), ξ−(τ+, ξ+)) = ϕ(τ+, ξ+). Further, in the

standard formulation of the Hawking effect, the observer
near the I −, deals with the ingoing field modes for them
v = t + r� = (τ− − (

√
2 − 1)ξ−)/

√
2 is constant. On the

other hand, the observer near I + deals with the outgoing
field modes for them u = t − r� = (τ+ − (

√
2 − 1)ξ+)/

√
2

is constant. This aspect allows one to get a relation between
the field momenta [38] as

�(τ+, ξ+) = (∂ξ−/∂ξ+)�(τ−, ξ−).

The Fourier modes and the conjugate momenta on a given
hyper-surface labeled by τ 0+, as seen by the observer O+, can
be expressed using the modes corresponding to the observer
O

−, on a given hyper-surface labeled by τ 0−, as

φ̃+
κ (τ 0+) =

∑
k

φ̃−
k (τ 0−)F0(k,−κ), (30)

π̃+
κ (τ 0+) =

∑
k

π̃−
k (τ 0−)F1(k,−κ), (31)

where the coefficient functions Fm(k, κ) are given by

Fm(k, κ) = 1√
V−V+

∫
dξ+

(
∂ξ−
∂ξ+

)m

eikξ−+iκξ+ , (32)

with m = 0, 1. The coefficient functions Fm(k, κ) play the
similar role as the Bogoliubov coefficients. Using the expres-
sion (32), it can be shown that F0(k, κ) and F1(k, κ) are
related as [40]

F1(±|k|, κ) = ∓ κ

|k| F0(±|k|, κ). (33)

The coefficient function F0(k, κ) is formally divergent as
the integrand is purely oscillatory. However, it can be
evaluated by introducing a suitable regulator δ such that
limδ→0 Fδ

0 (±|k|, κ) = F0(±|k|, κ) and the regulated coeffi-
cient function can be evaluated as [38,41]

Fδ
0 (±|k|, κ) = (2rs)−β |k|−β−1

√
V−V+

e±iπ(β+1)/2 �(β + 1), (34)

where �(β+1) is the Gamma function and β = (2iκrs +δ−
1). From the Eqn. (34), one can deduce an important relation
as follows

Fδ
0 (−|k|, κ) = e2πrsκ−iδπ Fδ

0 (|k|, κ). (35)

3.2.7 Number density of Hawking quanta

Using the Eqs. (30), (31), (33) and (35) one can express the
Hamiltonian density (28) corresponding to the positive fre-
quency modes i.e. κ > 0 for the observer O+ in terms of the
Fourier modes of the observer O− as [38]

H+
κ

κ
= h1

κ

κ
+ e2πκ/� + 1

e2πκ/� − 1

[
1

ζ(1 + 2δ)

∞∑
l=1

1

l1+2δ

H−
kl

kl

]
,

(36)
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where� = 1/(2rs) is the surfacegravity at the Schwarzschild
event horizon and ζ(1+2δ) = ∑∞

l=1 l
−(1+2δ) is theRiemann

zeta function. The term h1
κ = ∑

k �=k′ [ 1
2 F1(k,−κ)F1(−k′, κ)

π̃−
k π̃−

−k′ + 1
2 |κ|2F0(k,−κ)F0(−k′, κ) φ̃−

k φ̃−
−k′ ] being linear

in Fourier modes and their conjugate momenta, would drop
out from the vacuum expectation value. It is well known that
the Fourier modes corresponding to a massless free scalar
field can be viewed as a system of decoupled harmonic oscil-
lators which can also be seen from the Eq. (28). Therefore,
in Fock quantization 〈Ĥ−

k 〉 ≡ 〈0−|Ĥ−
k |0−〉 = 1

2 |k| where
the state |0−〉 refers to the vacuum state of the observer O−.
Consequently, the expectation value of the number density
operator N̂+

κ ≡ Ĥ+
κ /κ − 1

2 corresponding to the observer
O

+, in the vacuum state of the observer O− can be evaluated
as

Nω ≡ 〈N̂+
ω=κ 〉 = 1

e2πω/� − 1
= 1

e(4πrs )ω − 1
. (37)

The Eq. (37) corresponds to a thermal spectrum of bosons at
the temperature TH = �/(2πkB) = 1/(4πrskB). This phe-
nomenon is referred to as the Hawking effect and associated
temperature is known as the Hawking temperature.

4 Discussions

In this article we have presented an exact analytical deriva-
tion of the Hawking effect in canonical formulation where
one does not need to deal with the matter diffeomorphism
generator. In order to achieve this simplification, we have
introduced a new set of coordinates in which the resultant
spacetime metric is diagonal. Consequently, the foliation of
the spacetime into spatial hyper-surfaces, which is required
for canonical derivation, does not introduce any shift vec-
tor. Therefore, these new coordinates lead to a much sim-
pler canonical derivation of the Hawking effect compared to
the one reported in Ref. [38] where one uses the so-called
near-null coordinates. Clearly, these coordinates would be
quite useful for testing various new quantization techniques
[39,41–46]. We have mentioned earlier that the spacetime
metric is diagonal in these new coordinates and up to a scaling
the metric is similar to a conformally transformed Minkowski
metric. However, it can be checked that these new coordinates
cannot be obtained simply by applying a Lorentz boost from
(t, r�) coordinates. In this context we may mention that it
would be quite interesting to use the canonical formulation
as given here, to study the issue of ambiguity in the expres-
sion of Hawking temperature due to inequivalent choices of
the inertial frames as shown by ’t Hooft [47–53].
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