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Abstract Via numerical and analytical method, we con-
struct the holographic p-wave conductor/superconductor
model with C2F2 correction (where C2F2 = Cαβ

μνC
μν
αβ Fρσ

Fρσ , and Cαβ
μν and Fρσ denotes the Weyl tensor and

gauge field strength, respectively.)in the four-dimensional
Schwarzschild-AdS black hole, and mainly study the effects
ofC2F2 correction parameter denoted by γ on the properties
of superconductors. The results show that for all values of the
C2F2 parameter, there always exists a critical temperature
below which the vector hair appears. Meanwhile, the critical
temperature increases with the improvingC2F2 parameterγ ,
which suggests that the improvingC2F2 parameter enhances
the superconductor phase transition. Furthermore, at the crit-
ical temperature, the real part of conductivity reproduces
respectively a Drude-like peak and an obviously pronounced
peak for some value of nonvanishing C2F2 parameter. At
the low temperature, a clear energy gap can be observed at
the intermediate frequency and the ratio of the energy gap to
the critical temperature decreases with the increasing C2F2

parameter, which is consistent with the effect of the C2F2

parameter on the critical temperature. In addition, the analyti-
cal results agree well with the numerical results, which means
that the analytical Sturm–Liouville method is still reliable in
the grand canonical ensemble.

1 Introduction

The AdS/CFT correspondence relates the weak gravitational
theory in the anti-de Sitter spacetime to the strong quantum
field theory lived on its conformal boundary, and thus pro-
vides us a new theoretical framework to study the strongly
coupled systems [1,2]. Over the past years, the AdS/CFT
correspondence(or its generalized version, the gauge/gravity
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duality) has been intensively applied in many aspects in
condensed systems [3–9], especially the high Tc super-
conductor (s-wave), which was realized successfully via
an Einstein–Maxwell theory coupled to a complex scalar
field in the Schwarzschild-AdS black hole in the probe
limit [10,11]. After that, the holographic superconductor
model was extended to the SU (2) p-wave superconductor
model [12], d-wave superconductor model [13], the insula-
tor/superconductor model [14], the competition and coexis-
tence of two order parameters [15–18], Sturm–Liouville (S–
L) method [19–21], the backreaction from the matter field
to the gravitational background [22], the effects of external
magnetic field [23,24] as well as the lattice effects [25–29],
see, for example, Refs. [30–32] for reviews.

On the other hand, in order to understand the influ-
ences of the 1

λ
(λ is the ’t Hooft coupling) corrections on

the holographic superconductor models, many works took
into account the high curvature correction [33–36] and non-
linear electrodynamics [36], such as the Born–Infeld term
[21,37,38], the Power-Maxwell term [33,34], Logarithmic
term [39] and exponential term [40]. The results showed
that both high curvature correction and nonlinear electro-
dynamics parameters hinder the conductor/superconductor
phase transition. In addition, considering the Weyl termCF2

composed of the coupling of the Weyl tensor Cρσ
μν and the

Maxwell field strength Fαβ , which was firstly introduced to
realize the breakdown of the electromagnetic self-duality
from a holographic perspective [41], Refs. [42,43] studied
the effects of the 1

λ
corrections on the s-wave supercon-

ductor model, and found that the increasing Weyl correction
enhances the condensate and decreases the ratio of the energy
gap to the critical temperature. Subsequently, the author in
Ref. [44] proposed a general high derivative theory which
extends the correction term in Refs. [42,43], and obtained
an arbitrarily sharp Drude-like peak in the optical conduc-
tivity. Thereafter, Refs. [45–49] studied the influences of the
C2F2 term (i.e., the 6 derivative term Cαβ

μνC
μν
αβ Fρσ Fρσ ) on
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the s-wave conductor/superconductor model via the numeri-
cal and analytical method, respectively. It was observed that
the increasing C2F2 parameter enhances the superconduc-
tor phase transition and results in a wider extension of the
superconducting energy gap.

As for the holographic superconductor model, in addi-
tion to the SU (2) p-wave model, by imitating the holo-
graphic s-wave superconductor model, authors of Ref. [50]
realized a magnetic-field-induced vector condensate via a
Maxwell-complex-vector (MCV) field with a mass and fur-
ther found that this model is a generalization of the SU (2)

p-wave model with a mass, which was verified in Refs. [51–
53]. Subsequently, the MCV p-wave model was extended
to the electric-field-induced superconductor model [54–56]
and the case of the backreaction from matter field to the
gravitational background [17,18,57–60]. In particular, the
model showed the abundant phase structure, such as “zero-
order phase transition” and “the retrograde condensate” in the
four-dimensional AdS black holes [17,18,57–59]. However,
the order of the phase transition is always 1

2 in the three-
dimensional BTZ (Bandos–Teitelboim–Zanelli) black hole
although the increasing backreaction makes the condensate
harder to form [60]. Meanwhile, in order to investigate the
1
λ

effects, the MCV p-wave superconductor model was con-
structed in Lifshitz gravity [61], by including nonlinear elec-
trodynamics [62–64] and the RF2 correction [65,66]. Con-
cretely, the authors in Ref. [63] built an one-dimensional
holographic p-wave superconductors by coupling Born–
Infeld (BI) electrodynamics in the BTZ black hole and repro-
duced the interesting Drude-like peak in the real part of con-
ductivity. Thereafter, by considering the general nonlinear
electrodynamics with high order correction, Ref. [64] real-
ized the p-wave superconductors in both Einstein gravity
and Gauss–Bonnet gravity. It was found that the behavior of
conductivity generally depends on the choice of the mass of
the vector field, the nonlinear and the Gauss–Bonnet param-
eters. Besides, authors in Ref. [67] studied the effect of the
Weyl correction (CF2) on the MCV p-wave superconductor
model and found that the Weyl correction does not influence
the properties of the insulator/superconductor phase transi-
tion but obviously enhances the conductor/superconductor
phase transition.

As mentioned above, although the C2F2 correction is 6
derivative, it still reproduces many significant influences on
the properties of the superconductor. At the moment, an inter-
esting question is how the C2F2 correction affects the MCV
p-wave superconductor model, and whether the C2F2 cor-
rection can induce the Drude-like peak in the conductivity
in the p-wave model. Motivated by the fact that answering
above questions can not only extend the applied range of
the gauge/gravity duality but also understand further the 1

λ

effects on the superconductor models, we will study system-
atically the influence of the C2F2 correction on the MCV

p-wave superconductor model, which can be regarded as the
generalization of the Weyl correction [67]. The results show
that the larger C2F2 parameter enhances the superconductor
phase transition, and the analytical results agree well with
the numerical results. In addition, at the critical point, the
real part of conductivity displays a Drude-like peak at the
low frequency as well as an obviously pronounced peak at
the intermediate frequency due to the presence of the C2F2

coupling. Especially, the effect of theC2F2 parameter on the
ratio of the energy gap to the critical temperature is consistent
with the phase diagram of the critical temperature versus the
C2F2 parameter.

This paper is organized as follows. In Sect. 2, we construct
the MCV p-wave superconductor model and mainly study
the effects of the 6 derivative on the critical temperature and
the condensate as well as the conductivity. The final section
is devoted to the conclusions and discussions.

2 Holographic superconductor model

In this section, we firstly give the setup of the holographic
superconductor model and then mainly study numerically
the effects of the C2F2 correction on the vector condensate,
grandpotential as well as the frequency dependent conductiv-
ity, following which we recalculate the critical temperature
and the critical behavior of the vector condensate by the S–L
method to backup the numerical results.

The four-dimensional Schwarzschild-AdS black hole is of
the form [10,11]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2

(
dx2 + dy2

)
, f (r)

= r2

(
1 − r3+

r3

)
, (1)

where r+ represents the horizon satisfying f (r+) = 0. Mean-
while, the Hawking temperature reads T = 3r+

4π
.

Following Refs. [17,18,44,45,50,51], we consider the
Lagrangian density consisting of a complex vector field and
a Maxwell field coupled to the Weyl tensor as

Lm = −1

8
FμνX

μνρσ Fρσ − 1

2
ρ†

μνρ
μν

−m2ρ†
μρμ + iqγ0ρμρ†

ν F
μν, (2)

where the antisymmetry tensor ρμν = Dμρν − Dνρμ and
the tensor Xρσ

μν is an infinite family of high derivative terms,
i.e.,

Xρσ
μν = I ρσ

μν − 8γ1,1L
2Cρσ

μν − 4L2γ2,1C
2 I ρσ

μν

−8L4γ2,2C
αβ
μνC

ρσ
αβ

−4L6γ3,1C
3 I ρσ

μν − 8L6γ3,2C
2 I ρσ

μν

−8L6γ3,3C
α1β1
μν C α2β2

α1β1
Cρσ

α2β2
+ · · · . (3)
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In detail, I ρσ
μν = δ

ρ
μ δ σ

ν − δ σ
μ δ

ρ
ν is an identity matrix and

Cn = Cα1β1
μν Cα2β2

α1β1
· · ·C μν

αn−1βn−1
with Cρσ

μν the Weyl tensor.
Furthermore, Dμ = ∇μ − iq Aμ, Fμν = ∇μAν − ∇ν Aμ

and m (q) is the mass (charge) of the vector field ρμ. What
is more, we do not consider the magnetic field effects on
the superconductor phase transition, so the last term with
the constant γ0 in Eq. (2) can be ignored, which character-
izes the strength of interaction between ρμ and Fμν . In the
remainder of this paper, we will only turn on the 6 derivative
term − 1

8 F
μν(−4L2γ2,1C2 I ρσ

μν )Fρσ = L2γ2,1C2F2 with
other γi, j terms vanishing. For simplicity, we take γ2,1 = γ

throughout the paper. Considering the fact that we will solve
the equation of the gauge field perturbatively in terms of the 6
derivative parameter γ , so we restrict the range of the param-
eter γ as γ ∈ [− 1

50 , 1
50 ] combining with the arguments in

Refs. [44,45]. In addition, we will set L = 1 and q = 1
and work in the so-called probe approximation where the
equations of motion related to the vector field and the gauge
field decouple from the equations of motion for gravitational
sector and the main physical results are believed to be still
grasped.

Varying the action (2) with respect to the vector ρμ and
the gauge field Aμ, respectively, we can obtain the equations
of motion

Dμρμν − m2ρν + iγ0ρμF
μν = 0, (4)

1

2
∇μ(Xμνρσ Fρσ ) − iγ0∇μ

(
ρμ(ρν)† − ρν(ρμ)†

)

+i
(
(ρμ)†ρμν − ρμ(ρμν)†

)
= 0. (5)

To build the p-wave superconductor induced by the electric
field, the ansatzs for the vector field ρμ and the gauge field
Aμ can be taken as the following form

ρνdx
ν = ψx (r)dx, Aνdx

ν = φ(r)dt, (6)

with other components vanishing.
Choosing ψx (r) and φ(r) as real functions and substitut-

ing the above ansatzs (6) into Eqs. (4) and (5) yields

ψ ′′
x +

(
f ′

f
+ 2

r

)
ψ ′
x +

(
φ2

r4 f 2 − m2

r2 f

)
ψx = 0, (7)

φ′′ +
(

2

r
+ X ′

3

X3

)
φ′ − 2ψ2

r4 f X3
φ = 0, (8)

where the prime stands for the derivative with respect to r and
the nonvanishing components of the tensor Xρσ

μν are denoted
as X B

A = X1(r), X2(r), X3(r), X4(r), X5(r), X6(r) with
A, B ∈ (t x, t y, tr, xy, xr, yr). In particular, Xtx

tx = Xty
ty =

Xtr
tr = Xxy

xy = Xxr
xr = X yr

yr = 1 − 4
3γ

(
r2 f ′′ + 2r f ′)2

. Obvi-
ously, for the special case γ = 0, Eqs. (7) and (8) reduce
to Eq. (38) in Ref. [50], Eqs. (6) and (7) in Ref. [55] with
Ay = 0, and Eqs. (6) and (7) in Ref. [61] in the case of z = 1
and Ay = 0. However, the equation of motion corresponding

to Eq. (8) in the five-dimensional AdS case is not identical
with Eq. (36) in Ref. [67], from which we can believe the
present model will generalize some new characters of super-
conductor.

To solve the above equations, we should impose the
boundary conditions. At the horizon, the vector field ψx

is required to be regular, while the gauge field Aμ should
satisfy the condition φ(r+) = 0 to ensure the finite form
of gμν AμAν . At the boundary (r → ∞), ψx (r) and φ(r)
behave as

ψx (r) = ψx−
r
− + ψx+

r
+ + · · · , (9)

φ(r) = μ − ρ

r
+ · · · , (10)

where 
± = 1
2 (1 ± √

1 + 4m2) with the Breitenlohner–
Freedman (BF) bound of the mass m2 ≥ m2

BF = − 1
4 .

According to the gauge/gravity duality, the coefficient ψx−
(ψx+) is regarded as the source (the vacuum-expectation
value) of the boundary operator Ĵx , while μ (ρ) is interpreted
as the chemical potential (the charge density) in the dual field
theory. To guarantee the spontaneous breaking of U(1) gauge
symmetry in the system, we require that the source of the
condensate vanishes, i.e., ψx− = 0. We take 
 = 
+ = 3

2
throughout the paper, which means that the mass squared m2

of the vector field m2 = 3
4 .

There is an important scaling symmetry for the above sys-
tem, i.e., (r, T, μ) → λ0(r, T, μ), ψx+ → λ

5/2
0 ψx+, ρ →

λ2
0ρ with the positive constant λ0, by using which we can fix

the chemical potential μ of the system and thus work in the
grand canonical ensemble.

2.1 Numerical part

After series of numerical calculations, we obtain the con-
densate as a function of the temperature for various C2F2

parameter γ and display the condensate for γ = − 1
50 , 0, 1

50
in the left panel of Fig. 1. It is observed that there always
exists a critical temperature below which the vector conden-
sate starts to appear outside the horizon. Meanwhile, from
the fitness of the condensate curve, we can further find all
curves of condensate versus the temperature have a square
root behavior near the critical value, which indicates that the
system may suffer from a second-order phase transition at the
critical point. Furthermore, at the lower temperature, the vec-
tor condensate saturates a stable value, which decreases with
the increasing C2F2 parameter. As argued in Refs. [10,60],
the larger gap in the condensate curve suggests the stronger
interaction in the system, which might means that the increas-
ing C2F2 parameter inhibits the conductor/superconductor
phase transition. In addition, we also consider the case for
other value of γ in the range γ ∈ [− 1

50 ,− 1
50 ], the results

show that the effects of the C2F2 correction is qualitative
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Fig. 1 The condensate versus the temperature with γ = − 1
50 (black solid), γ = 0 (red dashed), γ = 1

50 (blue dot dashed) in the left panel and the
critical temperature versus the C2F2 parameter γ in the right panel

Table 1 The critical temperature in unit of chemical potential μ from the numerical method (Tcn) and the analytical method (Tca) for different
value of γ

γ −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02

Tcn 0.03862 0.03955 0.04066 0.04110 0.04368 0.04593 0.04923 0.05507 0.07717

Tca 0.03720 0.03786 0.03899 0.04050 0.04240 0.04490 0.04840 0.05367 0.06192

the same. Especially, in the case of γ = 0, the results restore
to the pure AdS superconductor, i.e., the results in Ref. [55]
and the ones with the dynamical critical exponent z = 1 in
Ref. [61] as well as the results with the vanishing backreac-
tion from the matter field to the gravity [57–59].

To study systemically the effects of the C2F2 correction
on the superconductor phase transition, we plot the critical
temperature with respect to theC2F2 parameter γ in the right
panel of Fig. 1 and list the related results in Table 1, from
which we find that the critical temperature calculated from
the numerical method increases with the increasing C2F2

parameter γ , which means that the increasing C2F2 cor-
rection makes the superconductor phase transition easier. In
particular, in the case of γ = 0, the results return to the ones
in Refs. [55,61] and agree with the ones for the case of b = 0
and d = 4 in Ref. [63]. Meanwhile, we find that the effect
of the C2F2 correction on the superconductor phase tran-
sition is similar to the one of the Weyl correction(CF2) on
the superconductor model in Ref. [67] but in contrast to the
influence of the pure high curvature correction [33–36] or
the nonlinear electrodynamics [33,34,37–39] on the super-
conductor model.

To check that below the critical point the superconduct-
ing state is indeed thermodynamically favored, it is helpful
to calculate the grand potential and compare the one of the
hairy state with that of the normal state, which is defined by
the Euclidean on-shell action SE timing the temperature of
the black hole, i.e., � = T SE . Integrating the Minkowski
action (2) by parts yields the on-shell part of action as

Sos =
∫ √−gd4x

(
−1

4
∇μ

(
AνX

μνρσ Fρσ

) + 1

4
Aν∇μ(Xμνρσ Fρσ )

−∇μ

(
ρ†

ν ρμν
) + ρ†

ν

(
Dμρμν − m2ρν + iqγρμF

μν
))

=
∫

d3x
√−hnr

(
−1

4
AνX

rνρσ Fρσ − ρ†
ν ρrν

)
|r→∞

+1

4

∫ √−gd4x Aν∇μ

(
Xμνρσ Fρσ

)

= V2

T

(
1

2
μρ −

∫ ∞

r+

φ2ψ2

r2 f
dr

)
,

where we have taken into account
∫
dxdy = V2,

∫
dt = 1

T
and also Eqs. (4) and (5). Remind that SE = −Sos , we obtain
the density of the grand potential as

�

V2
= −T Sos

V2
= −1

2
μρ +

∫ ∞

r+

φ2ψ2

r2 f
dr. (11)

We typically display the grand potential as a function of
the temperature for the case of γ = − 1

50 and γ = 1
50 in

Fig. 2, from which we find that near the critical tempera-
ture, the red solid curve corresponding to the superconduct-
ing state stretches out from the black dashed curve corre-
sponding to the normal state smoothly with the decreasing
temperature. Most importantly, the value of the grand poten-
tial of the superconducting state is always lower than that of
the normal state, which means that the superconducting state
is indeed thermodynamically stable below the critical tem-
perature. Furthermore, comparing the curve of the supercon-
ducting state with the one of the normal state, we can obtain a
fact that at the critical temperature, the system indeed suffers
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Fig. 2 The grand potential of the superconducting state(red solid) and the normal state (black dashed) as a function of the temperature with the
C2F2 parameter γ = − 1

50 (left) and γ = 1
50 (right)

from a second-order phase transition, which agrees with the
behavior of the condensate in Fig. 1. In addition, we also con-
sider the other parameter cases for γ ∈ [− 1

50 , 1
50 ] and obtain

the similar results to the cases of γ = − 1
50 and γ = 1

50 .
In particular, as γ = 0, the results return to the pure AdS
case [50]. As a result, it is believed our numerical results are
reliable in the total parameter space considered in the present
work.

On the other hand, as we all know, the infinite DC conduc-
tivity is one typical signal of superconductors. Meanwhile,
the energy gap of the electric conductivity can help us to
estimate how strong the interaction involves in the supercon-
ductor. As a result, it is meaningful to compute the AC con-
ductivity of the superconductor model. From the AdS/CFT
correspondence, to calculate the conductivity in the boundary
field theory, we need study the perturbation of the gauge field
in the bulk. For simplicity, we turn on the perturbation along
the y direction with the ansatz δAy(t, r) = Ay(r)e−iωt . The
linearized equation of the perturbation Ay(r) is derived as

A′′
y +

(
2

r
+ f ′

f
+ X ′

6

X6

)
A′
y

+
(

ω2X2

r4 f 2X6
− 2ψ2

r4 f X6

)
Ay = 0. (12)

At the horizon, we impose the ingoing wave condition

Ay(r) = (r − r+)−iω/4πT

(
1 + Ay1(r − r+) + Ay2(r − r+)2 + Ay3(r − r+)3 + · · · ) .

(13)

At the boundary, the asymptotical expansion of Ax (r) is
expressed as

Ay(r) = A(0) + A(1)

r
+ · · · . (14)

Combining with Eqs. (2) and (14), we can obtain the retarded
Green’s function as

G = − lim
r→∞ r2 f X6

A′
y

Ay
, (15)

where the prime still represents the derivative with respect
to r . According to the Kubo formula, the AC conductivity
reads

σ(ω) = − I

ω
G = − I

ω

A(1)

A(0)
. (16)

In Fig. 3, we plot the frequency dependent AC conductiv-
ity at the critical temperature( T

Tc
= 1) for γ = − 1

50 , 0 and
1

50 , respectively. It is observed from the real part of conduc-
tivity that a Drude-like peak appears at the low frequency
for the case of γ = − 1

50 compared with the horizontal line
corresponding to γ = 0. It should be noted that the current
Drude-like peak is produced by the promoting conductivity
near zero frequency, which is different from the one formed
in the BTZ black hole in Ref. [63]. Meanwhile, for the case
of γ = 1

50 , we can obtain an obviously pronounced peak at
the intermediate frequency. What is more, from the real part
of conductivity, even the DC conductivity with γ = 1

50 is
very small, we find it is still finite from the no-pole of the
imaginal part of the conductivity. The above new behaviors
generated by the C2F2 correction are similar to the case of
the s-wave model in Refs. [42,43].

In addition, we also show the AC conductivity at the lower
temperature T

Tc
≈ 1

10 for different C2F2 parameter γ in the
left panel of Fig. 4. From the overall trend of the conductivity,
we find the conductivity with nonvanishing γ is similar to the
Maxwell case with γ = 0 [10], even the nonlinear electrody-
namics case [39]. For example, at the vanishing frequency,
there exists a pole in the imaginal part of conductivity corre-
sponding to a delta function in the real part of conductivity
which means the infinite DC conductivity expected from the
superconductor. At the intermediate frequency, the real part
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Fig. 3 The real part(left) and imaginal part(right) of the AC conductivity as a function of the frequency with γ = − 1
50 (black solid), γ = 0 (red

dashed) and γ = 1
50 (blue dotdashed)(calculated at T

Tc
= 1)

Fig. 4 The left panel denotes the real part of the conductivity in the case of γ = − 1
50 (black solid),γ = 0 (red dashed) and γ = 1

50 (blue
dotdashed), while the right panel represents the ratio of energy gap to the critical temperature as a function of the C2F2 correction γ (calculated at
T
Tc

≈ 1
10 )

of the conductivity increases quickly with the improving fre-
quency which corresponds to a minimum in the imaginal part
of the conductivity, i.e., the energy gap of the superconduc-
tor (ωg). The calculation show that ωg

Tc
≈ 9.172 for γ = − 1

50

and ωg
Tc

≈ 8.107 for γ = 0 as well as ωg
Tc

≈ 4.582 for γ = 1
50

which is (much) larger than the value of BCS superconduc-
tors (ωg

Tc
≈ 3.54) and thus reflects the strong interaction in our

holographic superconductor. To see the effect of the C2F2

correction on the energy gap, we display the ratio of the
energy gap to the critical temperature (ωg

Tc
) as a function of

the C2F2 parameter γ in the right panel of Fig. 4. It is clear
that the energy gap decreases with the increasing γ which
agrees well with the behavior of the condensate and also the
phase diagram about the critical temperature in Fig. 1.

2.2 Analytical part

To check further the reliability of the numerical result, espe-
cially the critical temperature, in what follows, we resolve
the coupled equations (7) and (8) via the S–L eigenvalue
method [19,48,67]. It should be noted that almost all the
previous literature in terms of the analytical S–L supercon-
ductor model worked in the canonical ensemble [19,48,67],
where the charge density is fixed. However, in the present
paper worked in the grand ensemble with the fixed chemical
potential, we should be careful in the following calculation,
especially, the choice of the boundary condition in the course
of solving Eq. (8).
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By introducing a new variable z = r+
r , Eqs. (7) and (8)

can be expressed as

ψ ′′(z) + 3z2

z3 − 1
ψ ′(z) +

(
m2

z2
(
z3 − 1

)

+ φ(z)2

r2+
(
z3 − 1

)2

)
ψ(z) = 0, (17)

φ′′(z) + 288γ z5

48γ z6 − 1
φ′(z)

− 2ψ(z)2

r2+
(
z3 − 1

) (
48γ z6 − 1

)φ(z) = 0, (18)

where the prime denotes the derivative with respect to z.
When T = Tc, the condensate vanishes, i.e., ψ(z) = 0, so
we can rewrite Eq. (18) as

φ′′(z) + 288γ z5

48γ z6 − 1
φ′(z) = 0. (19)

Due to the existence of the C2F2 parameter γ , in general,
it is difficult to give the exact solution to Eq. (19). However,
by considering the parameter γ as a small quantity, we can
solve Eq. (19) perturbative order by order. Up to the fourth
order of γ , the solution to φ(z) is given by

φ(z)

r+c
= λφ1(z) = λ

(
1 − z + γ ξ1(z) + γ 2ξ2(z)

+γ 3ξ3(z) + γ 4ξ4(z)
)

, (20)

where r+c is the location of the horizon at T = Tc and
the functions ξ1(z) = 48z(1 − z6)/7, ξ2(z) = (82944z +
29952z7 − 112896z13)/637, ξ3(z) = (314523648z +
75644928z7 + 102961152z13 − 493129728z19)/84721, and
ξ4(z) = (23878507954176z + 4906568908800z7 + 44479
21766400z13+7692823756800z19−40925822386176z25)/

192740275, respectively.
Comparing the above solution of φ(z) with Eq. (10), we

can derive the constant λ as

λ = μ

r+c
. (21)

The asymptotical solution of ψ(z) is defined by a trial func-
tion F(z) as

ψ(z) = 〈 Ĵx 〉
r
+

z
F(z). (22)

Substituting Eqs. (20) and (22) into Eq. (17) yields

F ′′(z) + (2
 + 3)z3 − 2


z
(
z3 − 1

) F ′(z)

+m2 + 

(
1 − 
 + (
 + 2)z3

)

z2
(
z3 − 1

) F(z)

+λ2 φ1(z)2

(
z3 − 1

)2 F(z) = 0. (23)

According to the condition of F(z), i.e., F(0) = 1 and
F ′(0) = 0 [19–21], we take the ansatz of F as

F = Fα(z) ≡ 1 − αz2, (24)

with α to be determined. Therefore, Eq. (23) can be trans-
formed to the S–L eigenvalue equation

(T F ′)′ − PF + λ2QF = 0, (25)

where the coefficients are respectively

T =
(

1 − z3
)
z2
, P = z2
−2

(
m2 + 


(
1 − 
 + (
 + 2)z3

))
,

Q = z2
φ1(z)2

1 − z3 . (26)

The eigenvalue of λ2 minimizes the expression with respect
to the parameter α as

λ2(α, γ, z) =
∫ 1

0 (T F ′2 − PF2)dz∫ 1
0 QF2dz

. (27)

The critical temperature reads

Tc = 3

4πλ
μ. (28)

We plot the analytical critical temperature as a function of
the C2F2 parameter γ in the right panel of Fig. 1 and also
list the analytical results in Table 1 for comparison with the
numerical results, from which we can see clearly that the
analytical critical temperature increases with the improving
C2F2 parameter γ , which agrees well with the numerical
results and indicates that the analytical S–L method is still
powerful in the grand canonical ensemble.

Below (but close to) the critical temperature, the vector
condensate is very small. Thus we can expand φ(z) in the
small parameter as

φ(z)

r+
= λφ1(z) +

(
〈 Ĵx 〉
r
+1+

)2

χ(z). (29)

At the boundary (z → 0), the function χ(z) can be expand
series as χ(z) = χ(0) + χ ′(0)z + · · · , and then matching
Eq. (29) with Eq. (10), we can obtain

λ + χ(0)

(
〈 Ĵx 〉
r
+1+

)2

= μ

r+
. (30)

123
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Next the main task is to find the value of χ(0). Substituting
Eq. (29) and (22) in Eq. (18) yields the equation of χ(z) at
the order of 〈 Ĵx 〉2 as

χ ′′(z) + 288γ z5χ ′(z)
48γ z6 − 1

− 2λz3F(z)2φ1(z)(
z3 − 1

) (
48γ z6 − 1

) = 0. (31)

Usually, we still take the boundary conditions as χ(1) =
0 = χ ′(1) [19,20,48]. Multiplying the factor (−1 + 48γ z6)

to Eq. (31), we can read

((−1 + 48γ z6)χ ′(z))′ = 2λ
z3φ1(z)F(α, z)2

z3 − 1
. (32)

Taking into account the condition χ ′(1) = 0 and integrating
Eq. (32), we get

− (−1 + 48γ z6)χ ′(z) = 2λ

∫ z̃=1

z̃=z

z̃3φ1(z̃)F(α, z̃)2

z̃3 − 1
dz̃

= 2λM(α, γ, z), (33)

where M(α, γ, z) is the function of α and γ as well as z
and can be given in the explicit form by analytical integra-
tion. Integrating further the above equation with the condition
χ(1) = 0, the function χ(z) is derived as

χ(z) = 2λ

∫ z̃=1

z̃=z

M(α, γ, z̃)

48γ z̃6 − 1
dz̃ = 2λN (α, γ, z), (34)

where N (α, γ, z) depends on the parameters α and γ as well
as the variable z, and its value can be obtained by numerical
integration. Considering Eqs. (21) and (30) as well as (34),
the condensate can be expressed as

〈 Ĵx 〉
r
+1+

= 1√
2N (α, γ, 0)

√
Tc
T

√
1 − T

Tc
(35)

Obviously, the condensate has a square root behavior near the
critical temperature, which is consistent with the numerical
results, especially, the grand potential and also indicates a
second-order phase transition at the critical point expected
from the mean-field theory.

To compare the behavior of condensate for the analytical
results with the one of the numerical results more in detail,
we further process Eq. (35) as

〈 Ĵx 〉 2
5

Tc
= 4π

3

1

(2N (α, γ, 0))
1
5

(
1 − T

Tc

) 1
5

= C(α, γ )

(
1 − T

Tc

) 1
5

, (36)

where we have considered 
 = 3
2 and the approximation

T ≈ Tc. After some calculation, we haveC(0.70978,− 1
50 ) =

8.07502, C(0.70032,− 1
100 ) = 7.93396, C(0.67143, 0) =

7.5889, C(0.61583, 1
100 ) = 7.03228, C(0.48781, 1

50 ) =
6.03606. It follows that the vector condensate increases faster

with the decreasing C2F2 parameter γ , which is again con-
sistent with the behavior of the condensate that the stable
value decreases with the improving C2F2 parameter γ in
Fig. 1 and thus suggests that the analytical S–L method is
still powerful for the holographic superconductor model with
high derivative term [48,67].

On the other hand, if we work in the canonical ensem-
ble [19,20,48], we should impose the boundary condition
φ′(0) = − ρ

r+ with Eq. (21) replaced by λ = ρ

r2+c
. Mean-

while, the function on the right hand of Eq. (20) is cor-
rected as ξ1(z) = 48(1 − z7)/7, ξ2(z) = 2304(1 − z13)/13,
ξ3(z) = 110592(1− z19)/19, ξ4(z) = 5308416(1− z25)/25,
and Eq. (28) should be replaced by Tc = 3

4π
√

λ

√
ρ. We also

calculate the critical temperature in the canonical ensem-
ble for some special value of γ , such as, Tca = 0.0912

√
ρ

for γ = − 1
50 , Tca = 0.0938

√
ρ for γ = − 1

100 , Tca =
0.1124

√
ρ for γ = 1

100 and Tca = 0.1363
√

ρ for γ = 1
50 . It

follows that in the canonical ensemble the increasing C2F2

parameter γ still enhances the conductor/superconductor
phase transition. In particular, as γ = 0, i.e., the standard
AdS case, we have Tca = 0.1006

√
ρ which is consistent

with the result in Refs. [50,53,63].

3 Conclusions and discussions

In the present paper, we have realized the holographic p-
wave conductor/superconductor model with 6 derivative
term (C2F2) in the four-dimensional Schwarzschild-AdS
black hole. We mainly studied the influences of the C2F2

parameter γ in the range − 1
50 ≤ γ ≤ 1

50 on the super-
conductor model by both numerical and analytical methods.
Main results are summarized as follows.

Firstly, for all values of the C2F2 parameter γ , there
always exists a critical temperature below which the vector
hair appears. From the condensate as a function of the tem-
perature, we found the system suffers from a second-order
phase transition at the critical point, which is upheld by the
comparison between the grand potential in the normal state
and hairy state with each other. Meanwhile, the critical tem-
perature increases with the improving C2F2 parameter γ ,
which suggests that the larger C2F2 parameter enhances the
superconductor phase transition. In addition, at the low tem-
perature, such as T

Tc
≈ 1

10 , the condensate saturates a stable

value which decreases with the increasing C2F2 parameter
γ . To backup the numerical results, we reconstructed the p-
wave superconductor model by the S-L method in the grand
canonical ensemble which seems to be not appeared in the
previous work and found that both the critical temperature
and the critical behavior of the vector condensate agree well
with the numerical ones, especially, the critical exponent of
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the condensate is always 1
2 suggesting the second-order phase

transition at the critical point [19–21,33].
Secondly, at the critical temperature(i.e., T

Tc
≈ 1), com-

pared with the horizontal line of the real part of the conductiv-
ity corresponding to γ = 0, the real part of conductivity with
γ = − 1

50 is promoted near the zero frequency and suppressed
at the intermediate frequency and thus displays a Drude-like
peak, which is similar to the case in Refs. [45,46]. It is worth
noting that the formation mechanism of the present Drude-
like peak is different from the one for the p-wave case in the
BTZ black hole, where the conductivity decreases with the
increasing frequency [64]. However, for the case of γ = 1

50 ,
the real part of conductivity is suppressed near the zero fre-
quency and promoted at the intermediate frequency and thus
produces an obviously pronounced peak at the intermedi-
ate frequency, which is also similar to the conductivity in
Refs. [45,46]. At the low temperature such as T

Tc
≈ 1

10 , for

any value of C2F2 parameter γ , we can always observe the
infinite DC conductivity expected from the superconductor,
which corresponds to the pole of the imaginal part of conduc-
tivity. What is more, we obtained an obvious energy gap at
the intermediate frequency from the minimum of the imag-
inal part of conductivity. It was found that the ratio of the
energy gap to the critical temperature(ωg

Tc
) decreases with

the increasing γ , which is consistent with the phase diagram
of the critical temperature versus the C2F2 parameter γ .
In addition, the running range ωg

Tc
∈ [4.582, 9.172] (much)

larger than the BCS value (3.54) reflects the strong interac-
tion for the current superconductor model.

In current paper we have only worked in the probe limit.
Although this probe limit can reveal some main properties of
superconductor, it was shown that new phases such as zero-
order phase transition and the retrograde phase can emerge
once the backreaction is taken into account [16,58,59].
Therefore, it is interesting to build the superconductor model
by including the backreaction from the C2F2 correction
to the AdS metric via both numerical shooting method
[17,22,31,40] and analytical S-L method [21,38,64,68,69].
Meanwhile, as we all know, in the high critical tempera-
ture phase diagram, an insulator phase is located close to
the superconducting phase [14]. Therefore, it is meaningful
to construct the insulator/superconductor phase transition to
see whether there are some new features compared with the
present conductor/superconductor model.
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