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Abstract We explore the possibility of traversable worm-
hole formation in the dark matter halos. We obtain the exact
solutions of the spherical symmetry traversable wormhole
with isotropic pressure condition, based on the Navarro–
Frenk–White (NFW), Thomas–Fermi (TF) and Pseudo
Isothermal (PI) matter density profiles. The derived traversable
wormhole solution satisfies the flare-out condition for a spe-
cific dark matter center density and equation of state. We
extend the spherical symmetry traversable wormhole solu-
tions to an axisymmetric one. The weak energy condition
(WEC) and null energy condition (NEC) are then checked
near the wormhole throat, and we find that these traversable
wormholes violate the WEC and NEC. Our traversable
wormhole solutions show that the dark matter at the center
of wormhole spacetime will be redistributed by the presence
of a traversable wormhole, and the behavior of dark matter
density is similar to a black hole spike.

1 Introduction

The wormhole is a solution to Einstein’s field equation
which provides a possible way to connect different space-
time regions or different universe [1]. As early as 1935, Ein-
stein and Rosen first obtained the famous Einstein–Rosen
bridge (ERB) by solving the Einstein field equation. But
such a wormhole solution turns out to be unworkable [2–
5]. Therefore, finding a traversable wormhole has became
an interesting research subject. Many traversable wormhole
models have been proposed in the framework of the general
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relativity. For instance, Ellis pointed out that the traversable
wormhole can be supported by a phantom scalar field [4,5],
Thorne found the famous Morris–Thorne (MT) traversable
wormhole solution [6], which requires a kind of exotic mat-
ter to keep the wormhole’s throat open. In fact, the exotic
matter has a positive energy density and a negative pressure,
producing a repulsive effect, preventing the wormhole from
closing. Generally speaking, such exotic matter usually vio-
lates the energy condition [7]. It is interesting to note that
Kanti et al. constructed traversable wormholes in the context
of quadratic gravitational theories, where gravity itself keeps
the wormhole throat open without the need for any exotic
matter [8,9].

According to the standard cosmology model and the recent
observation results, our universe is made up of about 4%
atomic matter, 29.6% dark matter and 67.4% dark energy
[10–12]. On a galactic scale, dark matter plays an impor-
tant role in the formation and evolution of galaxies (see e.g.,
[13]). Given the ubiquity of dark matter halos and galaxies, it
is important to consider the formation of traversable worm-
holes in the dark matter halo and galaxy (see e.g., [14–16]).
Some work has been done in this regard, such as [14], show-
ing that based on the Navarro–Frenk–White (NFW) profile
traversable wormholes may form in the outer halo of galax-
ies. Recently, [17] pointed out the possibility of traversable
wormhole formation in a Bose–Einstein condensation dark
matter halo, however, one only obtained the approximate
solution. In this paper, we study the exact solutions of spher-
ical symmetry traversable wormhole in the dark matter halos
under the isotropic pressure condition, and we obtain the
axisymmetric traversable wormhole by the Newman–Janis
(NJ) algorithm. We also analyze the energy conditions of
these traversable wormhole solutions near the wormhole
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throat with a radius r0. Furthermore, we discuss the dark
matter density profile properties around the axisymmetric
traversable wormhole.

The paper is organized as follows: In Sect. 2, we introduce
several typical dark matter profile. In Sect. 3, we derive the
spherical symmetry traversable wormholes in the dark matter
halos under the isotropic pressure condition. In Sect. 4, we
derive axisymmetric traversable wormholes by the NJ algo-
rithm. In Sect. 5, we study the energy conditions near the
wormhole throat. A summary is presented in Sect. 6.

2 The dark matter density profile

2.1 Navarro–Frenk–White (NFW) profile

An approximate analytical expression of the NFW density
profile is derived based on the theory of the cosmological
constant Cold Dark Matter (�CDM) and numerical simula-
tion [18–20]. For galaxies and clusters, the dark matter halo
can be determined by the NFW density profile, which is given
by the analytical expression as

ρNFW = ρs

r

Rs

(
1 + r

Rs

)2 , (1)

where ρs is the dark matter density when the dark matter
halo collapses, and Rs is the scale radius. It is well known
that the NFW density profile represents a broad category of
dark matter models in which the collision effects between
dark matter particles are so weak.

2.2 Thomas–Fermi (TF) profile

The Bose–Einstein Condensation dark matter (BEC-DM)
model shows more advantages on the small scales of galaxies
compared to the CDM model. For instance, the interactions
between dark matter particles are very strong in the inner
regions of galaxies, and thus the dark matter will no longer
be cold. For the BEC-DM model, the dark matter density
profile can be described by the TF profile [21]

ρTF = ρs
sin(kr)

kr
, (2)

where ρs is the center density of BEC-DM halo, k = π/R is
the radius where the dark matter pressure and density vanish.
The BEC-DM model predicts much less dark matter density
in the center regions of galaxies than the NFW profile.

2.3 Pseudo isothermal (PI) profile

In addition to the CDM model and the BEC-DM model, there
is an important class of dark matter models associated with

modified gravity, such as Modified Newtonian Dynamics
(MOND) [22]. In the MOND model, the dark matter den-
sity profile is described by the PI profile

ρPI = ρ0

1 +
(

r

Rc

)2 , (3)

where ρ0 is the central dark matter density and Rc is the scale
radius.

3 Traversable wormhole with isotropic pressure

In Schwarzschild-like coordinates, the spacetime metric of
spherical symmetry traversable wormhole can be expressed
as

ds2 = −e2�(r)dt2 + 1

1 − b(r)

r

dr2

+r2(dθ2 + sin2 θdφ2), (4)

where �(r) is the redshift function and b(r) is the shape
function. In order to ensure a wormhole to be traversable,
there should be no event horizon. Therefore, �(r) should be
finite and tend to zero when r → ∞. The geometry of the
wormhole is determined by the shape function b(r), which
should satisfy the boundary condition b(r0) = r0, where
r0 is the wormhole’s throat radius. Moreover, to keep the
wormhole’s throat open, the shape function b(r) should also
satisfy the flare-out condition (b(r)−rb

′
(r))/b2(r) > 0 and

b
′
(r) < 1.
In order to obtain the wormhole metric under the gen-

eral dark matter profile, we need to solve the Einstein field
equation Rμν − gμνR/2 = 8πTμν , where Tμν is the energy-
momentum tensor, which can be determined by dark mat-
ter profile and be written as Tμν = diag(−ρ, Pr , Pθ , Pφ).
Therefore, the Einstein field equations can be simplified to

8πρ(r) = b
′
(r)

r2 , (5)

8π Pr (r) = −b(r)

r3 + 2

(
1 − b(r)

r

)
�

′
(r)

r
, (6)

8π Pθ (r) = 8π Pφ(r) =
(

1 − b(r)

r

)[
�

′′
(r) + �

′2(r)

− rb
′
(r) − b(r)

2r(r − b(r))
�

′
(r) − rb

′
(r) − b(r)

2r2(r − b(r))
+ �

′
(r)

r

]
,

(7)

where ρ(r) is the energy density for dark matter, Pr (r) is the
radial pressures, Pθ (r) and Pφ(r) is the tangential pressures.
According to the energy-momentum tensor conversation law
Tμν

;ν = 0, we can obtain the hydrostatic equation of dark
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matter,

P
′
r = −(Pr + ρ)�

′ + 2(Pθ − Pr )

r
. (8)

Assuming the dark matter pressure is isotropic Pθ = Pr =
P , Eq. (8) becomes

P
′ = −(P + ρ)�

′
. (9)

From Eq. (9), the redshift function �(r) can be obtained with
the state equation P = ωρ,

�(r) = − ω

1 + ω
ln

[
−ωb

′
(r)

(
r

r0

)2
]

, (10)

where the shape function b(r) can be determined by the
boundary condition �(r0) = 0. Consequently, if we know
the expression for b(r), then we know the expression for the
function �(r).

Here, we derive the traversable wormhole’s metric based
on the NFW, TF and PI dark matter density profile. Using
Eqs. (1)–(3), (5) and the boundary condition b(r0) = r0, we
can obtain the shape functions

b(r)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r0 + 8πρs R3
s

[
ln

r + Rs

r0 + Rs
+ Rs

(
1

r + Rs
− 1

r0 + Rs

)]
, for NFW profile;

r0 + 8ρ0R3

π2

[
sin

(πr

R

)
− sin

(πr0

R

)]

− 8ρ0R3

π

[ r

R
cos

(πr

R

)
− r0

R
cos

(πr0

R

)]
, for TF profile;

r0 + 8πρ0R2
c

[
r − r0 − R2

c ln
r + R2

c

r0 + R2
c

]
, for PI profile.

(11)

Using Eqs. (4), (10) and the boundary condition �(r0) = 0,
we can obtain the expressions for the redshift function,

e2�(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r + Rs

r0 + Rs

) 4ω

1 + ω ×
(
r

r0

) 2ω

1 + ω , for NFW profile;
⎛
⎜⎝ r

r0

sin
(πr0

R

)

sin
(πr

R

)
⎞
⎟⎠

2ω

1 + ω

, for TF profile;

(
r2 + R2

c

r2
0 + R2

c

) 2ω

1 + ω
, for PI profile.

(12)

We find that if the equation of state satisfies k, the redshift
function disappears at the asymptotic infinity, and the worm-
hole solution is asymptotically flat.

We present some discussions on the derived wormhole
solutions below. From Eq. (12), we find that if the equation
of state satisfies −1 < ω < 0, the redshift functions van-
ish at asymptotic infinity, and the wormhole solutions are
asymptotically flat. In order to make the derived wormhole
solutions better link with the external vacuum solutions (for

further discussions, see [23]), we need to give the conditions
of the pressure

P(r) = ωρ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

8πr2
0

r0

r

(
r0 + Rs

r + Rs

)2

, for NFW profile;

− 1

8πr2
0

r0

r

sin
(πr

R

)

sin
(πr0

R

) , for TF profile;

− 1

8πr2
0

r2
0 + R2

c

r2 + R2
c
, for PI profile.

(13)

On the other hand, we discuss an interesting question. If
these wormholes in the dark matter halos are traversable,
what condition should the parameters of these wormholes
satisfy? First, if an astronaut were to travel through these
wormholes, the gravity that the astronaut felt in wormholes
would not be greater than on the earth. Similar to the discus-
sions of [6], we can obtain the inequality

| 1√−grr gtt

dγ
√
gtt

dr
|≤ 9.8 m/s2, (14)

where γ = 1/
√

1 + v2/c2, v is the velocity of astronaut and
c is the speed of light. Second, the tidal acceleration that
the astronaut felt in wormholes would not be greater than on
the earth (see [6] for a detailed discussion). This condition
should satisfy the inequalities

| Rrtrt |≤ 1

(1010 cm)2 (15)

and

| γ 2Rθ tθ t + γ 2
(v

c

)2
Rθrθr |≤ 1

(1010 cm)2 , (16)

where Rrtrt , Rθ tθ t and Rθrθr are tidal tensors from worm-
hole metric. Finally, assume an observer is on a space station
located just outside the junction radius h at l = −l1 and l =
−l2, where the proper distance is dl = √

grrdr . The traver-

sal time measured by the astronaut is �τ = ∫ +l2
−l1

1/(vγ )dl,
and the traversal time measured by the observer in the space
stations is �t = ∫ +l2

−l1
(1/v

√
gtt )dl.

Next, for wormholes in NFW, TF and PI profile, we verify
the above conditions. For simplicity, we consider only non-
relativistic case, that is to say γ ≈ 1. Through calculation, we
find that these wormholes satisfy inequalities (14) and (15).
For inequality (16), near a wormhole’s throat, this inequality
becomes

v ≤ r0

√√√√ 2 × 9.8 m/s2

2m× | 1 − b′
(r0) |
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r0

√
2

× 9.8 m/s2 2m

(
1 + r0

Rs

)

×
(

8πρsr0Rs −
(

1 + r0

Rs

)2
)− 1

2
, for NFW profile;

r0

√
2 × 9.8 m/s2

2m

(
1 − 8r0ρs R sin

(πr0

R

))− 1

2 , for TF profile;

r0

√
2 × 9.8 m/s2

2m

√
1 +

(
r0

Rs

)2

×
(

1 +
(
r0

Rs

)2

− 8πρ0r2
0

)− 1

2
, for PI profile.

(17)

In order to compute the traversal time �t (≈ �τ), we con-
sider the equality case in inequality (17). At the same time,
if we consider that the wormhole throat r0 ≈ 100 m and
the junction radius h ≈ 10000 m, then the traversal time is
given by �t ≈ �τ ≈ 2h/v. For the Milky Way (MW) [24],
ρs = 1.936 × 107M�kpc−3 = 0.13 × 10−20 kg/m3 and
Rs = 17.46 kpc = 5.4 × 1020 m for NFW profile, ρs =
3.43 × 107M� kpc−3 = 0.23 × 10−20 kg/m3 and R = 15.7
kpc = 4.84 × 1020 m for TF profile. ρ0 = 2 × 107M�
kpc−3 = 0.14×10−20 kg/m3 and Rs = 15 kpc = 4.6×1020

m for the PI profile (for the PI profile, we did not find the
corresponding fitting parameter value of MW, therefore we
choose a value arbitrarily). We find that �t ≈ �τ ≈ 261 s
for NFW profile, �t ≈ �τ ≈ 64 s for TF and PI profile.

4 Axisymmetric traversable wormhole by NJ algorithm

In this section, we generalize the spacetime metrics of a
traversable wormhole to the axisymmetric ones by the NJ
algorithm. Based on the isotropy pressure condition, accord-
ing to the NJ algorithm in [25] and [26], the details of the
derivation are as follows.

In order to derive the spacetime metric of the rotational
wormhole, we rewrite the spherical symmetry wormhole
spacetime metric as follows:

ds2 = − f (r)dt2 + 1

g(r)
dr2 + r2(dθ2 + sin2θdφ2), (18)

where the metric coefficients are f (r) = e2�(r) and g(r) =
1 − b(r)

r
. For the first step of the NJ algorithm, we trans-

form the wormhole metric (18) to advanced null coordinates

(u, r, θ, φ) by the transformation du = dt − 1

f (r)g(r)
dr .

In the null trade, the inverse metric can be written as gμν =
−lμnν − lνnμ + mμmν + mνmμ, where the base vectors
satisfy lμlμ = nμnμ = mμmμ = lμmμ = nμmμ = 0,

lμnμ = −mμmμ = 1, and they can be expressed as

lμ = δμ
r ,

nμ =
√

f (r)

g(r)
δμ
μ − f (r)

2
δμ
r ,

mμ = 1√
2r

δ
μ
θ + i√

2r sin θ
δ
μ
φ ,

mμ = 1√
2r

δ
μ
θ − i√

2r sin θ
δ
μ
φ . (19)

Now, in order to transform the metric from spherical sym-
metry to axisymmetry, we perform the following complex
transformation:

u −→ u − ia cos θ,

r −→ r + ia cos θ. (20)

In this case, the metric coefficients are changed like this
f (r) → F(r, θ, a), g(r) → G(r, θ, a) and h(r)(= r2) →
�(r, θ, a). So the basis vectors become

lμ = δμ
r ,

nμ =
√
G

F
δμ
μ − F

2
δμ
r ,

mμ = 1√
2�

(
δ
μ
θ + ia sin θ

(
δμ
μ − δμ

r

) + i

sin θ
δ
μ
φ

)
,

mμ = 1√
2�

(
δ
μ
θ − ia sin θ

(
δμ
μ − δμ

r

) − i

sin θ
δ
μ
φ

)
. (21)

According to Eq. (21), we obtain the expression of the inverse
metric gμν ,

guu = a2 sin2 θ

�
, gθθ = 1

�
,

gur = gru =
√
G

F
− a2 sin2 θ

�
,

gφφ = 1

� sin2 θ
, guφ = gφu = a

�
,

grφ = gφr = a

�
, grr = G + a2 sin2 θ

�
. (22)

As a result, the line element of rotation wormhole metric in
Eddington–Finkelstein coordinates (EFC) is

ds2 = −Fdu2 + 2

√
F

G
dudr + 2a sin2 θ

(√
F

G
+ F

)
dudφ

−2a sin2 θ

√
F

G
drdφ + �dθ2

− sin2 θ

[
−� + a2 sin2 θ

(
2

√
F

G
+ F

)]
dφ2. (23)

Here we set k(r) = r2√ f (r)/g(r). In order to obtain
the rotation wormhole in the Boyer–Lindquist coordinates
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(BLCs), we need the transform

du = dt − k + a2

r2 f (r) + a2 dr,

dφ = dφ − a

r2 f (r) + a2 dr, (24)

where

F(r, θ) = −r2 f (r) + a2 cos2 θ

k(r) + a2 cos2 θ
�,

G(r, θ) = −r2 f (r) + a2 cos2 θ

�
. (25)

Next, we set �2 = k(r) + a2 cos2 θ , 2 f = k(r) − r2 f (r),
�(r) = r2 f (r) + a2 and A = (k(r) + a2)2 − a2� sin2 θ ,
and then we obtain the useful rotation metric

ds2 = − �

�2

(
1 − 2 f

�2

)
dt2 + �

�
dr2 − 4a f sin2 θ�

�4 dtdφ

+�dθ2 + �A sin2 θ

�4 dφ2. (26)

According to [26], we need to define a new radial coordinate
r̄ ,

dr̄2 = f (r)

1 − b(r)

r

dr2, (27)

therefore, the second term of the metric in Eq. (26) is replaced
by

�

�
dr̄2. (28)

Changing back to r , the general rotation wormhole metric is

ds2 = − �

�2

(
1 − 2 f

�2

)
dt2 + �

�

f (r)

1 − b(r)

r

dr2

−4a f sin2 θ�

�4 dtdφ + �dθ2 + �A sin2 θ

�4 dφ2.

(29)

In this metric, � is an unknown function determined by the
rotational symmetric condition Grθ = 0 and the Einstein
field equation Gμν = 8πTμν . For a rotation wormhole the
metric (29), �, satisfies

(k + a2y2)2(3�,r�,y2 − 2��,r y2) = 3a2k,r�
2 (30)

and

�[k2
,r + k(2 − k,rr ) − a2y2(2 + k,rr )]

+(k + a2y2)(4y2�,y2 − k,r�,r ) = 0. (31)

Here y = cos θ , �,r y2 = ∂2�/∂r∂y2 and k,r = ∂k(r)/∂r .
According to [25], to Eqs. (30) and (31) there exists a simple
solution, � = r2+p2+a2 cos2 θ , where p2 is a real constant.
If f (r) ≈ g(r), the real constant p2 equals 0 and k(r) ≈ r2.

Fig. 1 The behavior of dark matter density ρ with radial distance r .
The modeling parameters are θ = π/2, ω = 0, Rs(orR and Rc) = 10,
r0 = 1, ρs(orρ0) = 0.05 and a = 0.5

If f (r) is replaced by H , the axisymmetric wormhole metrics
for three dark matter halos can be obtained:

ds2 = −
(

1 − 2 f

�2

)
dt2 + �2H

�

1

1 − b(r)

r

dr2

−4a f sin2 θ

�2 dφdt + �2dθ2 + A sin2 θ

�2 dφ2, (32)

where

�2 = r2 + a2 sin2 θ, 2 f = r2(1 − H), (33)

� = r2H + a2, A = (r2 + a2)2 − a2� sin2 θ,

H = e2�(r), (34)

where a is the spin of a traversable wormhole.

5 Energy condition

In this section, we check the weak energy condition (WEC)
and the null energy condition (NEC) by calculating the
energy-momentum tensor of axisymmetric traversable worm-
holes in different dark matter halos. To calculate the energy-
momentum tensor of dark matter halos by the wormhole
spacetime (32), we adopt the following frame system:

eμ
t = 1√

�2�
(r2 + a2, 0, 0, 0),

eμ
r =

√
�

�2

√
r − b(r)

r H
(0, 1, 0, 0),

eμ
θ = 1√

�2
(0, 0, 1, 0),
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Fig. 2 The behavior of dark matter’s ρ + p with radial distance r . The
modeling parameters are θ = π/2, ω = 0, Rs (or R and Rc) = 10,
r0 = 1, ρs (or ρ0) = 0.05 and a = 0.5

eμ
φ = 1√

�2 sin θ
(a sin2 θ, 0, 0, 1). (35)

The energy-momentum tensor for a traversable wormhole in
spherical symmetry is assumed to be isotropic with Pr =
Pθ = Pφ = P . However, the energy-momentum tensor for
the axisymmetric traversable wormhole does not satisfy the
isotropic pressure condition. In general, we can write it as
Tμν = ρeμ

t e
ν
t + Pre

μ
r eν

r + Pθe
μ
θ e

ν
θ + Pφe

μ
φ e

ν
φ , with the com-

ponents Pr 	= Pθ 	= Pφ . The calculation results are given
by

ρ = r2b
′
(r) + a2r2

0 [(3H − 1) cos2 θ − 2]
8π�4 , (36)

Pr = −r2b
′
(r) + a2r2

0 [(3H − 1) cos2 θ − 2]
8π�4 − r2

0 �

4π�6 ,

(37)

Pθ = 2H2 + H(r H
′ − 2) + (r − b(r))(3H

′ + r H
′′
)

16π�2H

+r2b
′
(r) + a2r2

0 [(3H − 1) cos2 θ − 2]
8π�4 + r2

0 �

4π�6 ,

(38)

Pφ = 2H2 + H(r H
′ − 2) + (r − b(r))(3H

′ + r H
′′
)

16π�2H

+r2b
′
(r) + a2r2

0 [(3H − 1) cos2 θ − 2]
8π�4

+r2
0 � + a2r2

0 sin2 θ

4π�6 . (39)

Next, we analyze the energy condition of the energy-
momentum tensor for a axisymmetric traversable wormhole.
In the standard locally non-rotating frame (LNRF) [27], the
WEC and NEC are defined by Tμνuμuν � 0, where uμ is the
time-like vector. For a traversable wormhole spacetime (32),

Fig. 3 The dark matter density ρ as a function of the radial distance r
with different wormhole’s spins a for the NFW profile. The modeling
parameters are θ = π/2, ω = −0.33, Rs = 1010, r0 = 1 and ρs =
5 × 10−3

the above condition would reduce to ρ � 0 and ρ + Pr � 0.
From Eqs. (36) to (37), we can obtain

ρ(r) + Pr = − r2
0 �

4π�6 . (40)

We show the sign of ρ and ρ + Pr for axisymmetric
traversable wormholes in Figs. 1 and 2. From Fig. 1, we
find that the WEC is satisfied everywhere for axisymmet-
ric traversable wormholes with the NFW profile and PI pro-
file. However, the WEC is not satisfied everywhere, which
depends on the radial distance r and dark matter parameters
with the TF profile. From Fig. 2, we can find the NEC is not
satisfied for axisymmetric traversable wormholes with the
NFW profile, TF profile and PI profile.

On the other hand, we show the dark matter density ρ as a
function of the radial distancer with different wormhole spins
a, and find that the behavior is similar to a black hole spike
[28,29]. Taking the NFW profile as an example, the dark
matter profile has been altered by wormholes and makes it
look like a spike shape (see Fig. 3 for details). We can also
find that the dark matter density decreases with increasing
wormhole’s spin, and this behavior is opposite to a black hole
spike [30]. We suggest that the dark matter around traversable
wormhole may be more easily detected.

6 Summary

In this work, we studied the traversable wormhole metrics in
different dark matter halos with the NFW, TF and PI density
profile. We obtained the exact solutions of the traversable
wormhole for three dark matter halos under the isotropic
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pressure condition. We generalized the traversable wormhole
solutions to the axisymmetric ones by the NJ algorithm. The
energy conditions for the derived traversable wormhole solu-
tions are then checked. Our results show that the dark matter
density for axisymmetric traversable wormhole is similar to
a black hole spike. However, the dark matter density varies
with the wormhole’s spin in the opposite direction.

Acknowledgements Zhaoyi Xu acknowledges financial supported
from the China Postdoctoral Science Foundation funded project under
Grant No. 2019M650846. Shuang-Nan Zhang acknowledges support
by the National Program on Key Research and Development Project
(Grant No. 2016YFA0400802) and the National Natural Science Foun-
dation of China under Grant U1838202.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: We do pure the-
oretical calculations, no data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)
2. J.A. Wheeler, Phys. Rev. 97, 511 (1955)
3. R.W. Fuller, J.A. Wheeler, Phys. Rev. 128, 919 (1962)
4. H.G. Ellis, J. Math. Phys. 14, 104 (1973)
5. H.G. Ellis, J. Math. Phys. 15, 520 (1974)

6. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)
7. M. Visser, From Einstein to Hawking (AIP Press, College Park,

1996), p. 412
8. P. Kanti, B. Kleihaus, J. Kunz, Phys. Rev. Lett. 107, 271101 (2011)
9. P. Kanti, B. Kleihaus, J. Kunz, Phys. Rev. D 85, 044007 (2012)

10. Planck Collaboration, P.A.R. Ade, N., Aghanim, et al., AA, 594,
A13 (2016)

11. Planck Collaboration, P.A.R. Ade, N., Aghanim, et al., AA, 594,
A14 (2016)

12. Planck Collaboration, N., Aghanim, Y., Akrami, et al. (2018).
arXiv:1807.06209

13. S. Trujillo-Gomez, A. Klypin, J. Primack, A.J. Romanowsky, ApJ
742, 16 (2011)

14. F. Rahaman, P.K.F. Kuhfittig, S. Ray, N. Islam, Eur. Phys. J. C 74,
2750 (2014)

15. F. Rahaman, P. Salucci, P.K.F. Kuhfittig, S. Ray, M. Rahaman, Ann.
Phys. 350, 561 (2014)

16. N. Sarkar, S. Sarkar, F. Rahaman, P.K.F. Kuhfittig, G. Khadekar
(2019). arXiv:1905.02531

17. K. Jusufi, M. Jamil, M. Rizwan (2019) arXiv:1903.01227
18. J. Dubinski, R.G. Carlberg, ApJ 378, 496 (1991)
19. J.F. Navarro, C.S. Frenk, S.D.M. White, ApJ 462, 563 (1996)
20. J.F. Navarro, C.S. Frenk, S.D.M. White, ApJ 490, 493 (1997)
21. C.G. Böhmer, T. Harko, J. Cosmol. Astropart. Phys. 6, 025 (2007)
22. K.G. Begeman, A.H. Broeils, R.H. Sanders, MNRAS 249, 523

(1991)
23. F.S. Lobo, Phys. Rev. D 71, 084011 (2005)
24. P.L.C. de Oliveira, J.A. de Freitas Pacheco, G. Reinisch, Gen. Rel-

ativ. Gravit. 47, 12 (2015)
25. M. Azreg-Aïnou, Eur. Phys. J. C 74, 2865 (2014)
26. M. Azreg-Aïnou, Eur. Phys. J. C 76, 7 (2016)
27. J.M. Bardeen, W.H. Press, S.A. Teukolsky, ApJ 178, 347 (1972)
28. P. Gondolo, J. Silk, Phys. Rev. Lett. 83, 1719 (1999)
29. L. Sadeghian, F. Ferrer, C.M. Will, Phys. Rev. D 88, 063522 (2013)
30. F. Ferrer, A. Medeiros da Rosa, C.M. Will, Phys. Rev. D 96, 083014

(2017)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/1905.02531
http://arxiv.org/abs/1903.01227

	Possibility of traversable wormhole formation in the dark matter halo with istropic pressure
	Abstract 
	1 Introduction
	2 The dark matter density profile
	2.1 Navarro–Frenk–White (NFW) profile
	2.2 Thomas–Fermi (TF) profile
	2.3 Pseudo isothermal (PI) profile

	3 Traversable wormhole with isotropic pressure
	4 Axisymmetric traversable wormhole by NJ algorithm
	5 Energy condition
	6 Summary
	Acknowledgements
	References




