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Abstract We study amplitudes of the inclusive photon
induced high-energy processes: elastic Compton scattering
off hadrons and photoproduction. Although description of
these amplitudes includes both non-perturbative and per-
turbative contributions, QCD factorization makes possible
to study them separately. Throughout the present paper we
focus on the perturbative amplitudes and study such ampli-
tudes in all available in the literature forms of QCD fac-
torization: Collinear, KT and Basic. As a result, we obtain
expressions for the perturbative Compton amplitudes, which
can be used at arbitrary x and Q2 in any form of QCD fac-
torization. Putting Q2 = 0 in those expressions allows us
to obtain expressions for the perturbative components of the
photoproduction amplitudes. The small-x asymptotics of the
Compton amplitudes in any form of QCD factorization are of
the Regge type, with the Reggeon being a double-logarithmic
(non-BFKL) contribution to Pomeron.

1 Introduction

Photon induced inclusive processes such as Deep-Inelastic
Scattering (DIS), Photoproduction and Diffractive Deep-
Inelastic Scattering (DDIS) are the objects of intensive exper-
imental and theoretical investigation. Theoretical studying
these processes is based on the concept of QCD factoriza-
tion which makes possible to separate perturbative and non-
perturbative contributions. There are several forms/types of
QCD factorization in the literature. Firstly, there is Collinear
factorization [1–14]. Secondly, there is the more general KT

factorization suggested in Refs. [15–17]. The third, the most
general, type of QCD factorization is basic factorization sug-
gested in Refs. [18,19]. In any of those factorizations the
approximation of the single-parton photon–hadron interac-
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tions is used and as a result, the subjects of consideration are
represented through convolutions of perturbative and non-
perturbative objects connected by two-parton intermediate
states. For instance, representation of the amplitude T of the
elastic forward Compton scattering off a hadron in any type
of QCD factorization is depicted in Fig. 1.

In the analytical form, QCD factorization of T is generi-
cally written as follows:

T = Tq ⊗ �q + Tg ⊗ �g, (1)

where Tq and Tg are the perturbative amplitudes of the elas-
tic Compton scattering off a quark and gluon respectively.
Non-perturbative blobs �q and �g denote distributions of
those partons in the hadrons. The notations ⊗ refer to inte-
grations over momentum k of any parton in the two-quark
and two-gluon intermediate states. The specific form of the
integrations as well as a parametrization of momentum k of
the intermediate partons depend on the type of chosen fac-
torization.1 Amplitudes Tq,g as well as amplitudes �q,g are
also given by expressions depending on the type of factor-
ization. In the present paper we focus on the perturbative
amplitudes Tq,g . In any specific type of factorization, there
are kinematic regions where amplitudes Tq,g are given by
essentially different expressions. Such regions are:

Region A. Large x and large Q2: (x ∼ 1)
⊗

(Q2 � μ2).
RegionB.Small x and large Q2: (x � 1)

⊗
(Q2 � μ2).

RegionC.Small x and small Q2: (x � 1)
⊗

(Q2 < μ2).
Region D. Large x and small Q2: (x ∼ 1)

⊗
(Q2 < μ2).

We have used above the conventional notations: Q2 =
−q2, with q being the external photon momentum, and
x = Q2/w, where w = 2pq, with p being the momentum

1 See for detail Refs. [18,19] and refs therein.
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Fig. 1 QCD factorization of
amplitude T. The dashed lines
denote virtual photons with
momentum q, the horizontal
straight lines correspond to the
incoming hadron with
momentum p, the vertical
straight lines stand for
intermediate quarks and the
wavy lines denote intermediate
gluons with momentum k. The
upper blobs denote DIS off
partons, they are described with
Perturbative QCD while the
lowest blobs are
non-perturbative
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of the incoming/outgoing parton. The parameter μ is asso-
ciated with the factorization scale. Besides, it plays the role
of the infrared (IR) cut-off in Collinear, KT and basic fac-
torizations, when the double-logarithmic (DL) contributions
to amplitudes Tq,g are accounted for. The physical meaning
of μ for the parton distributions �q,g in KT factorization
and its role in transition from KT factorization to Collinear
factorization were considered in Refs. [18,19]. Now let us
consider the status of knowledge of amplitudes Tq,g in the
Regions A–D.

The region A is the DGLAP applicability region, so
expressions for Tq,g in this region are provided by the
DGLAP evolution equations [20–23]. Such expressions can
easily be found in the literature. They account for logarithms
of Q2 but neglect total resummations of logarithms of x
because such logarithms are unessential in Region A.

Description of Tq,g in the small-x region B in the
double-logarithmic approximation (DLA) in the framework
of Collinear factorization was obtained in Refs. [24,25]. In
particular, it was shown in Refs. [24,25] that the small-
x asymptotics of Tq,g exhibits a new, DL contribution to
Pomeron. In contrast, double-logarithmic expressions for
Tq,g in region B in KT factorization have not been obtained.
We do it in the present paper, using the same method as in
Refs. [24,25]: constructing and solving Infrared Evolution
Equations (IREE).2 Then we obtain expressions for Tq,g

which combine DL and non-DL contributions available in
DGLAP, so these expressions can universally be used at large
Q2 and arbitrary x (i.e. in the region A⊕B) in Collinear, KT

and basic factorizations.
Extending expressions for Tqg to low Q2 was suggested

in Ref. [27] for Collinear factorization. In the present paper
we generalize this extension to the cases of KT and basic

2 This method was suggested by L.N. Lipatov. History of this method
and its development are discussed in detail in Ref. [26].

factorizations, obtaining thereby expressions which can uni-
versally be used at arbitrary x and Q2 in any form of QCD
factorization.

Putting q2 = 0 in Eq. (1), one arrives at the photoproduc-
tion amplitudes Aγ :

Aγ ≡ T |q2=0. (2)

Combining it with Eq. (2) leads to the factorized form of
Aγ q :

Aγ = Aγ q ⊗ �q + Aγ g ⊗ �g. (3)

The Optical theorem relates the amplitude Aγ to the total
cross section of photoproduction. Using the expressions for
Tqg at low Q2 allows us to obtain expressions for the pertur-
bative amplitudes Aγ q , Aγ g first in Collinear and then in the
other forms of QCD factorization.

Our paper is organized as follows: in Sect. 2 we remind
results of Refs. [24,25] for amplitudes Tq,g in Region B in
Collinear factorization and extend Tq,g to Regions A,C,D,
obtaining explicit expressions for Tq,g which can be used
at any x and Q2. Then we briefly discuss the small-x
asymptotics of Tq,g , their applicability region the power Q2-
corrections toTq,g in the low-Q2 regionC. In Sect. 3 we study
amplitudes Tq,g in KT -factorization. This type of factoriza-
tion involves dealing with essentially off-shell external par-
tons, which brings a new technical problem which is absent
in Collinear factorization: there is no universal description
of Tq,g in Region B at at arbitrary virtualities of the exter-
nal partons. We deal with this problem also by constructing
and solving appropriate IREEs. In Sect. 4 we consider the
photoproduction amplitudes in Collinear, KT and basic fac-
torizations. Finally, Sect. 5 is for concluding remarks.
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Fig. 2 Graphs for the
parton–parton amplitudes

(a) (b) (c) (d)
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2 Compton amplitudes in Collinear factorization

Equation (1) for Collinear factorization takes the following
form:

T (col) =
∫ 1

x

dβ

β

[
T (col)
q (x/β, Q2/μ2)�(col)

q (β, μ2)

+T (col)
g (x/β, Q2/μ2)�(col)

g (β, μ2)
]
, (4)

where the superscript “col ′′ refers to Collinear factorization
and β is the longitudinal fraction of momentum k in Fig. 1.
We start with considering amplitudes T (col)

q,g in region B and
then extend these expressions to regions A,C,D.

2.1 Amplitudes T (col)
q.g in region B

Perturbative amplitudes T (col)
q,g in region B were calculated

in Refs. [24,25] in the double-logarithmic approximation
(DLA) and the cases of fixed and running αs were inves-
tigated separately. Amplitudes T (col)

q,g were in Refs. [24,25]
represented as follows:

T (col)
q (x/β, Q2/μ2) =

∫ ı∞

−ı∞
dω

2ıπ
(x/β)−ω ξ(+)(ω)F (col)

q (ω, y),

T (col)
g (x/β, Q2/μ2) =

∫ ı∞

−ı∞
dω

2ıπ
(x/β)−ω ξ(+)(ω)F (col)

g (ω, y),

(5)

with μ being the factorization scale. The logarithmic variable
y in Eq. (5) is related to Q2:

y = ln(Q2/μ2) (6)

and ξ (+)(ω) is the positive signature factor:

ξ (+)(ω) = − (
e−ıπω + 1

)
/2. (7)

The signature factor ξ (+)(ω) guarantees that Tq,g are
invariant with respect to permutation of the incoming and out-
going external photons. The integral representation (5) is the
asymptotic form of the Sommerfeld-Watson transform but it
is frequently addressed as the Mellin transform. Throughout
the paper we will name Tq,g the Mellin amplitudes. Explicit

expressions for the Mellin amplitudes F (col)
q,g in the region B

are:

F (col)
q = C (+)

q e	(+)y + C (−)
q e	(−)y,

F (col)
g = C (+)

g e	(+)y + C (−)
g e	(−)y . (8)

Obtained in Refs. [24,25] expressions for 	(±),C
(±)
q and

C (±)
g can be found in Appendix B where they are expressed

through the on-shell parton–parton amplitudes Arr ′ (r, r ′ =
q, g). Graphs for amplitudes Arr ′ are depicted in Fig. 2.

The Mellin transform for the parton–parton amplitudes is
similar to the one in Eq. (5):

Arr ′(s/μ2) =
∫ ı∞

−ı∞
dω

2ıπ

(
s/μ2

)ω

ξ(+)(ω) frr ′(ω). (9)

Technically, it is more convenient to use the Mellin ampli-
tudes hrr ′ which are proportional to frr ′ :

hrr ′(ω) = frr ′(ω)/(8π2). (10)

Explicit expression for amplitudes hrr ′ can be found in
Appendix A. Let us discuss Eq. (8). It is easy to see that its
structure exhibits a distinct similarity to the structure of the
DGLAP description of F (col)

q,g , which is especially obvious
when the approximation of fixed αs is used:

FDGLAP
q = Ĉ (+)

q eγ DGLAP
(+)

y + Ĉ (−)
q eγ DGLAP

(−)
y
,

FDGLAP
g = Ĉ (+)

g eγ DGLAP
(+)

y + Ĉ (−)
g eγ DGLAP

(−)
y
. (11)

Indeed, the factors 	(±) in the exponents of Eq. (8) are
new anomalous dimensions instead of γ DGLAP

(±) in Eq. (11)

while the factors C (±)
g ,C (±)

q are new coefficient functions

instead of the DGLAP coefficient functions Ĉ (±)
q,g . However in

contrast to DGLAP, the coefficient functions and the anoma-
lous dimensions in (8) are calculated with the same means
and they include the total resummations of the DL contribu-
tions. The both coefficient functions and anomalous dimen-
sions in (8) are made of amplitudes hrr ′ . When the partonic
amplitudes hrr ′ are replaced by their Born values, the inte-
grands in Eq. (5) coincide with the integrands of the LO
DGLAP expressions in which the most singular in ω terms
are retained. Further expansions of hrr ′ and substituting them
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in Eq. (8) lead to the NLO (as well as to NNLO DGLAP, etc),
where the most singular terms only are accounted for in each
order in αs .

2.2 Extending the small-x Eqs. (5, 8) to region A

Expressions in Eqs. (5, 8) are defined in the regionB. Now we
are going to obtain an interpolation formulae for amplitudes
T (col)
q,g , which would reproduce the DGLAP expressions at

large x and at the same time would coincide with Eqs. (5,
8) at small x . Such extension can be obtained with the four
steps:

Step 1: Subtract the most singular in ω terms (i.e. the terms
∼ αs/ω in the case of LO DGLAP; α2

s /ω
3 in

the case of NLO DGLAP, etc.) from the DGLAP
anomalous dimensions γ

(DGLAP)
(±) (ω, αs). We

denote γ̃ DGLAP
(±) the result of such amputation.

Step 2: Add γ̃ DGLAP
(±) to 	(±). The new anomalous dimen-

sions

	̃(±) = 	(±) + γ̃ DGLAP
(±) (12)

contain the total resummations of the double-
logarithmic contributions. They are essential at
small x and unimportant at large x . At the same
time, (12) contains less singular in 1/ωn DGLAP
contributions which are dominant at large x .

Step 3: Subtract the LO DGLAP term = 1 and the most
singular in ω terms (i.e. the term 1 ∼ αs/ω

2 in the
case of NLO DGLAP, α2

s /ω
4 in the case of NNLO

DGLAP, etc.) from the DGLAP expressions for the
coefficient functions. We denote 
Ĉ (±)

q,g the result
of such amputation.

Step 4: Add the results obtained in Step 3 to the DL expres-
sionsC (±)

q,g , arriving thereby at new coefficient func-

tions C̃ (±)
q,g :

C̃ (±)
q,g = C (±)

q,g + 
Ĉ (±)
q,g . (13)

The coefficient functions C̃ (±)
q,g include both DL contribu-

tions and the less singular DGLAP terms. The subtractions
in Steps 1,3 are necessary to avoid the double counting.

Replacing 	(±) and C (±)
q,g in Eq. (5) by 	̃(±) and C̃ (±)

q,g , we

obtain the interpolation expressions T̃ (col)
q,g for the Compton

amplitudes :

T̃ (col)
q (x/β, Q2/μ2) =

∫ ı∞

−ı∞
dω

2ıπ
(x/β)−ω ξ(+)(ω)

[
C̃ (+)
q e	̃(+)y + C̃ (−)

q e	̃(−)y
]
,

T (col)
g (x/β, Q2/μ2) =

∫ ı∞

−ı∞
dω

2ıπ
(x/β)−ω ξ(+)(ω)

[
C̃ (+)
g e	̃(+)y + C̃ (−)

g e	̃(−)y
]
. (14)

Equation (14) combines the small-x evolution in DLA
with the DGLAP results for the coefficient functions and
anomalous dimensions, which are important at large x . These
expressions can universally be used as the interpolation for-
mulae for T (col)

q,g in the region A ⊕ B.

2.3 Extending Eq. (14) to the small-Q2 region C ⊕ D

Extension of the expressions (14) to describe the amplitudes
T̃ (col)
q,g to the region C⊕D is also not rigorous. The standard

approach suggested in Ref. [28] and used since that in many
papers (see e.g. Refs. [29–31]) to describe DIS at low Q2 is
to make a shift of Q2:

Q2 → Q2 + m2, (15)

where the mass scalem was fixed on basis of certain physical
considerations, depending on specific situation. In contrast
to preceding papers, we proved in Ref. [27] (see also the
overview [26]) that the scale m with DL accuracy can be
unambiguously specified: the IR cut-off μ plays the role of
the scale m. Our proof was based on the well-known fact
that DL contributions arise from integrations ∼ dk2

i⊥/k2
i⊥

over the transverse momenta ki⊥ of virtual partons, which
requires introducing an IR cut-off μ. It can be introduced
through the shift k2

i⊥ → k2
i⊥ +μ2, which eventually leads to

the shift (15), with

m = μ. (16)

The proof of (16) in Refs. [26,27] was done in the context
of the spin-dependent structure function g1 but it holds for
amplitudes T̃ (col)

q,g either. Applying the Principle of Minimal
Sensitivity[32–35], we estimated in Refs. [24,25] the value
of μ of Eq. (16):

μ = 2.3�QCD ≈ 1GeV. (17)

So, the universal expression for the Compton amplitudes
T̃ (col)
q,g valid in the regionA⊕B⊕C⊕D (i.e. at arbitrary values

of x and Q2) in the framework of Collinear factorization is

T̃ (col)
q (x/β, Q2/μ2) =

∫ ı∞

−ı∞
dω

2ıπ
(̃x/β)−ω ξ(+)(ω)

[
C̃ (+)
q e	̃(+) ỹ + C̃ (−)

q e	̃(−) ỹ
]
,

T̃ (col)
g (x/β, Q2/μ2) =

∫ ı∞

−ı∞
dω

2ıπ
(̃x/β)−ω ξ(+)(ω)

[
C̃ (+)
g e	̃(+) ỹ + C̃ (−)

g e	̃(−) ỹ
]
, (18)
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where we have denoted

x̃ = x + μ2/w ≡ x + x0, ỹ = ln
(
(Q2 + μ2)/μ2

)
. (19)

2.4 Small-x asymptotics of the Compton amplitudes and
comparison with the DGLAP asymptotics

Asymptotics of T (col)
q,g at x → 0 and Q2 > μ2 were consid-

ered in detail in Refs. [24,25]. In the present paper we briefly
remind results of Refs. [24,25] and compare these asymp-
totics with the asymptotics of the same amplitudes obtained
in the DGLAP approach. The standard mathematical tool to
calculate the small-x asymptotics of T (col)

q,g is Saddle Point

method. Applying this method to T (col)
q,g , we obtain that the

small-x asymptotics of amplitudes T (col)
q,g are of the Regge

type. They both have the same intercepts ω0:

T (col)
q ∼ �q(ω0)

(ln(1/x))3/2 x
−ω0(Q2/μ2)ω0/2,

T (col)
g ∼ �g(ω0)

(ln(1/x))3/2 x
−ω0(Q2/μ2)ω0/2. (20)

The factors �q,g(ω0) in Eq. (20) are called the impact fac-
tors.3 They are the only difference between the asymptotics
of T (col)

q and T (col)
g . The value of the intercept ω0 in Eq. (20)

proved to be dependent on accuracy of the calculations. The
maximal intercept ωDL

H corresponded to the roughest approx-
imation where the quark contributions were neglected and αs

was fixed while the minimal intercept ωDL
S corresponded to

the most accurate calculation where both gluon and quark
contributions were accounted for and αs was running:

ωDL
H = 1.35, ωDL

S = 1.07. (21)

As the both intercepts > 1, the Reggeons of Eq. (20) with
the intercepts (21) are the DL contributions to Pomeron, or
DL Pomerons. In accordance with the conventional Pomeron
terminology we call them hard (with the subscript H) and
soft (with the subscript S) DL Pomerons respectively. It is
interesting fact that ωDL

H is close to the LO BFLK Pomeron
intercept and ωDL

S almost coincides with the NLO BFLK
Pomeron intercept despite that BFKL have nothing in com-
mon with resummation of DL contributions. The asymp-
totics in Eq. (20) are given by much simpler expressions than
the parent amplitudes in Eq. (18). However, the asymptotics
should not be used outside their applicability region. It was
shown in Refs. [24,25] that the asymptotics should be used
at x < xmax and estimates of xmax at various values of Q2

were obtained. In particular, at Q2 = 10 GeV2

xmax = 10−6. (22)

3 Explicit expressions for the impact factors can be found un Refs. [24,
25].

It was shown in Refs. [24,25] that the greater is Q2, the less
is xmax . When x ≥ xmax the parent amplitudes Tq,g should
be used instead of the asymptotics.

2.5 Remark on asymptotic scaling

Equation (20) can be written in such a way:

T (col)
q ∼ �q(ω0)

ln3/2(1/x)

(
ζ/μ2

)ω0/2
,

T (col)
g ∼ �g(ω0)

ln3/2(1/x)

(
ζ/μ2

)ω0/2
, (23)

with

ζ = Q2/x2. (24)

Although both T (col)
q and T (col)

g by definition depend
on two independent variables x and Q2, Eq. (23) mani-
fests that T (col)

q,g ln3/2(1/x) asymptotically depend on the sin-
gle variable ζ only. We name this remarkable property the
Asymptotic Scaling. This property is absent in the DGLAP
approach. Indeed, DGLAP predicts that the x- and Q2-
dependence of T (col)

q,g at x → 0 are unrelated:

T (DGLAP)
q,g ∼ x−a(Q2/μ2)γDGLAP/b, (25)

where γDGLAP is the anomalous dimension and b is the first
coefficient of the β-function. The intercept a has the phe-
nomenological origin: it is generated by the terms x−a in the
fits for the initial parton densities.

2.6 Perturbative power Q2-contributions

We begin studying the power Q2-corrections with consider-
ing T (col)

q at the large-Q2 region, where Q2 � μ2 and where
the logarithmic variable ỹ defined in (19) can be expanded
in the series as follows:

ỹ = y +
∞∑

n=1

cn

(
μ2

Q2

)n

. (26)

Being substituted in Eq. (18), it allows us to write T (col)
q as

T̃ (col)
q (x/β, Q̃2) = T̃ (col)

q (x/β, Q2)

+
(

μ2

Q2

)

C1 +
(

μ2

Q2

)2

C2 + . . . (27)

The first term in the r.h.s. of Eq. (27) describes the Comp-
ton amplitude in the region A ⊗ B. At large x it is given by
the DGLAP formulae whereas the second and third terms can
wrongly be interpreted as contributions of the higher twists,
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probably of the non-perturbative origin though actually they
are altogether perturbative:

C1 = ∂ T̃ (col)
q (x/β, y)

∂y
, C2 = 1

2

∂2T̃ (col)
q (x/β, y)

∂y2 . (28)

This example demonstrates that ignoring the shift (15)
and interpretating all terms inversely proportional to Q2 as
an impact of higher twist could be misleading. On the other,
at Q2 < μ2 the expansion (26) is replaced by another one:

ỹ =
∞∑

n=1

c′
n

(
Q2

μ2

)n

. (29)

It leads to the small-Q2 expression for T̃ (col)
q :

T̃ (col)
q (x/β, Q̃2) =

∞∑

n−1

(
Q2

μ2

)n

C ′
n (30)

which decreases down to zero when Q2 → 0. It explains very
well why the terms ∼ 1/(Q2)n are never seen at small Q2

where, naively, their impact could be great. We remind that
our estimate of μ is μ ≈ 1 GeV (see Eq. (17)). Disappearing
of the terms ∼ 1/(Q2)n at Q2 � 1 GeV obtained from
analysis of experimental data could confirm correctness of
our reasoning.

3 Calculating perturbative Compton amplitudes in KT

factorization

Originally, KT factorization was introduced in Refs. [15–17]
to make possible applying BFKL for description of hadronic
reactions. It implied the kinematic region of very high, or
asymptotic, energies, i.e. at x � 1. However, in the cases
when BFKL is not involved one can use KT factorization
at x ∼ 1 as well. In the present Sect. we generalize DL
expressions for T (col)

q,g to KT factorization. In the framework
of KT factorization Eq. (1) takes the following form:

T (KT ) =
∫ 1

x

dβ

β

∫ w

μ2

dk2⊥
k2⊥

×
[
T (KT )
q (x/β, Q2, k2⊥, μ2)�(KT )

q (β, k2⊥, μ2)

+T (KT )
g (x/β, Q2, k2⊥, μ2)�(KT )

g (β, k2⊥, μ2)
]
, (31)

where the superscript “KT ” refers to KT factorization, μ is
the factorization scale, β is the longitudinal fraction of the
external partons (see Fig. 1) and k2⊥ stands for their trans-

verse momentum. �
(KT )
q,g denote initial parton distributions

and amplitudes T (KT )
q,g are perturbative. The subscripts “q, g′′

refer to quarks and gluons in the same way as in Sect. 2. We

are going to calculate T (KT )
q,g in DLA. DL contributions to

them arrive from the kinematic region

w � Q2, k2⊥ � μ2. (32)

However, amplitudes T (KT )
q,g in DLA cannot be described

by a single universal expression at different virtualities k2⊥ in
(32). There are two regions, where they are given by different
expressions:
Region E: Moderate-virtual k2⊥, where

k2⊥ � μ2/x . (33)

Region F: Deeply-virtual k2⊥, where

k2⊥ � μ2/x . (34)

In order to avoid confusions, we will denote T (E)
q,g and T (F)

q,g

the amplitudes T (KT )
q,g in the regions E and F respectively.

We will use the Mellin transform for T (E,F)
q,g in the follow-

ing form:

T (E)
q,g =

∫ ı∞

−ı∞
dω

2ıπ

(
w/μ2

)ω

ξ(+)(ω)ϕ(E)
q,g(ω, y, z),

T (F)
q,g =

∫ ı∞

−ı∞
dω

2ıπ

(
w/μ2

)ω

ξ(+)(ω)ϕ(F)
q,g(ω, y, z), (35)

where y is given by Eq. (6) and the new variable

z = ln(k2⊥/μ2) (36)

describes dependence of T (KT )
q,g on k⊥ in the kinematics (32).

This dependence differs T (KT )
q,g from amplitudes T (col)

q,g con-
sidered in Sect. 2 in Collinear factorization. In addition to
y and z, it is convenient to introduce one more logarithmic
variable:

ρ = ln(w/μ2). (37)

In terms of the logarithmic variables regions E and F
defined in Eqs. (33, 34) look as follows:

Region E: ρ > y + z,
Region F: ρ < y + z.

3.1 Calculating the off-shell Compton amplitudes in region
E

IREEs for ϕ
(E)
q,g have the following form:

∂ϕ
(E)
q

∂y
+ ∂ϕ

(E)
q

∂z
+ ωϕ(E)

q = F (col)
q (ω, y)Hqq(ω, z)

+F (col)
g (ω, y)Hgq(ω, z),
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∂ϕ
(E)
g

∂y
+ ∂ϕ

(E)
g

∂z
+ ωϕ(E)

g = F (col)
q (ω, y)Hqg(ω, z)

+F (col)
g (ω, y)Hgg(ω, z). (38)

The l.h.s. of IREEs in (38) are obtained with applying the
differential operator

−μ2d/dμ2 = ∂/∂ρ + ∂/∂y + ∂/∂z (39)

to Eq. (35). As a result, the l.h.s.of Eq. (38) contain explicitly
the derivatives over y and z while the factor ω corresponds
to differentiation of the Mellin factor (w/μ2)ω. The convo-
lutions in r.h.s. of (38) are similar in structure to the convolu-
tions in the DGLAP evolution equations. They involve ampli-
tudes F (col)

q which were considered in Sect. 2 and amplitudes
Hrr ′ which are still unknown. We will calculate amplitudes
Hrr ′ in the next Sect. In order to specify general solutions to
Eq. (38), we will use the matching

T (E)
q (w, y, z)|z=0 = T (col)

q (ω, y),

T (E)
g (w, y, z)|z=0 = T (col)

g (ω, y), (40)

with T (col)
q,g defined in Eq. (5). The matching (40) implies the

following hierarchy between y and z:

y > z. (41)

The requirement (41) is temporary. The final expressions
for T (E)

q,g will be written in the form free of this hierarchy.
Solving Eq. (38) goes easier when y and z are replaced by
new variables ξ, η:

ξ = 1

2
(y + z), η = 1

2
(y − z). (42)

Obviously, the inverse transform is

y = ξ + η, z = ξ − η. (43)

In terms of ξ, η Eq. (38) looks simpler:

∂ϕ
(E)
q

∂ξ
+ ωϕ(E)

q = F (col)
q (ω, y)Hqq(ω, z)

+F (col)
g (ω, y)Hgq(ω, z),

∂ϕ
(E)
g

∂ξ
+ ωϕ(E)

g = F (col)
q (ω, y)Hqg(ω, z)

+F (col)
g (ω, y)Hgg(ω, z). (44)

Solution to Eq. (44) is:

ϕ(E)
q = e−ωξ

[
T (col)
q (ω, η)

+
∫ ξ

η

dveωv
(
F (col)
q (ω, y′)Hqq(ω, z′)

+F (col)
g (ω, y′)Hgq(ω, z′)

)]
,

ϕ(E)
g = e−ωξ

[
T (col)
g (ω, η)

+
∫ ξ

η

dveωv
(
F (col)
q (ω, y′)Hqg(ω, z′)

+F (col)
g (ω, y′)Hgg(ω, z′)

)]
, (45)

with the variables y′, z′ defined as follows:

y′ = v + η, z′ = v − η. (46)

In order to lift the relation between y and z of Eq. (41)
we replace η with |η| everywhere save Eq. (46). Doing so
and substituting Eq. (45) in (35), we arrive at expressions for
amplitudes T (E)

q,g in region E:

T (E)
q =

∫ ı∞

−ı∞
dω

2ıπ
ξ(+)(ω)

⎛

⎝ s
√
Q2k2⊥

⎞

⎠

ω

[

T (col)
q (ω, |η|) +

∫ ξ

|η|
dveωv

(
F (col)
q (ω, y′)Hqq(ω, z′)

+F (col)
g (ω, y′)Hgq(ω, z′)

) ]

,

T (E)
g =

∫ ı∞

−ı∞
dω

2ıπ
ξ(+)(ω)

⎛

⎝ s
√
Q2k2⊥

⎞

⎠

ω

×
[

T (col)
g (ω, |η|) +

∫ ξ

|η|
dveωv

(
F (col)
g (ω, y′)Hqg(ω, z′)

+F (col)
g (ω, y′)Hgg(ω, z′)

) ]

. (47)

3.2 Calculating the off-shell Compton amplitudes in region
F

IREEs for T (F)
q,g are very simple:

∂T (F)
q

∂ρ
+ ∂T (F)

q

∂y
+ ∂T (F)

q

∂z
= 0,

∂T (F)
g

∂ρ
+ ∂T (F)

g

∂y
+ ∂T (F)

g

∂z
= 0. (48)

We do not use the Mellin transform for T (F)
q,g and because

of it the l.h.s. of (48) contain derivatives over ρ, y and z.
Integration over momenta of all virtual partons in the deeply-
virtual region F do not bring any dependence4 of T (F)

q,g on μ.
As a result, the r.h.s. of Eq. (48) are zeros. A general solution
to Eq. (48) is

4 A detailed derivation of IREEs in the case of Deeply-Virtual kine-
matics can be found in Ref. [36].
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T (F)
q = �q ((ρ − y), (ρ − z)) ,

T (F)
g = �g ((ρ − y), (ρ − z)) , (49)

with �q and �g being arbitrary functions. In order to specify

them we use the following matching: Amplitudes T (F)
q,g coin-

cide with amplitudes T (E)
q,g on the border surface between

regions E and F, where ρ = y + z:

T (F)
q (y, z) = T̄ (E)

q (y, z), T (F)
g (y, z) = T̄ (E)

g (y, z), (50)

with the new amplitudes T̄ (E)
q,g defined as follows:

T̄ (E)
q (y, z) = T (E)

q (ρ, y, z)|ρ=y+z,

T̄ (E)
g (y, z) = T (E)

g (ρ, y, z)|ρ=y+z . (51)

According to Eq. (49) the expression for T (F)
q , T (F)

g in the

whole region F can be obtained from amplitudes T̄ (E)
q,g by the

simple change of their arguments:

T (F)
q (ρ, y, z) = T̄ (E)

q (ρ − y, ρ − z),

T (F)
g (ρ, y, z) = T̄ (E)

g (ρ − y, ρ − z). (52)

Both ρ − y and ρ − z do not depend on the IR cut-off μ,
so amplitudes T (F)

q,g are IR stable.

3.3 Extension of amplitudes T (E,F)
q,g to the region of small

Q2

Extension of T (E)
q,g to the small-Q2 region can be done with

the shift of Q2 like it was done in Collinear factorization. As
a result, amplitudes T (E)

q,g can be extended to the small-Q2

region with replacement of x, y in Eq. (47) by x̃, ỹ defined in
Eq. (19). A similar extension of T (F)

q,g is impossible because
it would involve partons with virtualities k2⊥ > w which
contradicts to Eq. (32).

3.4 Extension of amplitudes T (E,F)
q,g to basic factorization

It follows from Refs. [18,19] that extension of Compton
amplitudes T (E)

q,g and T (F)
q,p defined in Eqs. (47, 52) to basic

factorization can be done with the very simple replacement:
it is necessary and sufficient to replace k2⊥ by |k2| in Eqs. (47,
52).

3.5 Off-shell parton–parton amplitudes Hrr ′

Expressions for Compton amplitudes T (KT )
q,g in Eqs. (47, 52)

include off-shell Mellin amplitudes Hrr ′ . Below we calculate
them in DLA. They stem from the Mellin transform for off-
shell parton–parton amplitudes Ãrr ′ :

Ãrr ′(w, z) =
∫ ı∞

−ı∞
dω

2π ı
eωρξ (ω) f̃rr ′(ω, z) (53)

and the following definition (cf. (10)):

Hrr ′(ω, z) = 1

8π2 f̃rr ′(ω, z). (54)

Amplitudes Hrr ′(ω, z) can also be found with construct-
ing and solving appropriate IREEs. The IREEs for the off-
shell Hrr ′ are quite similar to Eq. (38):

∂

∂z
Hqq + ωHqq = hqq Hqq + hqgHgq ,

∂

∂z
Hgq + ωHgq = hgq Hqq + hggHgq ,

∂

∂z
Hqg + ωHqg = hqq Hqg + hqgHgg,

∂

∂z
Hgg + ωHgg = hgq Hqg + hggHgg, (55)

where l.h.s. of each equation corresponds to applying oper-
ator −μ2d/dμ2 to Eq. (53) while each r.h.s involves convo-
lutions of Hrr ′ and hrr ′ . Specifying the general solution to
Eq. (55) should be done with using the matching:

Hrr ′ |z=0 = hrr ′ . (56)

Solving (55) and using the matching (56), we obtain the
following expressions for Hrr ′ :

Hqq = e−ωz [
C1e

	(+)z + C2e
	(−)z

]
,

Hgq = e−ωz
[
hqq − 	(+)

hqg
C1e

	(+)z + hqq − 	(−)

hqg
C2e

	(−)z
]

,

Hgg = e−ωz [
C ′

1e
	(+)z + C ′

2e
	(−)z

]
,

Hqg = e−ωz
[
hgg − 	(+)

hgq
C ′

1e
	(+)z + hgg − 	(−)

hgq
C ′

2e
	(−)z

]

.

(57)

Explicit expressions for the terms 	(±) are presented in
Eq. (B1) while C1,2 and C ′

1,2 are defined in Eq. (C1). The
overall factor e−ωz in Eq. (57) converts the IR-dependent
Mellin factor (w/μ2)ω of Eq. (53) in the IR-stable factor(
w/k2⊥

)ω
.

4 Photoproduction amplitudes

It follows from Eqs. (1, 3) that the perturbative components
Aγ q , Aγ g of the photoproduction are related to the perturba-
tive Compton amplitudes Tq,g in a simple manner:

Aγ q = Tq |q2=0, Aγ g = Tg|q2=0. (58)

Equation (58) holds in any form of QCD factorization but
expressions for the photoproduction amplitudes are different
in different forms of factorizations. We start with obtaining
them in Collinear factorization.
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4.1 Photoproduction amplitudes in Collinear kinematics

According to Eq. (58), putting q2 = 0 in Eqs. (5, 8) should
yield A(col)

γ q and A(col)
γ q in DLA. However, such procedure

cannot be done in the straightforward way because the Mellin
amplitudes F (col)

q,g in (8) were obtained in Refs. [24,25] for
Q2 � μ2 only and they cannot be used at Q2 < μ2. In order
to describe A(col)

q,g at low Q2, including Q2 = 0, we use the
prescription in the Sect. 2 and replace x, y in Eqs. (5, 8) by
x̃, ỹ defined in Eq. (19). Then, putting Q2 = 0 in x̃, ỹ, we
obtain

x̃ |q2=0 ≡ x0 = μ2/w, ỹ|q2=0 ≡ y0 = 0. (59)

Replacement of x̃, ỹ by x0, y0 in Eqs. (5, 8) allows us
to obtain photoproduction amplitudes in DLA in Collinear
factorization: combining Eqs. (5, 8) and (59), we obtain:

A(col)
γ q = aγ q

∫ ı∞

−ı∞
dω

2ıπ
(x0/β)−ω ξ(+)(ω) f (col)

γ q (ω),

A(col)
γ g = aγ q

∫ ı∞

−ı∞
dω

2ıπ
(x0/β)ω ξ (+)(ω) f (col)

γ g (ω), (60)

with

f (col)
γ q = aγ q

(ω − hgg)

G(ω)
,

f (col)
γ g = aγ q

hqg
G(ω)

, (61)

where aγ q is the averaged photon–quark coupling aγ q =
ē2
q , x0 = μ2/w and

G = (ω − hqq)(ω − hgg) − hgghqg. (62)

Accounting for non-DL radiative correction in A(col)
γ q ,

A(col)
γ g can be done by the same way as it was done in Sect. 2.2

for the Compton amplitudes.

4.2 Photoproduction amplitudes in KT -factorization

DL contributions to the perturbative photoproduction ampli-
tudes A(KT )

γ q (s, k2⊥) and A(KT )
γ g (s, k2⊥) come from the region

w � k2⊥. (63)

We will use the Mellin transform for A(KT )
γ q and A(KT )

γ g in
the following form:

A(KT )
γ q =

∫ ı∞

−ı∞
dω

2ıπ

(
w/μ2

)ω

ξ(+)(ω)F (KT )
γ q (ω, z),

A(KT )
γ g =

∫ ı∞

−ı∞
dω

2ıπ

(
w/μ2

)ω

ξ(+)(ω)F (KT )
γ g (ω, z). (64)

IREE for the Mellin amplitudes Fγ q(ω, z), Fγ g(ω, z) are
similar to Eq. (55):

∂

∂z
F (KT )

γ q (ω, z) + ωF (KT )
γ q (ω, z) = f (col)

γ q (ω)Hqq(ω, z)

+ f (col)
γ g (ω)Hgq(ω, z),

∂

∂z
F (KT )

γ g (ω, z) + ωF (KT )
γ g (ω, z) = f (col)

γ q (ω)Hqg(ω, z)

+ f (col)
γ g (ω)Hgg(ω, z). (65)

Expressions for on-shell amplitudes f (col)
γ q and f (col)

γ g in
the r.h.s. of Eq. (65) are given by Eq. (61) while new off-
shell parton–parton amplitudes Hrr ′(ω, z) are unknown and
should be specified. The general solution to Eq. (65) should
be specified by the matching:

A(KT )
γ q (w, z)|z=0 = A(col)

γ q (w). (66)

Solving Eq. (65) and using the matching of Eq. (64) yields
expressions for A(KT )

γ q and A(KT )
γ g :

A(KT )
γ q =

∫ ı∞

−ı∞
dω

2ıπ

(
w/k2⊥

)ω

ξ(+)(ω)

[

f (col)
γ q

(

1 +
∫ z

0
dueωu Hqq(ω, z′)

)

+ f (col)
γ g

∫ z

0
dueωu Hgq(ω, z′)

]

,

A(KT )
γ g =

∫ ı∞

−ı∞
dω

2ıπ

(
w/k2⊥

)ω

ξ(+)(ω)

[

f (col)
γ q

∫ z

0
dueωu Hqg(ω, z′)

+ f (col)
γ g

(

1 +
∫ z

0
dueωu Hgg(ω, z′)

)]

. (67)

We remind that expressions for amplitudes f (col)
γ q and

f (col)
γ g can are obtained in Eq. (61) while Hrr ′ are defined

in Eq. (57). To conclude this Sect. we notice that non-DL
corrections can be incorporated in Eqs. (60, 67) absolutely
similarly to the prescription of Sect. 2.2. Transition from KT

factorization to Basic one is done with replacement of k2⊥ by
|k2|.

5 Conclusion

In this paper we have studied first the perturbative amplitudes
Tq,g of elastic Compton scattering off quarks and gluons and
then perturbative components Aγ q , Aγ g of the photoproduc-
tion amplitudes. Tq,g were calculated in Refs. [24,25] in DLA
at small x and large photon virtualities Q2 (i.e. in kinematic
region B) in the framework of Collinear factorization . We
converted these results in expressions which can be used at
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arbitrary x and Q2 in Collinear, KT and basic factorizations.
Extension to Region A was done with combining the total
resummation of DL contributions and DGLAP description of
Tq,g . By doing so we obtained in Eq. (14) the interpolation
expressions reproducing Tq,g in DLA at small x and coin-
ciding with the DGLAP description of Tq,g when x are not
small. Using the shift of Eq. (15), we extended description
Tq,g to small Q2. As a result, we arrived at Eq. (18) to the
expressions for Tq,g in Collinear factorization, which can be
used at arbitrary x and Q2.

In contrast to Collinear factorization, Tq,g are the essen-
tially off-shell in KT factorization and they cannot be
described in DLA by a single expression valid at arbitrary
values of virtualities k2⊥ of the external partons. It made us
consider separately regions of moderate (Eq. (33)) and deep
(Eq. 34) virtualities and obtain expressions Eqs. (47) and (52)
for Tq,g in those regions. We obtained them by constructing
appropriate IREEs and solving them.

After transition from Region B to the to low Q2 Region
C has been studied, we became able to obtain explicit
expressions (60) and (67) for the photoproduction amplitudes
Aγ q , Aγ g in Collinear and KT factorizations respectively.

Small-x asymptotics of amplitudes Tq,g are of the Regge
type with the same intercept in any form of QCD factor-
ization. Because of it we considered such asymptotics in
Collinear factorization (see Eq. (20)) and discussed depen-
dence of its intercept on accuracy of the calculations: the
higher is the accuracy, the lesser is the intercept. In other
words, the hard Pomeron becomes the soft one, when the
accuracy grows. We think that further increasing the accuracy
can lead to vanishing supercritical Pomeron(s) and restora-
tion of the Unitarity.

The next interesting point is that when Tq,g are calculated
in DLA, their asymptotics depends on the single variable
ζ = Q2/x2 as shown in Eq. (23). Neither DGLAP nor BFKL
cause such dependence.

It is important to use the Regge asymptotics within their
applicability region, i.e. at x < xmax , with xmax given by
Eq. (22). When x > xmax the asymptotic is considerably less
than the parent amplitudes, so such amplitudes should be used
instead of the asymptotics. Ignoring this point leads to various
misconceptions: for instance, appearance of artificial/model
(hard) Pomerons and spin-dependent Pomerons.

To conclude, let us notice that DL Pomeron can play an
important role for description of various hadronic reactions
where Pomerons are used and the diffractive DIS in the first
place, see e.g. [37].
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Appendix A: Expressions for the parton–parton ampli-
tudes

hqq = 1

2

[
ω − Z − bgg − bqq

Z

]
, hqg = bqg

Z
,

hgg = 1

2

[
ω − Z + bgg − bqq

Z

]
, hgq = bgq

Z
, (A1)

where

Z = 1√
2

√
Y + W , (A2)

with

Y = ω2 − 2(bqq + bgg) (A3)

and

W =
√

(ω2 − 2(bqq + bgg))2 − 4(bqq − bgg)2−16bgqbqg.

(A4)

Equations (A1, A3, A4) express hrr ′ through terms brr ′ .
The terms brr ′ include the Born factors arr ′ and contributions
of non-ladder graphs Vrr ′ :

brr ′ = arr ′ + Vrr ′ . (A5)

The Born factors are (see Ref. [26] for detail):

aqq = A(ω)CF

2π
, aqg = A′(ω)CF

π
, agq

= − A′(ω)n f

2π
. agg = 2N A(ω)

π
, (A6)

where A and A′ stand for the running QCD couplings:

A = 1

b

[
η

η2 + π2 −
∫ ∞

0

dze−ωz

(z + η)2 + π2

]

,

A′ = 1

b

[
1

η
−

∫ ∞

0

dze−ωz

(z + η)2

]

, (A7)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2020) 80 :98 Page 11 of 11 98

with η = ln
(
μ2/�2

QCD

)
and b being the first coefficient

of the Gell–Mann–Low function. When the running effects
for the QCD coupling are neglected, A(ω) and A′(ω) are
replaced by αs . The terms Vrr ′ are represented in a similar
albeit more involved way (see Ref. [26] for detail):

Vrr ′ = mrr ′

π2 D(ω) , (A8)

with

mqq = CF

2N
, mgg = −2N 2 , mgq = n f

N

2
,

mqg = −NCF , (A9)

and

D(ω) = 1

2b2

∫ ∞

0
dze−ωz ln

(
(z + η)/η

)

[ z + η

(z + η)2 + π2 − 1

z + η

]
. (A10)

Appendix B: Explicit expressions for ingredients of
Eq. (8)

The factors C (±)
q,g and 	(±) of Eq. (5 were obtained in

Refs. [24,25]. We list them below. All of them are expressed
though the parton–parton amplitudes hrr ′ of Appendix A.
The factors 	(±) are:

	(±) = 1

2

[
hgg + hqq ± √

R
]

(B1)

and

R = (hgg + hqq)
2 − 4(hqqhgg − hqghgq)

= (hgg − hqq)
2 + 4hqghgq . (B2)

The factors C(±) are also expressed through the parton–
parton amplitudes:

C (+)
q = aγ q

hqghgq − (ω − hgg)
(
hgg − hqq − √

R
)

2G
√
R

,

C (−)
q = aγ q

−hqghgq + (ω − hgg)
(
hgg − hqq + √

R
)

2G
√
R

.

(B3)

C (+)
g = C (+)

q
hgg − hqq + √

R

2hqg
,

C (−)
g = C (−)

q
hgg − hqq − √

R

2hqg
. (B4)

APPENDIX C: Expressions for the factors C1,2 and C ′
1,2

of Eq. (57)

The terms

C1 = 2hqghgq − h2
qq + hqqhgg + hqq

√
R

2
√
R

,

C2 = h2
qq − hqqhgg − 2hqghgq + hqq

√
R

2
√
R

,

C ′
1 = 2hqghgq − h2

gg + hqqhgg + hgg
√
R

2
√
R

,

C ′
2 = h2

gg − hqqhgg − 2hqghgq + hgg
√
R

2
√
R

, (C1)

where R is given by Eq. (B2).
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