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Abstract In this paper, we apply the classical test of general
relativity on a charged Weyl black hole, the exterior geometry
of which is defined by altering the spherically symmetric
solutions of the Weyl conformal theory of gravity. The tests
are basically founded on scrutinizing the angular geodesics
of light rays propagating in the gravitating system caused
by the black hole. In this investigation, we bring detailed
discussions about the bending of light, together with two
other relativistic effects, known as the Shapiro and the Sagnac
effects. We show that the results are in good conformity with
the general relativistic effects, in addition to giving long-
distance corrections caused by the cosmological nature of
the background geometry under study.

1 Introduction

Ever since the late 1990’s, the dark matter/dark energy sce-
nario has undergone vigorous efforts to be decoded. The
observation of the flat galactic rotation curves [1], the unex-
pected gravitational lensing [2], and the anti-lensing [3]
effects are all related to impacts of an unknown source of
mass around the galaxies, the so-called dark matter halo.
This is much more complicated when a highly functioning
energy source, dark energy, is assumed to be causing the
universe’s global geometry to expand rapidly [4–6]. These
scenarios taken together constitute the most mysterious prob-
lems of contemporary cosmology and astrophysics. On the
other hand, some believe that these scenarios stem from our
lack of knowledge about the behavior of the gravitational
field, as a glue to attach each segment of the universe. This
opinion has led to a huge number of proposals for extended
theories of gravity, mostly including alternatives to Einstein’s
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general relativity. These vary from the most natural ones,
i.e., the f (R) theories, to more complicated ones like scalar-
tensor, vector-tensor and (non)metric-theories.

In recent decades, these proposed gravitational theories
have been applied to cosmological models (see Ref. [7] for
a review), avoiding the need to include dark matter and dark
energy. In the late 1980’s, providing a spherically symmetric
vacuum solution to the field equations of the fourth order
Weyl conformal gravity (WCG), which had been introduced
by Weyl [8] and had been revived by Riegert [9], Mannheim
and Kazanas showed that the controversial problem of flat
galactic rotation curves could be explained by relating it to
a specific term included in their solution [10]. Their solu-
tion could also regenerate the usual Schwarzschild–de Sitter
spacetime. This theory is a natural extension of general rela-
tivity and proposed as an alternative to the dark matter/dark
energy scenario [11]. Since then, it has been studied from
several points of view [12–28]. This theory was also consid-
ered a possibility for understanding the quantum cosmology
related to the fluctuations of the early universe [29–37].

Although it may or may not be the proper alternative the-
ory to general relativity, the Weyl theory of gravity exhibits
interesting properties. Most importantly, because of its con-
formal invariance, it has more conformity with the quantum
association of the gravitational field, namely, the graviton.

In this paper, this theory is taken into account while a
particular choice for an analytic solution of the extra dark
matter-related term in the solution is considered. This choice,
obtained in Ref. [38], is based on confronting the Mannheim
and Kazanas solution with that of the exterior geometry of
a charged static spherically symmetric source. In the current
investigation, the aforementioned charged source in Weyl
gravity constitutes a charged Weyl back hole. We aim at
inspecting the behavior of mass-less particles (light beams)
that travel on this source. Historically, the inspection of light
rays in the gravitational field generated by massive objects
formed the foundations of the classical tests of general rela-
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tivity. Three of these tests are chosen in this paper to be per-
formed on a charged Weyl black hole. The applied method
is based on the inspection of the effective potential, inferred
from the metric parameters of the exterior geometry and the
relevant types of motion are plotted and discussed. This pro-
cedure mostly highlights the bending of light and the resul-
tant gravitational lensing around the black hole. Moreover,
regarding the relativistic nature of the discussion, the so-
called Shapiro delay and the Sagnac effect for light rays in
this geometric background are also discussed.

The work is organized as follows: In Sect. 2, we examine
the calculation of the effective potential and the equations
of motion for mass-less particles. In Sect. 3 we calculate the
resulting proper and coordinate time for radially in-falling
null geodesics. This is followed by the discrimination of dif-
ferent types of angular motions, developed in terms of their
impact parameter relevant to the possible turning points for
deflecting trajectories in Sect. 4. The fundamental deflection
discussed here is then related to the bending of light in Sect. 5
and the lens equation is derived. Although light deflection is a
rather fundamental concept in relativistic effects, the impor-
tance of such derivation is the extension of the deflection
distance to the cosmological horizon by the appearance of
one extra term in addition to the usual general relativistic
term. This focus becomes even more intense by discussing
the Shapiro delay in Sect. 6 for a light ray passing a charged
Weyl black hole. The results demonstrate the long distance
effects which are peculiar to the Weyl black hole. Long dis-
tance effects do appear as well for counter-propagating beams
in a constant radial distance to the black hole. To highlight
this, as the third test, in Sect. 7 we continue with calculat-
ing the gravito-magnetic vector potential which generates a
phase shift between the beams emitted and absorbed inside
a confined rotating apparatus. This shift has a discernible
relevancy with the Sagnac and the optical Aharonov–Bohm
effects. The results show that the Sagnac time difference is
larger for propagation around a Weyl black hole than for a
Reissner–Nordström black hole. We summarize in Sect. 8.

2 The background

2.1 Weyl gravity

The Weyl theory of gravity is a theory of fourth order in the
metric and is given by the action

IW = −K
∫

d4x
√−g CμνρλC

μνρλ, (1)

where g = det(gμν),

Cμνλρ = Rμνλρ − 1

2

(
gμλRνρ − gμρRνλ − gνλRμρ + gνρRμλ

)

+ R

6

(
gμλgνρ − gμρgνλ

)
(2)

is the Weyl conformal tensor and K is a coupling constant.
The conformal invariance of the Weyl tensor causes IW
to remain unchanged under the conformal transformation
gμν(x) = e2α(x)gμν(x), in which the exponential coefficient
indicates local spacetime stretching. The action in Eq. (1)
can be rewritten as

IW= −K
∫

d4x
√−g

(
RμνρλRμνρλ−2RμνRμν + 1

3
R2

)
.

(3)

Since the Gauss-Bonnet term
√−g (RμνρλRμνρλ − 4Rμν

Rμν + R2) is a total divergence, it does not contribute to the
equation of motion. We can therefore simplify the action as
[10,39]

IW = −2K
∫

d4x
√−g

(
Rαβ Rαβ − 1

3
R2

)
. (4)

Applying the principle of least action in the form δ IW
δgαβ

= 0,
leads to the Bach equation Wαβ = 0, in which the Bach
tensor is defined as

Wαβ = ∇σ ∇αRβσ + ∇σ ∇β Rασ − �Rαβ − gαβ∇σ ∇γ R
σγ

−2Rσβ R
σ

α + 1

2
gαβ Rσγ R

σγ − 1

3

(
2∇α∇β R − 2gαβ�R

−2RRαβ + 1

2
gαβ R

2
)
. (5)

The general spherically symmetric solution to the Bach equa-
tion has been obtained and discussed in Ref. [10], where
Mannheim and Kazanas, in addition to recovering all spheri-
cally symmetric solutions to Einstein field equations, includ-
ing the Schwarzschild and Schwarzschild–(Anti-)de Sitter
solutions, proposed the possibility of explaining the flat
galactic rotation curves, which is claimed to be a significant
feature of the dark matter scenario.

The spherically symmetric vacuum solution to the confor-
mal Weyl gravity which, in the usual Schwarzschild coordi-
nates defined in the range −∞ < t < ∞, r ≥ 0, 0 ≤ θ ≤ π

and 0 ≤ φ ≤ 2π , is given by the metric [10]

ds2 = −B(r) dt2 + dr2

B(r)
+ r2(dθ2 + sin2 θ dφ2), (6)

where the lapse function B(r) is defined as

B(r) = 1 − ξ(2 − 3 ξ γ )

r
− 3 ξ γ + γ r − κr2, (7)

including ξ , γ and κ as the three-dimensional integration
constants. In the absence of γ , the above solution therefore
contains the familiar Schwarzschild–de Sitter solution and at
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distances much smaller than 1/γ , it recovers general relativ-
ity. In the presence of a charged static source, the Reissner–
Nordström solution to the theory has been obtained by means
of the non-vacuum equation

Wαβ = 1

4K Tαβ, (8)

in which Tαβ is the energy-momentum tensor relevant to the
vector potential

Aα =
(q
r
, 0, 0, 0

)
, (9)

whereq is the source’s electric charge [40]. In the same paper,
authors have also dealt with the Kerr and the Kerr–Newman
solutions to this fourth order theory of gravity. These charged
solutions have been also discussed in Ref. [41].

2.2 The black hole solution

The black hole solution studied in the current paper, is indeed
constructed on a weak–field method, provided in Ref. [38].
There, the authors use the Poisson equation for deviations
on the background spacetime. By solving Eq. (8) for the
electromagnetic source characterized by Eq. (9) on the weak
field limit, they obtain a solution of the form [38]

B(r) = 1 − r2

λ2 − Q2

4r2 , (10)

in which

1

λ2 = 3 m̃

r̃3 + 2 c1

3
, Q = √

2 q̃, (11)

where m̃ and q̃ are the mass and the charge distributed in
the spherical system, respectively, and r̃ is its known radius.
If the condition Q < λ is satisfied, this spacetime allows
for two horizons; the event horizon r+ and the cosmological
horizon r++, located at

r+ = λ√
2

√√√√
1 −

√
1 −

(
Q

λ

)2

, (12)

r++ = λ√
2

√√√√
1 +

√
1 −

(
Q

λ

)2

. (13)

Obviously, the extremal black hole is obtained when λ = Q,
possessing a unique horizon at rex = r+ = r++ = λ/

√
2,

whereas the naked singularity appears when λ < Q.
It is worth making some clarifications regarding the rel-

evance of the solution given in Eq. (10) and the well-
known static solutions of general relativity. In the absence
of electric charge, when the vacuum case in considered,

the known radius r̃ changes to the free radial distance r .
Then, by substituting 3m̃ → 2M and c1 → 0 we re-obtain
the Schwarzschild spacetime, whereas the Schwarzschild–
(Anti-)de Sitter spacetime is regained by letting 2c1 → ±Λ

(with Λ as the cosmological constant). The corresponding
horizons can be then regenerated by solving B(r) = 0. The
relation to the Reissner–Nordström–(Anti-)de Sitter space-
time, however, requires the imaginary transformation Q →
2 i Q0, in which Q0 is supposed to be the total charge of a
spherical massive source. Based on the above types of trans-
formation, it is apparent that the transition from the charged
black hole given in Ref. [38] to the known spherically sym-
metric spacetimes offered by general relativity, is not triv-
ial. This stems from the mathematical method applied in the
derivation of the charged Weyl black hole solution. Let us
now continue our discussion on the in-falling geodesics on
this black hole.

The null geodesic structure of this background can be
determined using the standard Lagrangian procedure [42–
44], where the (null) Lagrangian associated with the metric
(6) reads as

2L = −B(r) ṫ2 + ṙ2

B(r)
+ r2(θ̇2 + sin2 θφ̇2) ≡ 0. (14)

Here, the dot denotes a derivative with respect to the affine
parameter τ along the geodesics. The equations of motion
are then given by

Π̇� − ∂L
∂�

= 0, (15)

where Π� = ∂L/∂ �̇ are the conjugate momenta associated
with the generalized coordinates �. Clearly, this Lagrangian
does not depend on the variables (t, φ) as these are cyclic
coordinates. Their conserved conjugate momenta in the
invariant plane θ = π/2 are

Πφ = r2φ̇ = L , and Πt = −B(r) ṫ = −E, (16)

where L is the angular momentum (in the units of mass), and
E is an integration constants which cannot be considered as
the energy because the spacetime is not assymptotically flat.
Furthermore, these two constants of motion allow us to define
an impact parameter in terms of the relation b ≡ L

E . Thus,
the equations of motion are resumed by the following set of
differential equations:

(
dr

dτ

)2

= E2 − V (r), (17)

(
dr

dt

)2

= B2(r)

(
1 − V (r)

E2

)
, (18)
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Fig. 1 Plot of the effective potential V (r) versus the radial coordinate
r , for fixed parameter L = 10−1, λ = 2 × 10−1 and Q = 10−1 (in
arbitrary units)

(
dr

dφ

)2

= r4

b2

(
1 − V (r)

E2

)
, (19)

where V (r) corresponds to the conformal effective potential
defined by

V (r) = L2 B(r)

r2 , (20)

which is depicted in Fig. 1. This essentially shows same fea-
tures as that of the de Sitter spacetime in the sense of the
existence of two horizons, r+ and r++, in this spacetime. We
will discuss this potential in more detail in Sect. 4. In the next
section, we begin with scrutinizing the in-falling light beams
by letting them be completely radial.

3 Null radial geodesics

Photons with zero impact parameter perform a radial motion
either towards the event horizon or the cosmological horizon.
In this case clearly, the effective potential vanishes, such that
Eqs. (17) and (18) become

dr

dτ
= ±E, and

dr

dt
= ±B(r). (21)

Note that, the sign + (−) corresponds to photons falling onto
the cosmological (event) horizon. Choosing the initial condi-
tion r = ri when t = τ = 0 for the photons, a straightforward
integration of the first in Eq. (21) yields

τ(r) = ±r − ri
E

, (22)

which in the proper frame of the photons, indicates that they
arrive at the event (cosmological) horizon within a finite

Fig. 2 Temporal behavior for radial null geodesics on the background
of a charged Weyl black holes. In the proper system, photons can cross
the horizons in a finite time [in accordance with Eq. (22)], whereas
regarding Eq. (23), an observer at ri measures an infinite time for r →
r+ or r → r++. The same behavior is seen in the study of photon
motion in static spherically symmetric spacetimes in the context of
general relativity

proper time. On the other hand, an integration of the sec-
ond relation in Eq. (21) leads to

t (r) = ± [
t+(r) + t++(r)

]
, (23)

where

t+(r) = λ2r+
2(r2++ − r2+)

ln

∣∣∣∣ r − r+
ri − r+

ri + r+
r + r+

∣∣∣∣ (24)

and

t++(r) = λ2r++
2(r2++ − r2+)

ln

∣∣∣∣r++ − ri
r++ − r

r++ + r

r++ + ri

∣∣∣∣ . (25)

Note from Eqs. (24) and (25) that the coordinate time in
Eq. (23) diverges for r → r+ or r → r++. Thus, an observer
at r = ri essentially notes the same behavior for photons
crossing either of the horizons in a similar manner as in the
spherically symmetric spacetimes in the context of general
relativity [42,43]. The same holds for uncharged Weyl black
holes [25] (see Fig. 2). Horizon-crossing, however, can be
done in more complex ways once the angular momentum
plays its role. This is addressed in the next section.

4 Angular null geodesics

The angular motion of mass-less particles, whose constants
of motion are different from zero is well described by the
effective potential (20). As can be seen in Fig. 1, the effective
potential possesses a maximum at rc = Q/

√
2, which is

independent ofλ. Accordingly, the critical value of the impact
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parameter is given by

bc = λ Q√
λ2 − Q2

. (26)

Comparing the impact parameter of the test particles to this
value, we can obtain qualitative descriptions of the angular
motions for photons allowed in the exterior spacetime of a
charged Weyl black hole. In what follows, we bring detailed
discussions about each of these possibilities:

1. Critical trajectories If b = bc, an unstable circular orbit
of radius rc is allowed as a subset of the null geodesics
family. The proper period in such an orbit is

Tτ = π
Q2

L
, (27)

which is independent of λ. The coordinate period, how-
ever, depends on both λ and Q in the form

Tt = 2π bc = 2π
λ Q√

λ2 − Q2
. (28)

Thus, photons coming from the initial distance ri ,
approach asymptotically to the circular orbit at rc, accord-
ing to the appropriate form of Eq. (19), i.e.,

dr

dφ
= ± 1√

2

(r + rc) |r − rc|
rc

. (29)

For those photons coming from outside of rc (rc < ri <

r++), equation (29) can be recast as

dr

dφ
= ±r2 − r2

c√
2 rc

, (30)

which explains the critical trajectories of the first kind,
while the relation

dr

dφ
= ±r2

c − r2

√
2 rc

, (31)

describes those of the second kind for photons initiating
their motion from inside of rc (r+ < ri < rc). Solutions
to these equations can be obtained by direct integration,
giving

r(φ) = rc coth

(
φ√
2

)
, (32)

for the first, and

r(φ) = rc tanh

(
φ√
2

)
, (33)

Fig. 3 Critical trajectories of photons with b = bc. Orbits of the first
and the second kinds are allowed for test particles that approach by
spiraling to the unstable circular orbit at r = rc

for the second kind. In Fig. 3, the critical trajectories (32)
and (33) have been plotted.

2. Deflection zone Light deflection in Weyl gravity, in the
context of the Mannheim–Kazanas solution, has been dis-
cussed in Refs. [19,45,46]. Here, address the same prob-
lem, for the charged Weyl black hole under study. When
photons attain the impact parameter bc < b < ∞, they
are deflected due to the effective potential barrier. Thus,
and as in the previous case, they encounter orbits of the
first and second kind (OFK and OSK). Photons coming
from a finite distance ri (r+ < ri < rc or rc < ri < r++)
to the distance r = r f or r = rd (which are obtained from
the relation V (r f ) = V (rd) = E2) are then pulled back
to either of the two horizons and are in fact deflected.
Calculating the turning points, r f and rd , we obtain

r f = β√
2

√√√√
1 −

√
1 −

(
Q

β

)2

, (34)

rd = β√
2

√√√√
1 +

√
1 −

(
Q

β

)2

, (35)

where β is the anomalous impact parameter given by

β = λ b√
λ2 + b2

. (36)

Note that in the limit b → ∞, the anomalous impact
parameter becomes β = λ and we obtain the identities
r f (b = ∞) = r+ and rd(b = ∞) = r++ (see Eqs.
(12), (34) and Eqs. (13), (35)). The equations of motion
are once again obtained by integrating the general radial
relation in Eq. (19) for both kinds of orbits. To do this, we
perform the change of variable r = β

√
u + 1/3, which
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generates the equation

± du

dφ
=

√
4u3 − g2u − g3. (37)

This leads to the integrals

φ =
∫ u

ud

du′√
4u′3 − g2u′ − g3

(with ud < u), (38a)

φ =
∫ u f

u

du′√
4u′3 − g2u′ − g3

(with u f > u), (38b)

for OFK and OSK, respectively. The above integrals yield

r(φ) = β

√
1

3
+ ℘(ωd − φ) (39)

for OFK, and

r(φ) = β

√
1

3
+ ℘(ω f + φ), (40)

for OSK, in which ℘(x) ≡ ℘(x; g2, g3) is the ℘-
Weierstraß function, whose Weierstraß invariants are
given by

g2 = 4

3
− Q2

β2 , (41)

g3 = 8

27
− Q2

3β2 . (42)

Furthermore, the phase parameters are given by

ωd = ß

(
r2
d

β2 − 1

3

)
, (43)

ω f = ß

(
r2
f

β2 − 1

3

)
, (44)

where ß(x) ≡ ß(x; g2, g3) is the inverse ℘-Weierstraß
function. The qualitative behavior of OFK and OSK is
shown in Fig. 4. We should note here that the signature
of the above coefficients affects the polynomial on the
right hand side of Eq. (37). Letting βc = β|b=bc we get
βc = Q and based on Eq. (41) we have:

• For g2 > 0 we have β̄2 < β < βc,
• For g3 > 0 we have β > β̄3 > βc, in which β̄2 =

3βc

2
√

3
=

√
2
3 β̄3.

Since we are interested in the region inside the effec-
tive potential, we disregard the first case above. We can

(a)

(b)

Fig. 4 The deflecting trajectories governed by equations of motion
given in Eqs. (39) and (40). The plots demonstrate a OFK and b OSK.
As we can see, the hyperbolic form of OFK allows incoming trajectories
to enter the cosmological horizon before their escape to infinity. On the
other hand, those that follow OSK, will rapidly enter the event horizon
and fall onto the singularity

therefore categorize the following conditions on the coef-
ficients:
Condition 1: for β > β̄3 we have g2 > 0 and g3 > 0.
Condition 2: for βc < β < β̄3 we have g2 > 0 and
|g3| > 0.
It is worth mentioning that, as appears in the decreasing
segment of Fig. 1, the effective potential can change its
type of curvature in an inflection point. This appears at

the point r0, for which V ′′(r0) = 0, giving r0 = ±
√

5
6 Q,

where

V0 ≡ V (r0) = L2
(

21

25Q2 − 1

λ2

)
. (45)
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Moreover, applying the definition in Eq. (36) to the turn-
ing points (where V (r) = E2), we get

1

β2 = 1

r2
t

(
1 − 2β̄2

3

9r2
t

)
, (46)

where rt indicates the turning points, implying that the
above relation is valid only on the curve given by the
effective potential. From Eq. (46) we infer that

β0 = 10
√

2

3
√

21
β̄3, (47)

in which β0 ≡ β|r=r0 . This provides β0 ≈ 1.03 β̄3.
Therefore, the effective potential’s value corresponding
to β̄3 is larger than V0. However, regarding the small
difference between β̄3 and β0, geodesics following the
OFK described by Eq. (40) are more likely to fall to bound
orbits, as the potential changes from being concave to
being convex at r0.

3. Capture zone Particles with the impact parameter 0 <

b = ba < bc will experience an inevitable in-fall onto
black hole horizons. Obviously, the above depends on
the initial conditions, specifically on the direction of the
velocity at the moment of starting the description of
the trajectory. In both cases, the cross-section is given
by [47]

σ = π b2
c = πλ2Q2

λ2 − Q2 . (48)

In a similar way as discussed before, we integrate Eq.
(19) to obtain the equation of motion, which reads

r(φ) = β

√
1

3
+ ℘(ωa + φ), (49)

whereωa = ß(
r2
a

β2 − 1
3 ) is the phase parameter correspond-

ing to the point of approach ra . Note that, depending on
the impact parameter, capturing can happen in different
ways. As we can see in Fig. 5, for b < bc, the trajectories
coming from infinity are captured directly on the event
horizon. This is while those with b = bc follow a spiral-
formed trajectory toward the horizon.

Now that the angular motions have been discussed, we
can make use of them to relate the features of a charged
Weyl black hole to the classical test of general relativity.
We start from gravitational lensing.

(a)

(b)

Fig. 5 The capturing process for particles possessing b ≤ bc. The
figures indicate approaching particles with a b < bc and b b = bc

5 Bending of light and the lens equation

Regarding the deflection of light in the OFK, gravitational
lenses can form. Gravitational lensing of spherically sym-
metric black holes has been widely studied in the literature.
See the famous paper in Ref. [48] for the Schwarzschild black
holes and Ref. [49] for more general cases where theoretical
aspects of this phenomenon have been developed to com-
pare the predicted higher order images with those of real-
istic observations. In particular, for charged black holes in
the context of Reissner–Nordström geometry, this effect has
been applied in Ref. [50] to study the intrinsic characteristics
of the background spacetime. The reader is encouraged to
see Ref. [51] and references therein to obtain greater insight
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Fig. 6 A schematic illustration of the lensing phenomena. The shortest
distance rd to the lens L , has been taken to be the turning point in the
OFK, lying on the φ = 0 line. The source and the observer are located
at S(rs , φs , b) and O(ro, φo, b)

into the various types of lensing and their applications in
astrophysics and cosmology.

Now let us construct the geometry of the problem and
apply it to the spacetime under study. Consider the diagram
in Fig. 6. The source and the observer, characterized by
their position, angle and the impact parameter of the light
passing them, are respectively located at S(rs, φs, b) and
O(ro,−φo, b). The shortest distance rd to the lens is the
turning point given in Eq. (35) and r = rd indicates φ = 0.
Regarding the figure, we can infer that:

ϑ = φs − ψs + |φo| − |ψo|, (50)

and ϑ + α̂ = π relates the deflection angle α̂ to the position
angles φo and φs . It is straightforward to calculate:

ψs = α̂ − arcsin

(
b

rs

)
, (51)

|ψo| = α̂ − arcsin

(
b

ro

)
. (52)

Fig. 7 Scheme for the gravitational time delay effect. A light signal is
emitted from P1 at r1 to P2 at r2 and returns to P1. Here, ρ0 is the closet
approach to the Sun, and t12 is the time interval between emission and
return of the pulse as measured by a clock on Earth

Once again, applying appropriately Eqs. (19) and (37), we
obtain the angles φs and φo and therefore the lens equation
is obtained as:

α̂ = arcsin

(
b

ro rs

[√
r2
o − b2 +

√
r2
s − b2

])
+ 2ωd

−
[

ß

(
r2
s

β2 − 1

3

)
+

∣∣∣∣ß
(
r2
o

β2 − 1

3

)∣∣∣∣
]

− π, (53)

where ωd is the same as that in Eq. (43). The above relation,
gives the lens equation for light rays passing a charged Weyl
black hole. During the lensing process, as light deflects from
the black hole, it experiences a temporal dilation. This causes
another important effect which is discussed as the second test
in the next section.

6 Gravitational time delay

One interesting relativistic effect associated with the propa-
gation of photons, is the apparent delay in the time of propa-
gation for a light signal passing the Sun’s proximity. Known
as the Shapiro time delay [52], this effect is a relevant correc-
tion for astronomical observations. The time delay of radar
echoes corresponds to the determination of the time delay of
radar signals which are transmitted from the Earth through
a region near the Sun to another planet or to a spacecraft,
and are then reflected back to Earth (see Fig. 7). The time
interval between emission and return of a pulse as measured
by a clock on Earth is given by

t12 = 2 [t (r1, ρ0) + t (r2, ρ0)], (54)

where ρ0 corresponds to the closest proximity to the Sun.
Returning to Eq. (18):

ṙ = ṫ
dr

dt
= E

B(r)

dr

dt
=

√
E2 − L2

r2 B(r) . (55)
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Taking into account the fact that at ρ0 the radial velocity
dr/dt vanishes, the following relation is obtained:

L2

E2 ≡ b2 = ρ2
0

B(ρ0)
. (56)

Now, using Eq. (56) in Eq. (55), the coordinate time which
the light requires to go from ρ0 to r is

t (r, ρ0) =
∫ r

ρ0

dr

B(r)

√
1 − ρ2

0
B(ρ0)

B(r)
r2

. (57)

So, in the first order of corrections, we get

t (r, ρ0) ≈
√
r2 − ρ2

0 + tQ + tλ, (58)

where

tQ = 3 Q2

2 ρ0
sec−1

(
r

ρ0

)
, (59a)

tλ = 1

3λ2

√
r2 − ρ2

0

[
r2 + ρ2

0

2

]
. (59b)

In the non-relativistic context, light travels in Euclidean space
and we can calculate the time interval between emission and
reception of the pulse as

t E12 = 2

(√
r2

1 − ρ2
0 +

√
r2

2 − ρ2
0

)
. (60)

Therefore, the expected relativistic time dilation in the jour-
ney 1 −→ 2 −→ 1 can be defined as:

Δt := t12 − t E12 , (61)

which, by exploiting Eqs. (54) and (58) to (60), yields

Δt = ΔtQ + Δtλ , (62)

where

ΔtQ = 3 Q2

ρ0

[
sec−1

(
r1

ρ0

)
+ sec−1

(
r2

ρ0

)]
, (63a)

Δtλ = 2

3λ2

[√
r2

1 − ρ2
0

(
r2

1 + ρ2
0

2

)

+
√
r2

2 − ρ2
0

(
r2

2 + ρ2
0

2

)]
. (63b)

For a round trip in the solar system, we have (ρ0 << r1, r2)

Δt� ≈ 3 Q2

ρ0

[
sec−1

(
r1

ρ0

)
+ sec−1

(
r2

ρ0

)]

+ 2

3λ2

(
r3

1 + r3
2

)
. (64)

The above time dilation depends separately on terms rele-
vant to the electric charge and the cosmological constant.
However, the closest approach (ρ0) only contributes to the
charge-relevant terms, confirming that the electric charge has
only short-distance effects, whereas the cosmological term
is effective in long distance.

The time delay in propagating beams is a completely rel-
ativistic effect. In the next section and as the third test, we
discuss another specific experiment, relevant to this effect.

7 The Sagnac effect

The Sagnac effect [53] is one of the most fascinating classi-
cal tests to prove the geometrical nature of gravitation. The
study of this phenomena is favored because it can be treated
as a formal analogy of the Aharonov–Bohm effect [54–58],
in the sense that the standard dynamics which raise the nat-
ural splitting developed by Cattaneo [59–64], is described in
terms of analogue gravito-electromagnetic potentials. Thus,
the dynamics of test particles (massive or mass-less), relative
to a given time-like congruence Γ of the rotating frame of
an ideal interferometer, can be written in terms of gravito-
electromagnetic fields. Therefore, in a rotating frame fixed
to the rotating interferometer, the contravariant and covari-
ant components of the unit tangent vector γ to the time-like
congruence Γ are given by

γ t = 1/
√−gtt , γ i = 0,

γt = −√−gtt , γi = gitγ
t , (65)

where the index i indicates the spatial coordinates. Here
gμν corresponds to the metric components of the (pseudo–
)Riemannian manifold M in the rotating frame. In this way,
the gravito-electromagnetic potentials are defined by [65]

ΦG = −c2γ t , (66)

and

AG
i = c2 γi

γt
, (67)

which make it possible to calculate the gravito-magnetic
Aharonov–Bohm time difference between the
counter-propagating matter or light beams detected by a
comoving observer, by means of the relation
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Δτ = 2γt

c3

∫
C
AG · d� = 2γt

c3

∫
S
BG · da. (68)

In what follows, we calculate the Sagnac effect using the
above expression for the exterior spacetime of a charged
Weyl black hole, considering counter-propagating beams on
an equatorial plane (θ = π/2) along fixed circular trajecto-
ries (r = R).

In order to apply this formalism, let us rewrite the metric
(6) by retrieving c in the non-rotating coordinates xα′ =
(ct ′, r ′, θ ′, φ′):

ds2 = −
(

1 − r ′2

λ2 − Q2

4r ′2

)
c2dt ′2 + dr ′2

1 − r ′2
λ2 − Q2

4r ′2

+r ′2(dθ ′2 + sin2 θ ′ dφ′2). (69)

The transformation to the local frame of the rotating inter-
ferometer (described in xα = (ct, r, θ, φ)) is written as
xα = eα

α′xα′
, in which

eα
α′ ≡ ∂xα

∂xα′ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−Ω 0 0 1

⎞
⎟⎟⎠ (70)

is the frame transformation Jacobian, and Ω represents the
constant angular velocity of the physical system. Thus, we
get

ct = ct ′, r = r ′, θ = θ ′, φ = φ′ − Ωt ′. (71)

Applying this, and letting r = R and θ = π/2, the line
element (69) can be recast in xα as

ds2 = −
(

1 − R2

λ2 − Q2

4R2 − R2Ω2

c2

)
c2dt2 + (72)

− 2ΩR2dφdt + R2dφ2. (73)

Therefore, the components of the vector field γ (x), in the
rotating frame, are given by

γ t = γJ , γt = −γ −1
J , γφ = Ω

ΩR
R γJ , (74)

with

γJ = ΩR√
Ω2

0 − Ω2
, (75)

where Ω0 is given by

Ω0 ≡
√

Ω2
R − Ω2

λ − Ω2
Q, (76)

and

Fig. 8 Time difference Δτ between the counter-propagating beams
detected by a comoving observer as a function of the angular velocity
Ω , for various separation distances between the source and an ideal
rotating interferometer. The plots are for R1 = 7 × 107, R2 = 3 × 107

and R3 = 2 × 107 considering λ = 2 × 1010 and Q = 2 × 107 (all
values are in arbitrary length units)

ΩR ≡ c

R
, Ωλ ≡ c

λ
, ΩQ ≡ c Q

2R2 . (77)

So, using the above results in Eq. (67), we obtain that the
only non-zero component of the gravito-magnetic potential
is AG

φ = −cΩR2γ 2
J , and the proper time delay between the

counter-propagating beams relative to a comoving observer
on the rotating frame is given by

Δτ = 4π

ΩR

Ω√
Ω2

0 − Ω2
. (78)

The variations of this time difference in terms of Ω have
been compared for three different constant spatial separations
between the source and the interferometer in Fig. 8. As we can
see, the most intense increase in Δτ can happen for smaller Ω

for larger separations. Hence, the same time difference values
can be measured in slower rotating interferometers at larger
distances from the black hole, as in those with faster rotation
at shorter distances. Note that, since Δτ must be positive, an
interferometer at a specific distance from the black hole can
possess only a definite range of Ω to work properly. This
kind of confinement for the same range of separations and
angular velocities used in Fig. 8 has been demonstrated in
Fig. 9.

Essentially, the functional relationship between Δτ and
Ω is the same as that found by Hu et al. in Ref. [66]. How-
ever, there is a natural shift in the value of the constant Ω0

compared to the Reissner–Nordström (RN) case. Clearly, this
difference comes from the positivity of the term associated
with the electric charge (given by substituting ΩRN → iΩ0),
and also the specific relations to R, as the radius of the circu-
lar orbits of counter-propagating beams (see Eq. (19) in Ref.
[66]). One important implication of Eq. (78) is that, putting
aside the Schwarzschild and the electric-charge-associated
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Fig. 9 Region plot for the condition Δτ > 0 for the separation dis-
tances between the source and the interferometer, R and the angular
velocity of the comoving observer, Ω , for λ = 2×1010 and Q = 2×107

(all values are in arbitrary length units)

terms which are common between the RN and the Weyl black
holes, the cosmological contribution included in Ω2

λ results in
larger values of Δτ compared to the RN case. This indicates
that, unlike the RN case, the Weyl black hole can provide
means of measuring the Sagnac effect at large distances.

8 Summary and outlook

The geodesic behavior of mass-less particles (light rays) were
studied in the exterior geometry of a charged Weyl black
hole. The corresponding metric potential contained both an
electric charge and cosmological-associated terms. The lat-
ter comes into effect particularly in the description of the
classical tests done on the black hole. The method was based
on analyzing the effective potential in the geodesic equa-
tions, in terms of variations in the impact parameter. The
impact parameter plays a crucial role in the determination of
the form of in-falling geodesics. This concept was used to
distinguish different types of critical, deflected and captured
trajectories for photons approaching the black hole’s hori-
zons. We showed that the angular equations of motion can
be given a well-defined solution based on the ℘-Weierstraß
functions, which are defined in terms of specific invariants.
This helped us to obtain reasonable forms of path equations
for deflecting trajectories. The first kind of deflecting trajec-
tories in particular, was used further to develop the lensing
process in the background geometry under consideration and
the lens equation was obtained. Deflecting trajectories were

used further to calculate the delay in time for the echo of
a light beam passing the black hole. This effect, known as
the Shapiro delay, was shown to have long distance effects
for the Weyl black hole, according to the cosmological term
included in the metric potential. As the final test, we calcu-
lated the gravito-magnetic Aharonov–Bohm time difference
between the counter-propagating light beams on the black
hole’s geometry. The results indicated that despite the sim-
ilarity to the Reissner–Nordström case, the charged Weyl
black hole can make this time difference appear for beams
propagating at long distances from the black hole. These long
distance effects stem in the extra terms from the cosmologi-
cal nature of the background spacetime. Based on the results
obtained in this investigation, we can infer that a charged
Weyl black hole can emulate the features of classical gen-
eral relativistic black holes, given that the former can present
more profound corrections to the classical tests of general rel-
ativity, in an apparent relevance with the dark energy related
terms in the theory. For this reason, it seems worthy to delve
more deeply into the properties of such black holes, because
in addition to the reasonable agreement with the classical
expectations, they may help us to find out more about the dark
energy/dark matter effects on light propagation in strongly
gravitating systems.
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