
Eur. Phys. J. C (2020) 80:71
https://doi.org/10.1140/epjc/s10052-020-7615-5

Regular Article - Theoretical Physics

Cosmological and thermodynamics analysis in Weyl gravity

Abdul Jawada, Zoya Khanb, Shamaila Ranic

Department of Mathematics, COMSATS University Islamabad, Lahore-Campus, Lahore 54000, Pakistan

Received: 31 August 2019 / Accepted: 3 January 2020 / Published online: 30 January 2020
© The Author(s) 2020

Abstract In the framework of modified Weyl gravity,
we observe the equilibrium picture of the thermodynami-
cal laws for flat Friedmann–Robertson–Walker metric with
chameleon scalar field and analyze the validity of the gener-
alized second law of thermodynamics and thermal equilib-
rium condition for Hubble horizon along with Bekenstien–
Hawking entropy. Also, we examine the effective equation
of state parameter as well as the square speed of sound. By
assuming four different choices of deceleration parameter,
we investigate the behavior of equation of state parameter as
well as the square speed of sound. The validity of general-
ized second law of thermodynamics and thermal equilibrium
condition is also checked by taking the observational values
of the model parameters from CC+Ho dataset.

1 Introduction

In cosmology, current experimental information appear to
show the recent cosmic expansion of the universe. On a
broad range, physical cosmology covers the investigation of
the description of the universe. From the different recog-
nize cosmological evidence the current cosmic acceleration
of the universe disclosed [1–7], which is measured by cer-
tain analyses [8–12]. In the present age current perceptions
fully recommend that the cosmic acceleration is experienc-
ing by the universe [13,14]. The force is generally indicated
as dark energy (DE), which is responsible for a develop-
ment in a specific phase of the universe. To coordinate with
later examined data different DE models have been proposed
and in this arrangement the most least complex model is the
�CDM (Cold dark matter) model, which is in great concur-
rence with the ongoing observational information. In gen-
eral relativity (GR), this model is obtained by presenting the
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cosmological constant �, for which equation of state (EoS)
parameter is w� = −1 [15,16].

To illustrate the entire development history of the uni-
verse, a cosmological model needs both an accelerated and a
decelerated phase, for this the deceleration parameter plays a
vital part [3,17–21]. A valuable tool against a progressively
development history of the universe is the parametrization
of the deceleration parameter q. Up until now a few well-
known parameterizations for the deceleration parameter have
been introduced [22–24]. Mamon and Das [25] presented a
logarithmic parameterization of the deceleration parameter
in the spatially flat FRW metric. They used type Ia super-
novae, cosmic microwave background and baryon acous-
tic oscillation dataset and also they reconstructed the EoS,
deceleration parameter and the jerk parameter compared with
reconstructed models of parameterized deceleration param-
eter with other known parameterizations of q. Mamon [26]
introduced a generalized parametrization of q to studied the
development history of the universe. They used the recent
measurement of the Hubble parameter found from the type
Ia supernovae and cosmic chronometer model data. Further-
more, the parametric approach likewise improves productiv-
ity of the future cosmological overviews. To determine the
transition from decelerating phase to an accelerating phase
it is reasonable to follow a parametric approach. Inspired by
these facts, we have picked a special type of deceleration
parameter so that the parameterized deceleration parameter
q(z) will give the ideal property for sign flip from a deceler-
ating phase to an accelerating phase.

For the expansion of the universe many theories have rep-
resented models, however none of them was totally fruitful.
GR was not conformally invariant theory [27], therefore, as
an alternative theory of GR modified conformal gravity was
proposed [28,29]. Under the scale transformation the confor-
mal Weyl gravity is the primary gravitational theory which is
constant. Hermann Weyl [30,31] introduced conformal grav-
ity or Weyl gravity, for cosmology conformal gravity is also
of concern. Tanhayi et al. [32] shown that the estimated value
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of cosmological constant and Hubble parameter are close to
their measured values. They studied the dependence of Hub-
ble parameter and cosmological constant in Weyl gravity,
as a function of t and r. Ghanaatian et al. [33] considered
the modified gravity coupled by Weyl tensor in spatially
flat Friedmann–Lemaître–Robertson–Walker (FLRW) met-
ric, they described the cosmic expansion of the universe also
they checked stability conditions of models. Varieschi and
Ault [34] analyzed the classic wormhole geometries in con-
formal Weyl gravity. They described the main energy condi-
tion as well as distinct wormhole solutions.

It is generally trusted that, investigations of the associ-
ations among thermodynamics and gravity theories would
gives us some understanding into the genuine idea of grav-
ity. For this reason generally many models have been exam-
ined, specifically gravity theories for example braneworld
[35–37], Lovelock and Gauss–Bonnet gravity [38,39], f (R)

[40–44] models. Geng et al. [45] verified the generalized first
and second law of thermodynamics with the disformal trans-
formation of the f (R) gravity in the FLRW metric. They
studied the equilibrium as well as non-equilibrium picture
of the generalized second law of thermodynamics (GSLT).
Zubair et al. [46] examined the first law of thermodynam-
ics (FLT) and GSLT at apparent horizon in FRW universe
in f (R, Rαβ Rαβ, φ) gravity, where R is the Ricci invari-
ant, Rαβ Rαβ is the Ricci tensor and φ is the scalar field
respectively. They presented the equilibrium as well as non-
equilibrium picture of GSLT and to observed the validity of
GSLT they choose some specific models.

This paper is structure as follows. In Sect. 2 we discuss
the model of the Weyl gravity and construct the cosmological
parameters and define the four different models of Hubble
parameter. In Sect. 3 we examine the equilibrium picture
of thermodynamics and analyze the GSLT. In Sect. 4 we
define the observational values from the dataset and observe
the behavior of cosmological parameters, validity of GSLT
as well as thermal equilibrium condition and in Sect. 5 we
conclude our result.

2 Basics of Weyl gravity

The action [47] for Weyl gravity is given as

S = −
∫ √−gd4x

[
CμνρλCμνρλ

k

+gμν∂μφ∂νφ

2
− V (φ) − f (φ)Lm

]
, (1)

whereLm is the matter Lagrangian density,V (φ) is the poten-
tial term dependent on chameleon scalar field φ, f (φ) is
an analytical function which is the modification of matter

Lagrangian density and Cμνρλ is the Weyl tensor, which is
given as

Cμνρλ = Rμνλρ − 1

2

(
gμλRνρ − gμρRνλ − gνλRμρ + gνρRμλ

)

+ R

6

(
gμλgνρ − gμρgνλ

)
. (2)

Putting the Weyl tensor in Eq. (1), we get

S = −
∫ √−gd4x

[
1

k

(
RμνρλRμνρλ − 2RμνRμν + R2

3

)

+gμν∂μφ∂νφ

2
− V (φ) − f (φ)Lm

]
, (3)

the term
√−g(RμνρλRμνρλ−4Rμν+R2) is a Gauss–Bonnet

term and during the integration of Eq. (3) it disappears. The
term RμνρλRμνρλ can be written as R2 and RμνRμν. Then
the action is given as

S = −
∫ √−gd4x

[
2

k

(
RμνR

μν − R2

3

)

+gμν∂μφ∂νφ

2
− V (φ) − f (φ)Lm

]
. (4)

By solving the Eq. (4) about the metric gμν, the field equation
[48,49] is define as

f T (m)
μν + T (φ)

μν = 4Wμν

k
, (5)

where T (φ)
μν is the energy-momentum tensor and T (m)

μν is the
energy-momentum tensor in the form of perfect fluid of the
non-relativistic matter and

Wμν = −gμν�R

2
− �Rμν + ∇ρ∇μR

ρ
ν

+∇ρ∇νR
ρ
μ − 2Rρ

μRνρ

+gμνRρλRρλ

2
− 2∇μ∇νR

3
+ 2gμν�R

3

+2RRμν

3
− gμνR2

6
, (6)

T (φ)
μν = ∂μφ∂νφ − gμν

(
gαβ∂αφ∂βφ

2
− V (φ)

)
, (7)

T (m)
μν = gμνLm − 2
Lm


gμν
, (8)

and f = f (φ) and Rμν is the Ricci tensor.
Now, the flat FRW metric is given by

ds2 = dt2 − a(t)2
[
dr2 + r2(dθ2 + sin θ2dϕ2)

]
, (9)

from Eq. (9) the standard modified FRW equations defined
as

3H2 = ρe f f ,

Ḣ = −1

2
(ρe f f + pef f ), (10)
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where H ≡ ȧ
a is the expansion rate with respect to the cosmic

time, ρe f f and pef f are effective energy density and pressure
of the system, here ρe f f and pef f are

ρe f f = ρR + ρm f,

pef f = pR + γρm f, (11)

where γ = pm
ρm

and

ρR = V (φ) + φ̇2

2
+ 3H2

k
− 48H Ḧ

k
,

pR = V (φ) − φ̇2

2
− 3H2

k
− 2Ḣ

k
− 72

k

(
5H4 + 26Ḣ H2

3

+4H Ḧ

3
+ Ḣ2

)
. (12)

The energy conservation equations are given as

ρ̇m + 3Hρm(1 + γ ) = −ρm ḟ

f
, (13)

ρ̇R + 3HρR(1 + w) = 0. (14)

From action (4) the wave equation of motion for chameleon
scalar field is obtained as

φ̈ + 3H φ̇ + Vφ + γρm fφ = 0, (15)

where subscript φ denotes the derivative with respect to scalar
field. Now from (13), we find

ρm = A

a3(1+γ ) f
, (16)

where A is the constant term. By using Eqs. (11) and (12)
the effective EoS is define as

we f f = pef f
ρe f f

= Aγ a−3(1+γ ) + V (φ) − φ̇2

2 − 3H2 − 2Ḣ − 72(H4 + 26Ḣ H2

3 + 4H Ḧ
3 + Ḣ2)

Aa−3(1+γ ) + V (φ) + φ̇2

2 + 3H2 − 48H Ḧ
, (17)

from the parameter of EoS we classify the acceleration and
deceleration aspects of the universe. By taking the time
derivative of Eq. (11) the square speed of sound is given
as

v2
s =

dpef f
dt

dρe f f
dt

, (18)

where

dpef f
dt

= −3AHγ (1 + γ )a−3(1+γ ) + Vφφ̇ − φ̇φ̈

−6H Ḣ − 2Ḧ − 72

[
4Ḣ H3

+26

3
[2Ḣ2H + Ḧ H2] + 4

3
[Ḣ Ḧ + ...

HH ] + 2Ḣ Ḧ

]
,

dρe f f
dt

= −3AHγ (1 + γ )a−3(1+γ ) + Vφφ̇ + φ̇φ̈

+6H Ḣ − 48[H ...
H + Ḣ Ḧ ], (19)

the square speed of sound tell us about the stability of DE
models, the model is stable if v2

s > 0 otherwise it is unstable.
The deceleration parameter is define as

q(z) = −1 − Ḣ

H2 = −1 + (H ′(z))2(1 + z)

2H2(z)
. (20)

To representing the nature of the universe expansion rate
parametrization of the q (deceleration parameter) plays a
vital role. For this we choose four different models of param-
eterized deceleration parameter and find Hubble parameter
in terms of redshift.

Model 1:

The parametrization of this model [25] is given as

q(z) = q0 + q1

(
ln(N + z)

1 + z
− ln N

)
. N > 1 (21)

We deal with two parameters q0, q1 with their convenient
physical analysis, by using the observational data we can
efficiently constrain them, so the Eq. (eq21) can clarify the
current universe evolution more accurately [25]. By compar-
ing the Eqs. (20) and (21), the Hubble parameter is given
by

H(z) = H0N
Nq1−1+N (N + z)−

(N+z)q1
(1+z)(−1+N ) (1 + z)(1+q0+ q1−1+N −q1 ln N ),

(22)

where q0, q1, N are model parameters and H0 is the current
value of Hubble parameter, which is describe as H0 = 67.

Model 2:

The linear parametrization of the deceleration parameter is
given by [3]

q(z) = q0 + q1z. (23)

The above linear deceleration parameter (which is linear in
z (cosmic redshift) and a (scale factor)) utilized to examine
the kinematics of the universe [50]. By taking Eqs. (20) and
(23) the Hubble parameter is derived as

H(z) = H0e
q1z(1 + z)(1+q0−q1). (24)
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Model 3:

Next parametrization of the q is of following the form [21,
51–55]

q(z) = q0 + q1z

1 + z
. (25)

The motivation of this parametric structure for decelera-
tion parameter q(z) comes from one of the most prominent
parametrization of the dark energy EoS [56,57] and despite
extremely basic, is by all accounts adaptable enough to mimic
the q(z) behavior of immense class of acceleration models
[58].

The expression of H(z) is evolve for this model as

H(z) = H0e
− q1z

1+z (1 + z)(1+q0+q1). (26)

Model 4:

Now we have q(z) for flat �CDM model [25] which is obtain
as

q(z) = −1 + 3

2

[
1 + ��0

�m0
(1 + z)−3

] , (27)

where �m0 + ��0 = 1. We use this model to observe the
decelerated and accelerated phase of the universe for the best
fit values from the observational data. And we chose �m0 =
0.375 for flat universe. For this model Hubble parameter is
define as

H(z) = H0

[
�m0(1 + z)3 + (1 − �m0)

] 1
2

. (28)

3 Thermodynamics laws in equilibrium
characterization

In this section, we analyze the FLT in modified Weyl gravity
at Hubble horizon for flat FRW universe. From the condition
hμν∂μRA∂νRA = 0 [59–61], Hubble horizon is given as

RA = 1

H
.

By taking the time derivative of Hubble horizon, we have

dRA = HR3
A

2
(ρe f f + pef f )dt, (29)

the general Bekenstein–Hawking entropy is defined as S =
A

4G , where A = 4πr2 is the area of the horizon [62,63].
Utilizing the entropy, Eq. (29) becomes

G

2πRA
dS = HR3

A

2
(ρe f f + pef f )dt. (30)

The horizon temperature [64] is described as

Th = |ksg|
2π

, ksg = 1

2
√−h

∂μ(
√−hhμν∂νRA)

= − 1

RA
(1 − ṘA

2HRA
) = − RA

2
(2H2+Ḣ).

(31)

Multiplying Th = − 1
2πRA

(1 − ṘA
2HRA

) on both sides of
Eq. (30), we can get

ThdS = [4πHR3
Adt − 2πR2

AdRA](ρe f f + pef f ). (32)

The Misner-sharp energy is given as E = RA
4G , the energy

density in terms of the volume represent as V = 4πR3
A

3 , which
is interpret as

Ẽ = 3H2

8πG
V ≡ ρe f f V . (33)

Taking the differential of Eq. (33), we easily find

d Ẽ = −4πHR3
A(ρe f f + pef f )dt + 4πR2

Aρe f f d RA. (34)

Combining the Eqs. (32) and (34), we can acquire

ThdS = −d Ẽ + 2πR2
A(ρe f f − pef f )dRA. (35)

The work density is described as

W̃ = −1

2
(T (M)μνhμν + T̃ (de)μνhμν) = 1

2
(ρe f f − pef f ),

(36)

using the work density in Eq. (35), we get

ThdS = −d Ẽ + W̃dV . (37)

3.1 Generalized second law of thermodynamics

To describe the equilibrium picture of the GSLT [46], we
can write the Gibbs equation in terms of the density and total
pressure which is define as

TdSi = d(ρe f f V ) + pef f dV, (38)

by taking the time derivative of Eqs. (37) and (38) it leads to

Ṡ + Ṡi = −48π2 Ḣ2

RH3 (ρe f f + pef f ), (39)

where R = 6(Ḣ + 2H2), Ṡ and Ṡi represents the horizon
entropy and the sum of all entropy components inside the
horizon. The condition which satisfy the entropy relation is
define as

Ṡtot = Ṡ + Ṡi ≥ 0. (40)
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From Eq. (39), we can easily get

Ṡtot = 12π Ḣ2

GRH3 ≥ 0. (41)

4 Power-law correction

By the power-law correction we choose φ = φoan and
V (φ) = φ p. By putting the power-law terms the EoS param-
eter, reads

we f f =
[
Aγ a−3(1+γ ) + (φoa

n)p − (nȧan−1φ)2

2
− 3H2

−2Ḣ − 72

(
H4 + 26Ḣ H2

3
+ 4H Ḧ

3

+Ḣ2
)][

Aa−3(1+γ ) + (φoa
n)p + (nȧan−1φ)2

2

+3H2 − 48H Ḧ

]−1

. (42)

Inserting the power-law terms in Eq. (18) becomes

v2
s =

[
− 3Hγ A(1 + γ )a−3(1+γ )

+p(φoa
n)p−1(nȧan−1φ)2 − n2(n − 1)a2n−3ȧ3φ2

o

−n2a2n−2ȧäφ2
o − 6H Ḣ − 2Ḧ

−72

(
20Ḣ H3 + 26

3

(
2H Ḣ2 + Ḧ H2

)

+4

3

(
H

...
H + Ḧ Ḣ

)
+ 2Ḣ Ḧ

)]

∗
[

− 3H Aγ (1 + γ )a−3(1+γ ) + p(φoa
n)p−1

∗(nȧan−1φ)2 − n2(n − 1)a2n−3ȧ3φ2
o

−n2a2n−2ȧäφ2
o − 6H Ḣ

−48

(
H

...
H + Ḣ Ḧ

)]−1

. (43)

From the power-law terms Eq. (39) can be written as

Ṡ + Ṡi = −48π2 Ḣ2

RH3

[(
Aa−3(1+γ ) + (φoa

n)p

+ (nȧan−1φ)2

2
+ 3H2

−48H Ḧ

)
+

(
Aγ a−3(1+γ ) + (φoa

n)p

− (nȧan−1φ)2

2
− 3H2 − 2Ḣ

−72

(
H4 + 26Ḣ H2

3
+ 4H Ḧ

3
+ Ḣ2

))]
. (44)

Now, by using four different models of Hubble parameter we
observe the validity of GSLT and thermal equilibrium condi-

Table 1 For qo, q1 the best fit values from CC+Ho dataset

qo q1 In 1σ C.L. constraints on qo, q1

−0.39 0.40 −0.56 ≤ q0 ≤ −0.20, 0.39 ≤ q1 ≤ 1.74

−0.41 0.54 −0.60 ≤ q0 ≤ −0.21, 0.18 ≤ q1 ≤ 0.86

−0.48 0.70 −0.70 ≤ q0 ≤ −0.24, 0.24 ≤ q1 ≤ 1.08

0.2 0.1 0.0 0.1 0.2

1.000

0.998

0.996

0.994

0.992

0.990

z

q1 0.70, q0 0.48

q1 0.54, q0 0.41

q1 0.40, q0 0.39

Fig. 1 Plot of we f f versus z at Hubble horizon with Bekenstein entropy

tion. We also check the stability of the system and decelerated
phase of EoS parameter. For this purpose, we consider the
observational values of q0, q1 and H0.

5 Observational results

In this section, we express the current Observational dataset
and explain the results. We use the observational values from
cosmic chronometer (CC) dataset and local value of the Hub-
ble parameter [26]. To measure the Hubble parameter in
terms of redshift CC was first established by Jimenez and
Loeb [65]. By using CC+H0 dataset for all models, graphi-
cally we observe the stability of GSLT, thermal equilibrium
condition, EoS and square speed of sound. The observational
values of the model parameter (qo, q1) from CC+Ho dataset
is given in Table 1.

5.1 Model 1

We plot graphs for model 1 at Hubble horizon with
Bekenstein-Hawking entropy for the best fit values of q0, q1

from the CC+Ho dataset by taking the values of parameter
A = 1.5, φ = 6000, γ = −0.3, p = 0.1, n = 3, N = 2
and the observational value of Hubble constant is Ho = 67.

Figure 1 demonstrate that with the observational values
of qo, q1 and Ho the trajectories of Eos parameter remains
in quintessence region at early as well as present epoch and
it leads to vacuum DE region at later epoch. In Fig. 2 with
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0.10 0.05 0.00 0.05 0.10

1.0005

1.0010

1.0015

1.0020

1.0025

1.0030

z

v s
2

q1 0.70, q0 0.48

q1 0.54, q0 0.41

q1 0.40, q0 0.39

Fig. 2 Plot of v2
s versus z at Hubble horizon with Bekenstein entropy

0.6 0.4 0.2 0.0 0.2 0.4

1.0 107

5.0 106

0

5.0 106

1.0 107

1.5 107

z

S'
to
t

q1 0.70, q0 0.48

q1 0.54, q0 0.41

q1 0.40, q0 0.39

Fig. 3 Plot of S′
tot versus z at Hubble horizon with Bekenstein entropy

0.5 0.0 0.5

1.4 108

1.2 108

1.0 108

8.0 107

6.0 107

4.0 107

2.0 107

0

z

S'
' to
t

q1 0.70, q0 0.48

q1 0.54, q0 0.41

q1 0.40, q0 0.39

Fig. 4 Plot of S′′
tot versus z at Hubble horizon with Bekenstein entropy

the same observational values of qo, q1 and Ho trajectories
remains in positive direction at early, present and later epoch
which confirms the stability condition i.e. v2

s ≥ 0.

The trajectories in Fig. 3 remains in positive direction at
early and present epoch and for z ≥ −0.6 increasing towards
positive direction at later epoch which shows that GSLT is
valid at early as well as present epoch and at later epoch
GSLT only valid for z ≥ −0.6. Figure 4 confirms that the

0.1 0.0 0.1 0.2 0.3 0.4 0.5

1.00

0.98

0.96

0.94

0.92

0.90

z

q1 0.70, q0 0.48

q1 0.54, q0 0.41

q1 0.40, q0 0.39

Fig. 5 Plot of we f f versus z at Hubble horizon with Bekenstein entropy

0.10 0.05 0.00 0.05 0.10
0.9975

0.9980

0.9985

0.9990

0.9995

z

v s
2

q1 0.70, q0 0.48

q1 0.54, q0 0.41

q1 0.40, q0 0.39

Fig. 6 Plot of v2
s versus z at Hubble horizon with Bekenstein entropy

thermal equilibrium condition satisfies at early, present as
well as later epoch.

5.2 Model 2

By taking the same values of all parameters we plot the
graphs and observe the stability of EoS, square speed of
sound, GSLT and thermal condition for the best fit values
from CC+Ho dataset..

At early as well as present epoch the Eos parameter
remains in the quintessence region with the observational
values of qo, q1 and Ho and at later epoch it meet the vac-
uum DE region in Fig. 5. All trajectories in Fig. 6 increasing
towards positive direction which shows the stability for the
model 1 at Hubble horizon for the best fit values from obser-
vational dataset.

The validity of GSLT confirms in the left side figure for all
the observational values as all trajectories gradually decreas-
ing in positive direction at early, present as well as later epoch
Fig. 7. The thermal equilibrium condition Fig. 8 cannot sat-
isfies at early as well as present epoch but at later epoch blue
trajectory fulfills the thermal condition at z ≥ −0.01, red
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0.2 0.0 0.2 0.4 0.6
0

2 107

4 107

6 107

8 107

z

S'
to
t

q1 0.70, q0 0.48

q1 0.54, q0 0.41

q1 0.40, q0 0.39

Fig. 7 Plot of S′
tot versus z at Hubble horizon with Bekenstein entropy

0.5 0.0 0.5

6 106

4 106

2 106

0

2 106

4 106

z

S'
' to
t

q1 0.70, q0 0.48

q1 0.54, q0 0.41

q1 0.40, q0 0.39

Fig. 8 Plot of S′′
tot versus z at Hubble horizon with Bekenstein entropy

0.20 0.15 0.10 0.05 0.00 0.05 0.10

1.000

0.998

0.996

0.994

0.992

0.990

z

q1 0.70, q0 0.48

q1 0.54, q0 0.41

q1 0.40, q0 0.39

Fig. 9 Plot of we f f versus z at Hubble horizon with Bekenstein entropy

and green trajectory confirms the thermal equilibrium con-
dition at z ≥ −0.2. Thus the thermal equilibrium condition
satisfies for z ≥ −0.01 (blue trajectory) and for z ≥ −0.2
(red and green trajectory) at Hubble horizon.

5.3 Model 3

From the CC+H0 dataset we plot graphs for best fit values
with the same values of parameter A, φ, p, n, γ, n.
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Fig. 10 Plot of v2
s versus z at Hubble horizon with Bekenstein entropy
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Fig. 11 Plot of S′
tot versus z at Hubble horizon with Bekenstein entropy
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Fig. 12 Plot of S′′
tot versus z at Hubble horizon with Bekenstein entropy

In Fig. 9 EoS parameter displays the quintessence region
in early, present as well as later epoch. The right side trajecto-
ries Fig. 10 increasing positively which confirms the stability
condition at early, present as well as later epoch.

Figure 11 demonstrate the validity of GSLT at early,
present as well as later epoch as all trajectories fulfill the
condition S′

tot ≥ 0. All trajectories (Fig. 12) shows that the
thermal equilibrium condition satisfies at early, present as
well as later epoch.
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5.4 Model 4

In this model we choose the value of �m0 = 0.37 for flat uni-
verse [66] with the same values of all parameters and discuss
result at Hubble horizon along with Bekenstein–Hawking
entropy.

At early as well as present epoch the EoS parameter
remains in quintessence region and at later epoch it gradually
decreasing towards the vacuum DE region Fig. 13. The right
side trajectory Fig. 14 fulfills the stability condition v2

s ≥ 0
at early, present as well as later epoch.

GSLT is valid at early, present as well as later epoch in
Fig. 15 as the condition S′

tot ≥ 0 fulfills. The condition of
thermal equilibrium satisfies at early as well as present epoch
and at later epoch thermal condition cannot satisfies as the
trajectory increasing towards positive phase in Fig. 16.

6 Summary

In this work, we observed the validity of GSLT and thermal
equilibrium condition in Weyl gravity in a flat FRW uni-
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Fig. 15 Plot of S′
tot versus z at Hubble horizon with Bekenstein entropy
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Fig. 16 Plot of S′′
tot versus z at Hubble horizon with Bekenstein entropy

verse with chameleon scalar field at Hubble horizon with
Bekenstein-Hawking entropy, also we constructed the cos-
mological parameters. We choose different parameterized
deceleration parameter and Hubble parameter models in term
of redshift, by using these models of Hubble parameter we
discussed the validity of GSLT, thermal equilibrium con-
dition as well as we discussed the stability condition and
the behavior of EoS parameter. We explored the behavior
of GSLT, thermal equilibrium condition and cosmological
parameters by using power-law corrections, in terms of red-
shift. We graphically plot these constructed models and dis-
cussed our results for observational values from CC+Ho

dataset. We also discussed the behavior of constructed mod-
els for the �CDM model by taking the observational value
for flat universe. We used the current measured observational
value of the Hubble constant analyzed by Planck. We shown
that for the power-law terms the EoS parameter remains in
quintessence and vacuum region, the stability condition is
valid for all models. The preference of choosing this type
of parameterized deceleration parameter is that it organize a
wide class of feasible models of cosmic expansion. In cos-
mology, by choosing some particular evolution situation for a
cosmological parameter and after that gauge the estimations
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Table 2 Results of the cosmological parameters, GSLT and thermal equilibrium condition

Models of H(z) ωe f f v2
s GSLT Thermal condition

Model 1 Quintessence region to vacuum region Stable Partially valid Satisfy

Model 2 Quintessence region to vacuum region Stable Valid Partially satisfy

Model 3 Quintessence region Stable Valid Satisfy

Model 4 (�CDM model) Quintessence region to vacuum region Stable Valid Partially satisfy

of the parameters with the support of various observational
dataset, the parametric reconstruction procedure manages an
attempt to develop a model. The plan to parameterize deceler-
ation parameter q(z) is a straightforward way to deal with the
transition of the universe from decelerated expansion phase to
accelerated expansion phase and furthermore establish pos-
sibilities for future examination in regards to the nature of
the dark energy.

The results we analyzed from the values of the model
parameter from CC+Ho dataset in 1σ confidence level are
given in Table 2.
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