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Abstract We present the simplest topological classification
of wormholes and demonstrate that in open Friedmann mod-
els the genus n ≥ 1 wormholes are stable and do not require
the presence of exotic forms of matter, or any modification
of general relativity. We show that such wormholes may also
possess magnetic fields. It is found that when the wormhole
gets into a galaxy or a surrounding region, it works as an
accelerator of charged particles. If the income of the energy
from radiation is small, such a wormhole works simply as a
generator of synchrotron radiation. Estimates show that the
threshold energy of such an accelerator may vary from suf-
ficiently modest energies of the order of a few Gev, up to
enormous energies of the Planckian order and even higher,
depending on wormhole parameters.

1 Introduction

One of the great challenges of modern astrophysics is the
origin of the observed high-energy cosmic-ray particles
(HECRs) [1,2]. There are a number of high-energy processes
in galaxies which may serve as likely candidates of such
extremely energetic particles, e.g., active galactic nuclei, jets
in radio galaxies, etc. [3,4]. HECRs may also be related to
the decay of dark matter particles [5–8]. Still the nature of
their origin is not firmly established. In the present paper we
suggest a new possible mechanism which may allow to accel-
erate charged particles till extremely high energies. Such a
mechanism involves wormholes whose existence is predicted
by general relativity and essentially by different extensions
of gravity e.g., see [9–13].

It is expected that relic cosmological wormholes were cre-
ated from virtual wormholes on quantum stage, or during the
inflationary period of evolution of the Universe. In general
relativity without exotic matter spherically symmetric worm-
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holes are non-static objects e.g., see [14], and they presum-
ably collapse very rapidly. However they may be static in
various extended theories where the role of exotic matter is
played by a modification of general relativity. It was recently
shown that in the Einstein’s theory stable quasi-stationary
wormholes without exotic matter do exist in open Friedmann
models [15]. Such wormholes have a more general structure
and have throat sections in the form of tori or more compli-
cated surfaces. General consideration shows that in flat space
static wormholes of such a kind also require the presence of
some portion of exotic matter. In the absence of exotic forms
of matter such wormholes do evolve. Still it is not clear how
rapid is the rate of their evolution.

Primordial wormholes may initially capture some elec-
tric and magnetic lines of force. Therefore, from the formal
standpoint every entrance into wormhole throat will look as if
it were carrying some electric and magnetic charges, e.g., see
exact solutions in [14]. Of course the two entrances into the
same wormhole have charges of opposite signs as it should
be. In other words, it is more correct here to speak of electric
and magnetic poles of different entrances. Therefore, in the
general case every entrance into such primordial wormholes
can be described by a mass, an angular momentum, an elec-
tric charge, and a magnetic charge as well. During the evolu-
tion the electric charge decays very rapidly, since the electric
field transmits straightforwardly its energy to charged par-
ticles in the primordial plasma. The magnetic part however
do not perform the work and retains. Therefore, it is natu-
ral to expect that magnetic fields (magnetic lines captured
by wormholes) survive and may play the role of the seeds
which generate magnetic fields in intergalactic medium. For
example, this may explain the origin of observed magnetic
fields in voids [16].

It turns out that in galaxies such a wormhole may work
as an accelerator of charged particles or simply as a gener-
ator of the synchrotron radiation. Indeed, charged particles
captured by magnetic field of a wormhole may move only
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along magnetic lines which start from one entrance and end
on the another entrance. Therefore, they are captured by such
a wormhole. The galactic wind produced by a galaxy and the
active galactic nuclear push such particles and speeds them
up. Part of the received energy reradiates as the synchrotron
radiation. This acceleration continues till the moment when
particles reach the stationary state (when the received and
reradiated energies become equal), or till the moment when
they gain enough energy to escape the magnetic trap. In
general there exists some threshold for the energy of such
particles (the maximal possible value) which is completely
determined by wormhole parameters and the activity of the
galaxy. Moreover, the same wind acts on the magnetic field
of the wormhole and may rotate it to the equilibrium posi-
tion, when the direction of magnetic lines coincides with the
direction of the wind. This makes the accelerator to work
more efficiently. We may expect that at least part of high-
energy cosmic rays may be produced by such a scheme. This
also may explain the recently reported break in the teraelec-
tronvolt cosmic-ray spectrum of electrons and positrons [2].
Indeed the two branches of such a spectrum correspond sim-
ply to two different such wormhole accelerators, while the
position of the brake corresponds to the threshold energy for
the nearest wormhole.

2 Topological structure of a general genus n wormhole

According to the Geroch theorem [17] in general relativity
the topological structure of space does not change. Indeed,
consider the Hamiltonian formulation of general relativity.
The metric of the space-time has the form

ds2 = N 2dt − gαβ

(
dxα + Nαdt

) (
dxβ + Nβdt

)
, (1)

where N is the lapse function, Nα is the shift vector and gαβ

is the metric of a space-like manifold S. In the Hamiltonian
picture functions N and Nα have no dynamic character and
they play the role of Lagrange multipliers, while the Hamil-
tonian is

H =
∫

S

(
NC + NαCα

)
d3x, (2)

where

C = 1√
g

[
παβπαβ − 1

2

(
πα

α

)2 + g (−P)

]
, (3)

Cα = −2∇βπβ
α . (4)

Here P is the curvature scalar with the 3-dimensional metric
gαβ , ∇α defines the covariant derivative with the metric gαβ ,
and we assume that S is closed space-like hypersurface (to
avoid surface terms in the action). In the presence of matter
fields one has to add respective terms to the Hamiltonian.
The equations of motion have the standard form

dgαβ

dt
= δH

δπαβ
,

dπαβ

dt
= − δH

δgαβ

, (5)

while the variation of the action with respect to lapse and
shift gives the constraints (G0

α components of the Einstein
equations)

C = 0, Cα = 0. (6)

Taken the initial values
(
gαβ, παβ

)
on S at some moment

of time t = t0, the above equations define in a unique
way the subsequent evolution of the dynamic functions(
gαβ(t), παβ(t)

)
. This defines the map of the space-like

hypersurfaces S(t0) → S(t) which is a diffeomorphism
between S(t0) and S(t) (differentiable one-to-one map). Thus
in the Hamiltonian picture we see that the topological struc-
ture of the total space-time always represents the direct prod-
uct of the topology of the initial hypersurface S(t0) and the
time line t ∈ R1. This is roughly constitute the famous
Geroch theorem, which states that in general relativity topol-
ogy changes do not occur. We point out that there exist some
speculations based on the fact that choosing different space-
like sections of a single maximally extended space-time we
may obtain different topologies of space-like sections. Some
authors try to interpret this as “topology changes”. But the
observer may try different reference frames and easily verify
that such a change is nothing more, than the effect related
to a specific frame. Therefore, such interpretations are not
self-consistent from the physical standpoint.

In this manner we see that in general relativity topologi-
cal structure of space is determined by onset, as additional
initial conditions. In other words, it is specified by hands. In
conclusion of this section we define topologies which cor-
respond to a general genus n wormhole (e.g., see the books
[9,18,19]).

Consider two copies ∂M±
n of an arbitrary two dimen-

sional closed surface ∂Mn in S. From the topological stand-
point the surface ∂Mn represents a sphere with n handles on
it. The portion of space S which gets inside such surfaces
x ∈ M±

n is removed, while points on respective two copies
of the surfaces ∂M±

n are glued.1 This corresponds to the so-
called Hegor diagrams [18,19]. Thus, we get a wormhole
whose throat section is ∂Mn which is sphere with n han-
dles. The number of handles n is called the genus of two
dimensional surface and we keep this name for the worm-
hole. Thus we get a wormhole of the genus n. The resulting

1 To avoid misunderstanding we point out that here the gluing procedure
concerns the coordinate map only. The common mistake is that such a
gluing automatically leads to a thin-shell wormholes. However on this
step the metric tensor does not appear on the stage. It appears latter on
when we specify particular initial conditions

(
gαβ(t0), παβ(t0)

)
on the

resulting space. In other words, it is our free choice to specify the metric
which will correspond to a thin-shell or a regular wormhole. The case
of the thin-shell requires however the presence of matter fields on the
shell.
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space is Sn = S/M±
n and it’s structure determines proper-

ties of possible initial conditions
(
gαβ(t0), παβ(t0)

)
which

can be specified on Sn . In particular, since points on sur-
faces ∂M+

n and ∂M−
n are identical, the admissible functions(

gαβ(t0), παβ(t0)
)

should obey the respective periodic con-
ditions, namely, they should coincide on ∂M+

n and ∂M−
n and

possess the necessary number of derivatives. The subsequent
evolution is completely determined by the above Hamilto-
nian equations.

In the case when the distance between surfaces ∂M+
n and

∂M−
n is sufficiently big, the influence of the entrances into the

wormhole on each other can be neglected. In this case we may
restrict to a wormhole which connects two different copies
of the space S. We may call them as two-wold wormholes,
contrary to the previous case when both entrances lay in the
same space. The two-wold wormholes are more simple for
the investigation and gain more popularity in literature.

We point out that topology of space was formed (tem-
pered) during quantum stage of the evolution of our Universe
and a priory all kind of wormholes are admissible as initial
conditions. However subsequent evolution is quite different.
In particular, the simplest wormholes of the genus n = 0
are highly unstable. To be stable they requite the presence of
exotic matter which does not exist in nature. Genus n = 0
wormholes may be made stable in modified theories in which
exotic matter is replaced by an appropriate modification.
In other words, in the standard Einstein’s general relativity
such wormholes collapse and are undistinguished from black
holes. This means that in spite the widespread popularity of
such solutions (i.e., spherically symmetric wormholes) we
should not expect to find such objects in astrophysics unless
the appropriate modification is experimentally established.

3 Stable relic wormholes

In general relativity stable relic wormhole cannot have the
genus n = 0. There is an extended literature on this subject
and we may send readers to respective books and reviews,
e.g., [9,13].

In this section we demonstrate that genus n ≥ 1 worm-
holes can be made stable in open Friedmann models, as it
was first shown in [15]. The basic idea comes out from very
simple qualitative consideration as follows. Since the sec-
tion of a wormhole throat ∂Mn is closed, its size is always
restricted in space. When we consider the scattering of a thin
ray of particles on such a wormhole it always diverges upon
scattering. This means that the wormhole throat has always
a negative curvature. Therefore, to find the simplest realiza-
tion of such a topology we should use the open cosmologi-
cal model in which space has a constant negative curvature.
We recall that observational bounds allow our Universe to
have very small negative curvature (within the observational

errors [16,20] Ωk = 0.001 ± 0.002). Moreover, even if our
Universe is exactly flat, it contains both overdense regions
which possess a positive curvature and underdense regions
with a negative curvature. The latter in some approximation
can be viewed as parts of the Lobachevsky space. Then, as it
was first demonstrated in [15] an arbitrary number of genus
n ≥ 1 wormholes can be constructed simply by factorization
of the Lobachevsky space (the space of the open Friedmann
model) over a discrete subgroup of the group of motion of
the Lobachevsky space.

We point out that the genus n = 0 wormhole cannot be
obtained by such a factorization, since the sphere does not
admit the metric with a negative curvature. When we try to
specify a negative curvature on the sphere, it will contain
at least one singular point. The simplest wormhole (whose
existence do not require exotic matter) has the genus n = 1
which corresponds to the throat section in the form of a torus.
For details we send readers to our paper mentioned before.

For the illustration of the basic idea we describe the real-
ization of the simplest two-dimensional wormhole which
connects two different spaces by a factorization of the
Lobachevsky plane. Consider the open Friedmann model
which is described by the metric

ds2 = c2dt2 − a2(t)
4(dx2 + dy2 + dz2)

(
1 − r2

)2 . (7)

Here the space metric dl2 = 4dx2

(1−x2)
2 corresponds to the

Lobachevsky space. In 2D case the space can be realized as
a upper complex half -plane Fig 1, when the metric takes the
form (z = x + iy, y > 0)

dl2 = dx2 + dy2

y2 . (8)

In this metric the line y = 0 corresponds to the absolute,
i.e., the infinity of the Lobachevsky plane). Consider now
two an arbitrary geodesic lines on the Lobachevsky plane.
To avoid misunderstanding we stress that we are speaking
here of space-like geodesics on the Lobachevsky plane (do
not mix them with space-time geodesics that correspond to
motions of probe particles). Recall that geodesics on the plane
are semi-circles with centers on the absolute y = 0 and
perpendicular to the absolute rays (x = const). Using the
group of motions of the plane we may choose the coordinate
frame on the plane in such a way that the both geodesics
become semi-circles with centers at the origin z = 0 but
having different radii R1 and R2. For definiteness we assume
R1 > R2. Then the geodesic line x = 0 determines the
shortest distance between these two geodesics. According to
(8) we see that the distance is simply a = ln (R1/R2). The
simplest wormhole is obtained by making the cut of the stripe
between these two geodesics and the subsequent gluing of
the boundaries (the two geodesics) see Fig. 1. The regions on
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(a)
(b)

Fig. 1 a The Lobachevsky plane. Dashed lines give the polar frame.
The stripe between the two geodesic lines r = R1 and r = R2 corre-
sponds to the wormhole region. Regions below red dashed geodesics
(semi-circles) correspond to two unrestricted Lobschevsky spaces E±.
b The same wormhole which connects two Lobachevsky spaces E±.
Thick solid line corresponds to the two geodesics r = R1,2 on the plane
which are glued

the plane which are restricted by auxiliary two geodesic lines
with the radius r = (R1 − R2) /2 and centers at the positions
x± = ±(R2 + r) correspond to two different Lobachevsky
spaces (any geodesic there has infinite length). The rest part
of the stripe has a finite square/volume and corresponds to
the throat of the wormhole.

Consider the particular motion Ta of the plane that trans-
forms one geodesic (of the radius R2) to the other (R1). This
is reached by the transformation

z′ = Ta(z) = R1

R2
z = eaz. (9)

This transformation corresponds to the shift of the plane
along the geodesic line x = 0 on the distance a. One can
straightforwardly verify that this transformation does not
change the metric (8) and, therefore, it is one of particu-
lar admissible motions of the plane. Using Ta as the basis
element we define the discrete subgroup Ga of the group of
motions of the plane which consists of all elements of the
form {T n

a }, where n = 0,±1,±2, . . .. Then the wormhole
is merely the factorization of the plane over Ga . This means
that any two points of the plane z and z′ correspond to the
same single point of the wormhole, if they can be related by
the transformation z′ = (R1/R2)

n z = enaz with any integer
n.

The basic difference between the wormhole and the total
Lobachevsky plane is that now we cannot specify an arbi-
trary functions on the plane. Those are restricted by a spe-
cific “periodic” conditions. For example, if we consider per-
turbations of the metric δgαβ(z), then they should obey the
“periodic” property

δgαβ(z) = δgαβ

(
R1

R2
z

)
. (10)

In particular, our attempts to describe dark matter phenomena
by wormholes [22,23] owe to this feature. Indeed, if we have

a point source M at some position z0 (the density is � =
M√
g δ(z−z0)), then the condition (10) produces a countable set

of “additional” sources (� → � = M√
g

∑
n δ(z− enaz0)) and

this essentially changes the “expected” standard Newton’s
potential produced by the source, while the transformation
δ(z − z0) → ∑

n δ(z − enaz0) we call the topological bias
of sources. This additional images may play the role of dark
matter particles.

We point out that in the case of 3D Lobachevsky space
the simplest 3D wormhole is obtained by analogous factor-
ization over the discrete subgroup that is formed from two
such generators Ta(l1) and Tb(l2) which describe two such
shifts in orthogonal directions (l1 and l2 denote two orthogo-
nal geodesics). In this case the minimal section of the throat
will have the form of a torus T 2.

Such a factorization can be straightforwardly seen in
terms of new coordinate frame which can be introduced on
the Lobachevsky space. Indeed, consider realization of 3D
Lobachevsky space in the form of half space analogous to
(8) which is given by the metric

dl2 = dx2 + dy2 + dz2

z2 (11)

where z > 0. Consider first the transformation Ta(l1). Using
possible motions of the space any map Ta(l1) can be realized

as the conformal transformation Ta (r, φ, θ) =
(
R1
R2
r, φ, θ

)
,

where we have used the spherical coordinate frame x =
r cos φ sin θ , y = r sin φ sin θ , z = r cos θ , with variables
ranges as r > 0, 0 < θ < π

2 , and 0 < φ < 2π . In this
coordinates the 2D Lobachevsky plane Fig 1. corresponds to
any section φ = const . In this realization the geodesic line
l1 corresponds simply to the axis z (l1 = (0, 0, z)). Then we
may use the subsequent transformation in the form r = R2

exp
( a

2π
χ1

)
which transforms the line element into

dl2 = 1

cos2 θ

(( a

2π

)2
dχ2

1 + sin2 θdφ2 + dθ2
)

. (12)

The region R2 < r < R1 corresponds to the range of the
new angle variable 0 < χ1 < 2π , while the total space
corresponds to the unrestricted range of the variable χ1, i.e.,
−∞ < χ1 < +∞. In this case the transformation Ta(l1)
acts simply as the the shift of χ1

Ta (χ1, φ, θ) = (χ1 + 2π, φ, θ) . (13)

The factorization means that all functions are periodic in
the terms of the new angle variable χ1, i.e., δgαβ(χ1) =
δgαβ(χ2 + 2πn), with n = 0,±1,±2, . . . . Absolutely anal-
ogously the transformation Tb(l2) allows to introduce the
second angle-like variable χ2, which gives Tb

(
χ2, φ̃, θ̃

) =(
χ2 + 2π, φ̃, θ̃

)
. Taking now χ1 and χ2 as basic coordinates

and adding an arbitrary independent complimentary coordi-
nate variable χ3 we obtain 3D wormhole as the factorization
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of the Lobachevsky space in which all points of the type
(χ1 + 2πn1, χ2 + 2πn2, χ3) correspond to the same single
point (χ1, χ2, χ3). We point out that in terms of coordinates
(χ1, χ2, χ3) the metric (12) has a rather complex form and
we do not present it here. In particular, the fact that the factor-
ization does not induce additional curvature terms (and there-
fore it does not require exotic matter) can be seen straight-
forwardly from the metric (12).

It is important that such a factorization allows us to obtain
an arbitrary number of wormholes [15]. In conclusion of this
section we point out that perturbations in the space which
contains such wormholes develop in the standard way as it
is described by the Lifshitz theory [26], e.g., see Ref. [27].
The basic difference is that admissible functions obey to the
periodic conditions (10) (some part of modes is absent). This
may put some restrictions on possible shapes of structures
formed. In any case we may state that some portions of space
which may contain the wormhole throats can form gravita-
tionally bounded systems (galaxies). The evolution of worm-
holes in sufficiently dense regions of space requires the fur-
ther investigations. However, we may expect that the rate of
evolution of such objects is not crucially differs from that of
regions without wormholes and, therefore, they may survive
till present days.

We also point out that in the case of a genus n ≥ 1 worm-
hole the spherical symmetry of such an object can be restored,
if we perform averaging over possible orientations of the
throat in space. In some calculations this allows us to use the
simplest spherically symmetric n = 0 wormhole as a basic
“first order” model of the standard (genus n ≥ 1) wormhole.

4 Vacuum magnetic fields of wormholes

Nontrivial topology of space which contains a wormhole
allows us to get additional nontrivial solutions of basic phys-
ical field equations, equations of motion, and, in particular,
of static vacuum Maxwell equations. This means that already
in the absence of real sources (charged particles, electric cur-
rents) space may possess nontrivial quasi-static magnetic and
electric fields. The physical mechanism is rather clear, dur-
ing the quantum period of the Universe when the worm-
hole forms, it may capture some portion of closed magnetic
or electric lines. Such lines cannot simply leave the worm-
hole. Electric fields perform work and, therefore, they decay
very rapidly, since in the primordial plasma they transform
their energy to charged particles. However magnetic fields
may survive till the present days. For exact solutions which
involve magnetic field and wormholes see e.g., [14,28].

In this section for the sake of simplicity we assume that
sufficiently far from the wormhole entrances the space is flat.
Generalization to the curved spacetime and consideration of
magnetic fields in the Friedmann model can be found, e.g.,

in [29]. Consider first the simplest genus n = 0 wormhole.
Then the space-time metric can be taken as

dl2 = c2dt2 − h2(r)
(
dx2 + dy2 + dz2

)
. (14)

We shall use the Ellis–Bronnikov massless wormhole [30,31]
when the scale function is simply h = 1+ R2

r2 . In what follows
for simplicity we may replace this function with the model

h(r) =
{

1, r > R
R2

r2 , r < R
. (15)

This thin–shell model of a wormhole is described by two
Euclidean spaces E+ as r > R and E− as r < R. The
transformation r̃ = R2/r does not change the above metric
but interchanges the spaces E+ ↔ E−. Both spaces are glued
by the surface of the sphere r = R. Since the space is flat
(only on the throat at r = R it has delta-like curvature scalar
∼ −1

R2 δ(r − R)), the Maxwell equations for magnetic field
take the standard form

rotB = divB = 0. (16)

These equations possess a nontrivial solution in the form

B = − Q

r2h
n (17)

with an arbitrary constant value Q, where n = r/r is the
unit vector. Indeed, vacuum magnetic field can be expressed
via the magnetic scalar potential B = −∇φ which obeys the
equation

Δφ = 0. (18)

In the spherically symmetric case this equation reduces to

1

r2h3 ∂r r
2h∂rφ = 0 (19)

and has the solution as

φ =
∫ r

0

Q

r2h
dr + φ0. (20)

This defines the magnetic field

B = −∇φ = − Q

r2h
∇r = − Q

r2h
n. (21)

This solution works for any spherically symmetric wormhole
with an arbitrary scale function h(r) in (14).

In the region E+ (r > R) it describes the field of the mag-
netic charge Q homogeneously distributed over the sphere
r = R (Coulomb law). In the region E− (r < R) transfor-
mation r̃ = R2/r interchanges the inner and outer regions of
the sphere r = R and we get the same field with the magnetic
charge −Q.

In the case when both entrances are in the same space
this transforms to the dipole field. Let the positions of the
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two spheres are x+ and x− then the field can be taken as
(h± = h(r±) ∼ 1 as r± = |x − x±| � R)

B(x) = Q (x − x+)

h+ |x − x+|3 − Q (x − x−)

h− |x − x−|3 . (22)

Consider now the genus n = 1 wormhole. In the flat space
such a wormhole can be constructed by means of cutting two
solid tori and gluing along their surfaces. In this case we
have two different new kinds of solutions. First is obtained
by placing an arbitrary magnetic charge density ρ(x) in the
internal region of one torus and the opposite density −ρ(x)
in the internal region of the second torus. Then we solve the
system

rotB = 0, divB = 4πρ. (23)

Recall that internal regions of tori correspond to fictitious
points, while ρ(x) = 0 as x lies outside the tori. Therefore,
such a system coincides exactly with (16). In this case the
exact form of the magnetic field is rather complicated. How-
ever averaging over orientations of the tori we restore the
spherical symmetry of the wormhole and get exactly the same
solution as (22). In this sense for the sake of simplicity we
may always restrict to the spherically symmetric wormholes
(i.e., consider n = 0 wormhole as the first order approxima-
tion).

Solutions of the second kind can be obtained by placing
an arbitrary current density j(x) and −j(x) within the two
tori and solving the system

rotB = 4π

c
j, divB = 0. (24)

Again here the non-vanishing current density corresponds
only to fictitious points, while in physical regions of space
such a system represents the same system (16). The system
(24) corresponds to the field generated by a couple of electric
loops. We point also out that solutions of this system cannot
be reduced to the spherically symmetric case.

In conclusion of this section we point out that the new
two classes of vacuum solutions reflect the topological non-
triviality of space. Indeed, according to the Stocks theorem
the system (16) implies

∮
Bdl = 0 for any loop which can

be pulled to a point. In the case of a non-trivial topology of
space there appear new classes of loops Γa which cannot be
contracted to a point and, therefore, to fix the unique solution
we have to fix additional boundary data

∮
Γa

Bdl = Ca . In
general Ca �= 0. In the case of genus n = 0 wormhole there
is only one such a non-trivial loop which goes through the
wormhole throat. In the case of genus n = 1 wormhole we
have already two such loops, one goes through the throat (it
corresponds to the system (23)) and one additional crosses
the torus (the system (24)).

5 Wormhole as an accelerator

In galaxies charged particles undergo an acceleration when
interacting with galactic radiation. For definiteness we shall
speak of electrons. Indeed, by means of the Compton scat-
tering photons transmit part of their momentum to electrons.
Upon the scattering the momentum obtained by the electron
from the incident photon is

�p = p′ − p = hν

c

(
n − ν′

ν
n′

)
(25)

where n and n′ are the direction of the photon before and
after scattering and

ν′

ν
=

(
1 − c

E pn
)

(
1 + hν

E (1 − nn′) − c
E pn

′) . (26)

Upon averaging over possible orientations of n′ we get for
the average momentum transmitted from the incident photon

�p = 1

c
βν(p)hνn. (27)

Here the spectral coefficient βν(p) = 1−
〈
ν′
ν
nn′

〉
is given by

βν(p) = 1 − 1

4π

∫ (
ν′

ν
nn′

)
dΩ ′, (28)

where ν′
ν

is determined by (26). In the case when p = pn, it
reduces to the form

βν = 1 + 1

2x

[
2 −

(
1 + 1

x

)
ln (1 + 2x)

]
,

where x = (hν + cp) (E + cp) /m2c4. We plot this function
on Fig. 2. Now multiplying (27) on the number density of
photons with the frequency ν and on the cross section we get
the spectral force which accelerates the electron in the form

fν = Δp
Δt

= cσT Nν

1

c
βν(p)hνn = σTβν(p)

c
Pν (29)

where Pν is the spectral component of the Poynting vector
Pν = c

4π
Eν × Bν and σT is the Thomson cross section. The

total force is given by F = ∫
fνdν.

It is important that the force is determined by the Poynt-
ing’s vector Pν . In a quite (quasi-stationary or steady state)
galaxy both the Poynting’s vector and the force have the
potential character, i.e., they can be presented as Pν =
−∇Ψν . Non-stationary processes in active galactic nuclei
may produce some additional acceleration, e.g., the stochas-
tic Fermi acceleration, etc., which we do not discus here. For
the quasi-stationary galaxy the Poynting’s theorem gives the
discontinuity equation

divPν = �ν (30)

where �ν(x) is the spectral density of sources of radiation
(stars, hot gas, dust, etc.) or the radiative capability of a unite

123



Eur. Phys. J. C (2020) 80 :45 Page 7 of 9 45

Fig. 2 The spectral coefficient βν as the function of x =
(hν + cp) (E + cp) /m2c4

volume in the galaxy. If the topology is simple, then suffi-
ciently far from the galaxy we get

Pν = Mν

4πr2 l, (31)

where l = r/r , r is the distance from the center of the galaxy,
and Mν is the total spectral energy emitted by the galaxy
in the unit time. Observations show that the intergalactic
medium possesses a magnetic field [16,21]. Therefore, the
electron may have a closed trajectory. It is easy to verify that
the total energy obtained by the electron from the galactic
radiation during the cycle is exactly zero, i.e.,

∮
fνdl ≡ 0.

This means that in the case when topology is simple, the
only possible mechanism of the electron acceleration relates
to high-energy non-stationary processes (jets, shock waves,
supernovae explosions, active galactic nuclei, etc.).

The situation changes when the galaxy is accompanied
with a wormhole. In the presence of the wormhole the Poynt-
ing’s field also admits non-trivial solutions of (30). For the
sake of simplicity we consider the spherically symmetric
(genus n = 0) wormhole. For a more general wormhole the
rough picture remains the same, at least from the qualitative
standpoint. We point out that the genus n ≥ 1 wormholes are
more preferred from the astrophysical standpoint, since they
may work as accelerators even in the case when a wormhole
is not traversable (e.g., when the length of the trajectories
which go through the throat are too big).

Indeed, the scattering of the radiation on the wormhole
(e.g., see [24,25]) produces an additional field in the dipole
form

δPν = δMν

4πr2−
n−− δMν

4πr2+
n+ (32)

where n± = r±/r±, r± = r − x±, x± are positions
of the wormhole entrances (we assume that r+ � r−),

δMν � MνπR2

4πr2+
is the portion of the spectral energy absorbed

by the closest entrance into the wormhole throat and R is the
radius of the throat. If the wormhole possesses a magnetic
field in the form (22), it forms a magnetic trap for the elec-
tron, while the Poynting’s vector field δPν in form (32) forms
the accelerating force which acts exactly along the magnetic
lines. On every cycle the electron will gain the energy from
radiation A = ∫

Aνdν > 0, where Aν = ∮
δfνdl, whose

exact value depends on the length of the trajectory of the
electron and on all the rest parameters of the wormhole (dis-
tance to the galaxy, throat size, etc.). Some part of this energy
will be spent on the synchrotron radiation of electrons and,
therefore, there is a competition between the acceleration
produced by the galactic radiation and loss of energy on the
reradiation. The reradiation can be accounted for by adding
the standard force of the radiation friction.

6 Conclusions

In this manner we see that the system which consists of a
galaxy and a wormhole endowed with a magnetic field works
as an eternal accelerator. While particles have sufficiently
small energy they are trapped and the system accelerates
them. Particles of sufficiently high energies may leave the
trap and contribute to the observed high-energy cosmic rays.
The maximal possible energy which can be reached in such
an accelerator depends on two basic factors.

The first factor is that due to the curvature of the magnetic
lines electrons always have the component of the velocity
which is orthogonal to the magnetic field. This causes the
synchrotron radiation which gives the loss of the energy.
For sufficiently high energies such a radiation becomes very
strong and this restricts the maximal possible energy reached
by such an accelerator (the exact value depends on all param-
eters of the accelerator). If the equilibrium between the accel-
eration and the loss of energy is reached, the wormhole
starts to work simply as a generator of synchrotron radia-
tion. Such objects should be directly seen on sky (the map of
such sources is presented by [16]). The problem of relating
such sources to wormholes requires further and more rigor-
ous investigation.

The second factor appears when such a limit is not reached
(i.e., when the loss of the energy still does not exceed the
obtained from the radiation value), then the absolute estimate
of the threshold energy can be found as follows. The magnetic
field reaches the maximal value at the throat and it is given
by

Bw = Q

R2 . (33)

Now consider the relation

V⊥ = rBωB = rB
eQγ

mcR2 = rB
eBwc

E
, (34)
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where V⊥ is the component of the velocity transversal to the
magnetic field (one may assume that V⊥ ∼ V‖ ∼ c), ωB

and rB are the Larmor’s frequency and radius respectively,
γ = (1 − V 2/c2)1/2 is the relativistic factor, e and m are the
electron charge and mass respectively, and R is the size of
the wormhole throat. To undergo the acceleration the electron
should always get into the wormhole throat. This means that
the Larmor’s radius should be smaller than the throat radius
rB = c/(ωB) = (cE)/(eBwc) ≤ R. For ultra-relativistic
particles this inequality determines the absolute threshold
energy as

E ≤ Eth = eBwR.

Particles of higher energies cannot get into the throat and stop
receiving the energy from the radiation. To find estimates we
point out that the value Bw can be related to the observed
value in galaxies and clusters by the relation

Bobs ∼ Bw

(
R

L

)2

,

where R is the radius of the throat and L is the distance
between the wormhole entrances. Then for the threshold
energy we get the estimate energy as

Eth = eLBobs
L

R
.

Now taking R⊙ be the Sun radius, L = L5 × 5kpc (in
dark matter models based on wormholes this corresponds to
the scale when dark matter starts to show up [22,23]), and
Bobs = B−9nG = B−910−9 Gauss, we get the estimate

Eth ∼ L2
5B−9

R⊙

R
× 1017Gev.

We see that from the formal standpoint the threshold may
reach and even exceed the Planckian value ∼ 1019Gev. How-
ever, for sufficiently small values of the throat radius we may
expect that the matter density in the throat is very high. There-
fore, the scattering on baryons in the throat will close such
an accelerator for particles. In this sense the throat will be
not traversable for charged particles. Consider now the esti-
mate for torus-like (genus n = 1) wormhole. In this case we
may expect the value R ∼ 10−3 pc which gives the factor
R⊙/R ∼ 2.3 × 10−15 and the threshold energy estimate
becomes

Eth ∼ 2Ł5B−9 × 100Gev.

This is already close to the reported in [2] value for the break
energy Eb = (9.14 ± 0.98)100Gev.

The intensity of the flow of high-energy particles leaving
such an accelerator is determined by the luminosity of the
galaxy, the distance between the wormhole and the galactic
center, and the cross-section of the wormhole which has the
order ∼ πR2.

In conclusion we point out that if we have two such worm-
holes near the same galaxy (or even in two different galax-
ies), then they should produce different contributions to the
high-energy cosmic-ray spectrum depending on parameters
of the wormholes, activity of the galaxy, etc. This allows us
to interpret the break of the high-energy spectrum observed
in [2] as contributions from different wormholes. In general
wormholes have different threshold energies. The break indi-
cates that at least one of wormholes has the threshold energy
Eth � Eb. This however still does not allow us to derive rig-
orous estimates to all wormhole parameters L , R, and Bw.
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