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Abstract We evaluate the validity of the weak form of the
cosmic censorship conjecture and the third law of black hole
dynamics for Kerr-MOG black holes interacting with test
scalar fields. Ignoring backreaction effects, we first show that
both extremal and nearly extremal Kerr-MOG black holes
can be overspun into naked singularities by test fields with a
frequency slightly above the superradiance limit. In addition,
nearly extremal Kerr-MOG black holes can be continuously
driven to extremality by test fields. Next, we employ backre-
action effects based on the argument that the angular velocity
of the event horizon increases before the absorption of the
test field. Incorporating the backreaction effects, we derive
that the weak form of the cosmic censorship and the third
law are both valid for Kerr-MOG black holes with a modi-
fication parameter &« < 0.03, which includes the Kerr case
witha = 0.

1 Introduction

The singularity theorems developed by Penrose and Hawk-
ing imply that the gravitational collapse of a body leads —
inevitably — to the formation of singularities [1]. The pres-
ence of these singularities precludes the definition of a well-
defined initial value problem and thereby ruins the smooth,
deterministic structure of space-times in general relativity.
The fact that the formation of singularities cannot be avoided
led Penrose to propose the cosmic censorship conjecture,
which — in its weak weak form (Wccc) — asserts that the
gravitational collapse of a body always ends up in a black
hole rather than a naked singularity [2]. The singularities
should be hidden behind the event horizons of black holes
which disable their causal contact with distant observers.
This way, the observers at asymptotically flat spatial infinity
do not encounter any effects propagating out of the singular-
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ity, and the smooth structure of space-times is preserved, at
least locally.

As a concrete proof of the cosmic censorship conjec-
ture has been elusive, it has become customary to attack the
closely related — though not identical — problem of the sta-
bility of event horizons. In these problems one modifies the
background geometry of extremal or nearly extremal black
holes with test particles and fields, and checks if this modi-
fication can lead to the destruction of event horizons which
would imply that the singularities become naked. The first
thought experiment in this vein was constructed by Wald [3].
There it was shown that test particles cannot overcharge or
overspin an extremal Kerr—Newman black hole into a naked
singularity. Following Wald many similar tests of Wccc were
applied to black holes in electro-vacuum spacetimes, involv-
ing test particles [4—13], and fields [14-25]. The possibility
to violate Wccee by the quantum tunnelling of test particles
was discussed in [26—32]. The case of asymptotically anti-de
Sitter black holes was also evaluated in the scattering of test
particles and fields [33-38].

The evolution of singularities indicate the failure of gen-
eral relativity at short length scales where quantum effects
are expected to dominate. In addition, the fact that one needs
to invoke the presence of dark matter and dark energy at
large length scales motivated the quest for modified theo-
ries of gravity. One of the promising candidates to fill this
gap is the Scalar-Tensor—Vector Gravity theory developed
by Moffat [39]. This dark matter emulating theory of modi-
fied gravity has proved compatible with current observations
regarding the rotation curves of galaxies and the dynamics
of galactic clusters [40—43]. It also predicts the existence of
gravitational waves which lends credence to its validity as an
alternative theory of gravity [44,45].

The scalar-tensor-vector theory of modified gravity has a
stationary and axi-symmetric black hole solution which is
known as the Kerr-MOG black hole [46]. Kerr-MOG black
holes are characterised by the mass parameter M, angular
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momentum J = Ma and the dimensionless parameter o
which determines the modification from the Kerr solution.
The thermodynamics of Kerr-MOG black holes, their observ-
able shadows, and the quasi-normal modes have been stud-
ied [47-49]. Recently, it was also shown that energy can be
extracted from Kerr-MOG black holes by a Penrose process
[50].

The validity of Wcce was tested for Kerr-MOG black
holes in the process of the absorption of a point particle by
Liang, Wei, and Liu [51]. It was found that — though the
extremal black holes cannot — nearly-extremal black holes
can be destroyed by point particles. However, the authors
argued that the event horizon will be restored when one con-
siders the effect of the adiabatic process. Another intriguing
problem at this stage is to test the validity of Wccec in the
case of test fields scattering off Kerr-MOG black holes. In
this work we evaluate the stability of the event horizons of
Kerr-MOG black holes as they interact with test scalar fields.
We consider the cases of both extremal and near-extremal
black holes. Our analysis exploits the fact that superradiance
occurs when scalar fields scatter off Kerr-MOG black holes,
which was recently derived by Wondrak, Nicolini, and Mof-
fat [52]. We also evaluate the validity of the third law of black
hole dynamics which states that a nearly extremal black hole
cannot be driven to extremality by any continuous process.

2 Kerr-MOG black holes, scalar fields, Wccee

In Boyer-Lindquist coordinates, the background geometry of
the Kerr-MOG space-time is described by the metric

0
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A dr?
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The MOG parameter « is a dimensionless measure of the
difference between the Newtonian gravitational constant GN
and the additional gravitational constant G

G -GN
e 3
o= Gn 3)

The ADM mass and the angular momentum of the Kerr-MOG
black hole are given by [53]

M=04+a)M ;J=Ma 4
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The function A can be re-written in terms of the ADM mass
2 2 o 2
A=r-=-2Mr+a +—M 5)
1+«

where we have set GNy = 1 without loss of generality. The
spatial locations of the horizons are the roots of A

— a2 (6)

Notice that the parameters of the Kerr-MOG space-time rep-
resent a black hole surrounded by an event horizon provided
that

M > (14 a)a? (7

where the equality corresponds to the case of an extremal
black hole. In this work, we start with a Kerr-MOG black
hole satisfying the main criterion (7), and allow it to interact
with a test scalar field that is incident on the black hole from
infinity. In this type of gedanken experiments it is a crucial
assumption that the interaction of the black hole with the
test scalar field does not alter the structure of the background
geometry, but leads to modifications in the ADM mass and
angular momentum parameters. At the end of the interac-
tion the field decays away, leaving behind a space-time with
modified parameters. If the final parameters of the space-time
does not satisfy the inequality (7), one can conclude that the
event horizon has been destroyed in the interaction of the
scalar field with the black hole; i.e. Wccc is violated.

The scattering of test scalar fields by Kerr-MOG black
holes has recently been studied by Wondrak, Nicolini, and
Moffat [52]. Analogous to the Kerr case, a neutral wave can
be separated into variables in the form

B (t.7.0.9) = R(ISO)e e "

The contribution of the scattering wave to the mass and angu-
lar momentum parameters of the space-time are related by
M o

5T m ®

Superradiance occurs for scalar fields scattering off Kerr-
MOG black holes as one would naively expect from Kerr
analogy. If the frequency of the incoming wave is below the
superradiance limit, the wave is reflected back with a larger
amplitude, i.e. there is no net absorption of the wave by the
black hole. The superradiance limit wg) for Kerr-MOG black
holes is also derived in [52]
ma

_ 10
r_%_+a2 (10)

ws =ms2 =

where §2 is the angular velocity of the black hole and ry is
the spatial location of the event horizon.
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2.1 Overspinning extremal Kerr-MOG black holes

By definition, an extremal Kerr-MOG black hole satisfies
Sn=M>—JVT+a=0 (11)

where we have defined §;,. We send in a scalar field to an
extremal black hole from infinity, to check if it is possible
to overspin the black hole into a naked singularity. The con-
tribution of the incoming wave to the energy and angular
momentum parameters of the black hole are related by (9).
A necessary condition for overspinning to occur is that one
should be able to adjust the parameters of the incoming wave
such that 85, < O at the end of the interaction. To be more
precise, we demand that

8in = M2 — JinV1 +
=(M+8EX —(J+8)HVI+a<0 (12)

By substituting §J = (m/w)S$E, and using (11), the condi-
tion (12) can be simplified in the form

SE+2M < T+« (13)
w

At this stage we make a choice for the energy of the incom-
ing field. The energy of the incoming field contributes to the
ADM mass of the black hole. To ensure that the test field
approximation remains valid, the energy of the field should
be much smaller than the mass of the black hole. For that
reason we choose §E = Me for the incoming field with
€ < 1, so that the test field approximation is justified. With
this choice, the Kerr-MOG metric (1) will retain its struc-
ture after the scattering of this test field, with its mass and
angular momentum parameters modified. Now we can derive
the maximum frequency of an incoming wave, which can be
used to overspin an extremal Kerr-MOG black hole

m«1+ o

W < Omax = — (14)

M@ +¢€)

If the frequency of a scalar field is below the maximum value
determined in (14), the scalar field can overspin an extremal
Kerr-MOG black hole into a naked singularity. However,
this condition is not sufficient for overspinning to occur.
For that purpose one should also demand that the incoming
wave is absorbed by the black hole; i.e. the frequency of the
wave is larger than the superradiance limit. These two condi-
tions should be simultaneously satisfied for overspinning to
occur. The superradiance limit for extremal black holes can
be derived by substituting 7. = M andanda = M /(1 + «)
in (10)

m«/1+ o

T MQ+a) ()

wg]
For overspinning to occur wmax should be larger than the
superradiant limit wg, so that the frequencies in the range
(wsl, wmax) can be used to overspin an extremal Kerr-MOG
black hole. It is manifest in equations (14) and (15) that wmax
will larger than wy), if « > €. The extremal Kerr-MOG black
holes can be overspun into naked singularities by scalar test
fields provided that the deformation parameter « is larger
than the small parameter €.

2.2 Overspinning nearly-extremal Kerr-MOG black holes

In the last decade it was shown that though extremal Kerr
black holes cannot be overspun, nearly extremal Kerr black
holes can be overspun into naked singularities by a discrete
jump by test particles [5] and fields [16]. Recently we have
shown that overspinning becomes generic in the case of neu-
trino fields which do not satisfy the weak energy condition
[25]. In this section we attempt to overspin nearly-extremal
Kerr-MOG black holes by test scalar fields, which satisfy the
weak energy condition and exhibit superradiant scattering.
We parametrise a nearly-extremal Kerr-MOG black hole in
the form

JJ1+ o B a1+«
M2 M

=1—¢€? (16)

where ¢/ < 1. (16) implies that
Sin = M?> — JVT+a = M?*? (17)

As in the case of extremal black holes, we send in a test
field from infinity and demand that d5, < O at the end of
the interaction, so that the final parameters of the space-time
represent a naked singularity.

5ﬁn=(M+8E)2—(J+g8E)«/l+a<O (18)

where we have used that §J = (m/w)3 E. Again we choose
8E = Me for the energy of the incident wave, and impose
(17) to simplify (18). The condition that 85, < O can be
expressed as

M26/2+M262+2M26_TM6V1+0[<0 (19)
w

Using (19), one directly derives the maximum frequency
®max for a scalar field incident on a nearly extremal Kerr-
MOG black hole parametrised as (17), that could overspin
the black hole into a naked singularity

m«1+ o

- Y - 2
® < Omax MOTero) (20)

@ Springer



19 Page 4 of 8

Eur. Phys. J. C (2020) 80:19

As we mentioned in the case of extremal black holes, the
condition (20) is not sufficient for overspinning to occur.
We should also demand that the frequency of the incom-
ing wave is larger than the limiting frequency for superra-
diance. If (w5 < max), there exists a range of frequen-
cies (ws1, wmax) Which can be chosen to overspin a nearly-
extremal Kerr-MOG black hole. To compare wg and wmax,
one has to express wg for a nearly-extremal black hole in
terms of the small parameter €. Notice that for the nearly-
extremal Kerr-MOG black hole parametrised as (16)

M?2 2—¢?
= —a? = 1 ! 21
Iy M+‘,1+oz at=M|1+¢€ o (21)
and
r2+a2:2./\/lr+— a M?
+ 1+«
EPYVEN R il 22)
- l+a  2(1+a)
which leads to
_ ma
wSl_r_Q"‘_—i—az
1 — 2
_ m(l —€’%) 23)
/ 2 o
IM(VTFa+evime— )

Though it is not quite manifest in Egs. (20) and (23), the
maximum frequency for an incident wave to overspin a
Kerr-MOG black hole is actually larger than the limiting
frequency for superradiance. To clarify this we have set
®max = (M/2M) f(«) and wg) = (m/2M)g(«) and plotted
f(a) and g(a) for € = € = 0.01, in the Fig. 1. The fre-
quencies wmax and wg) almost coincide for « = 0. However,
as « increases the range of frequencies that can be used to
overspin a Kerr-MOG black hole enlarges.

3 Backreaction effects

In a seminal paper, Will has argued that when test particles
approach the event horizon of the black holes, the angular
velocity of the event horizon increases due to the dragging
of inertial frames [54]. The change in the angular velocity is
estimated to be

Aw = — (24)
where 8 J is the angular momentum of the test particle or field,
and M is the mass of the black hole. We should note that, the

black hole itself does not acquire angular momentum before
the absorption of the test particle or field, in this process.

@ Springer
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Fig. 1 The graphs of f(«) and g(a) for € = €’ = 0.01. wyay is larger
than wg for @ > 0. wmax and wyg deviate from each other as « increases

If this were the case a nearly extremal black hole would be
overspun before the absorption of the test particle or field, as
the angular momentum parameter increases while the mass
is kept constant. However only the angular velocity of the
event horizon increases before the absorption. In particular,
one can have a black hole with zero angular momentum with
an event horizon with angular velocity given by (24), as stated
by Will.

The change in the angular velocity leads to a backreaction
in the scattering problems. Since the limiting frequency for
superradiance increases, the absorption of modes that could
lead to the over-spinning of the black hole can be prevented.
The backreaction effects in this form was analysed by Hod
in [28], who argued that the violation of Wccc due to the the
tunnelling of scalar particles derived in a previous work [26]
could be prevented as the superradiant limit increases. In this
section we calculate the backreaction effects for scalar test
fields scattering off Kerr-MOG black holes. We start with the
extremal case.

3.1 Backreaction effects for extremal black holes

In Sect. (2) we envisaged an extremal black hole interacting
with a test field which carries energy § E = Me, and angular
momentum §J = (m/w)SE. We derived that there exists
a range of frequencies wg] < w < wmax that lead to the
overspinning of the black hole, where

_m/T+a
= Mo
and

my/1+a
MMt

To calculate the backreaction effects, let us consider an
extremal black hole interacting with a test field with fre-
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quency o that is arbitrarily close to but slightly less then wy).
If « is larger than € for the black hole, the test field will be
absorbed by the black hole since w > wy, and it will be over-
spin the black hole into a naked singularity. However as the
test field approaches the black hole the angular velocity of
the event horizon will increase by an amount (§J)/ 4M3).
The limiting value for superradiance will increase by the
same amount. If the modified value of the superradiance limit
exceeds the frequency of the incoming field for @ >~ wmax,
it will exceed the incoming frequency even further for lower
values wg] < @ < ®max, since Aw will be larger. Therefore it
is critical to calculate the backreaction effects for @ >~ wmax,
for a certain «. Setting @ =~ wy], and §J = (m/w)SE, one
finds that

Aw — €2t (25)

IMV]1 +

Now we demand that the modified value of the superradiance
limit exceeds the frequency of the incoming field.

wsl + Aw > w (26)

Explicitly we demand that

m+/1+a €e2+¢€) m+/1 4+«
> (27)
MQRL+a) 4AMS1+a = MQ2+e)
For € = 0.01 the condition (27) is equivalent to
a <0.0299 ~ 3¢ (28)

We set m = 1 in in (27), since these modes have the highest
absorption probability ignoring the modes with m = 0 which
do not contribute to the angular momentum of the black hole
[55]. Thus, the backreaction effects prevent the overspinning
of extremal Kerr-MOG black holes if & < 0.0299.

It would be appropriate to elucidate the subject with a
numerical example. Let us envisage an extremal Kerr-MOG
black hole with « = 0.029 which is less than the critical
value derived in (28). For this black hole we find that

m m
Omax = 1 0.50467; wq = 049995 (29)

Ignoring backreaction effects, this black hole will be over-
spun into a naked singularity if it interacts with a test field
satisfying § = Me, and wg] < @ < wmax. For example if the
black hole interacts with a test field of energy §E = Me,
and frequency w = (m/M)0.5, one finds that

Sfin = (M +8E)? —(J +8))vV1+«a
= M?e® +2M%e — 81+ a = —0.00019M>  (30)

where we have used 6i, = 0 and §J = (m/w)SE. Since Sgp
is negative, the event horizon is destroyed and the spacetime
parameters represent a naked singularity after the absorption
of the test field. However, before the absorption of the test
field, the angular velocity of the horizon will increase by an
amount
8J 1
= —— = —0.00495 31

CTams T M G
Due to the dragging of the inertial frames, the superradiance
limit will be modified. For m = 1:

1 1
= — (0.49995 + 0.00495) = — 0.50490 32

S
Since the modified value of the superradiance limit is larger
than the frequency of the incident field (w ~ wy), the field
will not be absorbed by the black hole; thus the overspinning
of the extremal black hole will be prevented. If we choose a
smaller value for w for the frequency of the incident wave in
the range wg < ® < Wmax, Aw and a);l will be larger than
the values derived in (31) and (32), thus ; will exceed the
frequency of the incident wave even further. Therefore we
conclude that the backreaction effects prevent the overspin-
ning of the extremal Kerr-MOG black holes for ¢ < 0.0299.

3.2 Backreaction effects for nearly-extremal black holes

One can proceed the same way to calculate the backreac-
tion effects for nearly extremal black holes. The maximum
value for the frequency of a test field to overspin a nearly
extremal Kerr-MOG black hole, and the superradiance limit
was derived in (20) and (23). Again we demand that the mod-
ified value of the superradiance limit exceeds, the frequency
of the incoming field, so that the overspinning is prevented.
For nearly extremal black holes the increase in the superra-
diance limit is given by

5J €e(2+e+¢€
Ao= == ( ) (33)
aM AMJT +a

where weuse S E = Me,and §J = (m/w)3 E for the incom-
ing field. (¢’ is used to parametrise the closeness to extremal-
ity.) Again we have substituted the critical value @ >~ wpax, to
derive an expression for Aw. As in the case of extremal black
holes we demand that the modified value of the superradi-
ance limit exceeds the frequency of the incoming fields for the
challenging modes wg < @ < wmax. Setting € = ¢’ = 0.01,
one can derive that wg + Aw will be larger than wmayx if

a <0.0119 (34)

Therefore the backreaction effects prevent the overspinning
of Kerr-MOG black holes for which « < 0.0119. For a
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numerical example, let us consider a nearly extremal Kerr-
MOG black hole with @« = 0.011. For this black hole we find
that

m m
ws] = M 0.49297;  wmax = M0.49776 (35)

Ignoring backreaction effects, this black hole would be over-
spun into a naked singularity by a test field with frequency
ws] < W < wmax. However, the superradiance limit will be
modified by an amount

1
Aw = —0.00502 36
® = (36)

For m = 1, the modified value of the superradiance limit
will be (1/M)0.49799, which is larger than wm,y - Therefore
anearly extremal Kerr-MOG black hole parametrised as (16)
and (17) cannot be overspun by a test field, provided that o0 <
0.0119, if one considers the increase in the angular velocity
of the event horizon due to the interaction with the field. We
would like to note that the calculations in this section are valid
for €’ = 0.01. For smaller values of ¢’ the values derived for
Aw will approach the corresponding limit for extremal black
holes and the backreactions will work for greater values of
o approaching the value derived for extremal black holes.

4 The validity of the third law for Kerr-MOG black
holes

The laws of black hole dynamics which were proposed by
Bardeen, Carter, and Hawking are based on a connection
between thermodynamics and black hole dynamics [56]. In
this manner the area of the event horizon and the surface grav-
ity are analogous to the entropy and the temperature, respec-
tively. The identification of the area of the event horizon with
entropy entails that it should not be possible to decrease the
area of the event horizon, which had been previously proved
by Hawking assuming that no naked singularities exist in
the outer region [57]. Accordingly, it should not be possible
to drive a black hole to extremality which would be analo-
gous to decreasing the temperature to absolute zero. After a
decade Israel proved the third law of black hole dynamics
which states a nearly extremal black hole cannot be driven
to extremality in any continuous process [58]. An alternative
approach by Dadhich and Karayan also justified the validity
of the third law. They showed that the range of the allowed
energy and angular momentum ratios to drive a Kerr black
hole to extremality, pinches off as one gets arbitrarily close
to extremality [59].

Currently, the validity of the third law is justified for
Kerr, Kerr—Newman and Reissner-Nordstrom black holes.
The derivations by Hubeny, Jacobson—Sotiriou, and Diiztag—
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Semiz that nearly-extremal black holes can be overcharged
or overspun into naked singularities [4,5,16] should not
be interpreted as counter-examples to the third law. These
authors confirm that extremal black holes cannot be over-
charged/overspun, which implies that nearly extremal black
holes are driven beyond extremality by a discrete jump rather
than a continuous process. As one gets arbitrarily close to
extremality the allowed ranges of energy, angular momen-
tum, and/or charge for the test particle or field vanishes in
accord with the derivations of Dadhich and Karayan.

The analysis for the nearly-extremal Kerr-MOG black
holes in the previous section can be exploited to test the
validity of the third law. Let us consider a Kerr-MOG black
hole arbitrarily close to extremality, which corresponds to
the case ¢’ — 0. The maximum value for the frequency of
an incoming scalar field to overspin this Kerr-MOG black
hole, and the value of the superradiance limit approach their
corresponding values for the extremal case as €’ — 0

lim oy = lim — Y1 T my1+a
€—0 -0 MR +e€+¢€) M@Q2 +€)
37
. m my/1+a
m g = « \ MQ2+a)
2M («/1 +o— m)
(38)

A Kerr-MOG black hole arbitrarily close to extremality
would become extremal if it absorbed a test field with fre-
quency @ = wmax given in (37), while it would be over-
spun if @ < wmax as discussed in the previous section. Con-
trary to the case of the Kerr family of solutions, the interval
(wsl, wmax) does not pinch off as the black hole becomes
arbitrarily close to extremality. Therefore it first appears
that Kerr-MOG black holes can be continuously driven to
extremality by scalar test fields with frequency wmax, which
is larger than the superradiance limit wg even in the ¢’ — 0
limit. However we can calculate the increase in the superra-
diance limit as ¢’ — 0

2
Iim Aw = €@+

€—0 N AIM(1 + ) 39

which is the corresponding value derived for extremal black
holes. The calculations for backreactions imply that if @ <
0.02999 ~ 3¢ for nearly extremal black holes, they cannot
be driven to extremality by test fields, since the modified fre-
quency for the superradiance limit will exceed the frequency
of the incoming field which prevents its absorption. There-
fore the third law of black hole dynamics is valid for Kerr-
MOG black holes which are characterised by a deformation
parameter o < 0.03.
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5 Conclusions

In this work we applied a test of the weak cosmic censorship
conjecture in the interaction of Kerr-MOG black holes with
test fields. We restricted ourselves to the case of scalar fields
the energy-momentum tensor of which obey the weak energy
condition. Our analysis also exploits the fact that superradi-
ance occurs for scalar fields scattering off Kerr-MOG black
holes [52]. Superradiance is essential in a scattering process
as it determines the lower limit for the frequency of a wave
to ensure that it is absorbed by the black hole. In the absence
of such a limit the modes carrying low energy and relatively
high angular momentum can also be absorbed by the black
hole which reinforces the overspinning of the black hole. We
have first shown that both extremal and nearly-extremal Kerr-
MOG black holes can be overspun by test scalar fields with a
frequency slightly above the superradiance limit. The range
of the allowed frequencies for the incoming field is extended
as the modification parameter « increases. Next we employed
the backreaction effects based on the the increase in the lim-
iting frequency for superradiance, which was suggested by
Will [54]. We showed that the increase in the superradiance
limit, prevents the overspinning of extremal black holes for
which @ < 0.03 ~ 3e. We derived this relation by setting
€ = 0.01 in the inequality (27). The inequality (27) does not
allow us to find an analytical solution for « in terms of €.
However, one can numerical verify that the relation o < 3¢
continues to hold for smaller values of €. (A larger value
for € would disrupt the test field approximation.) The corre-
sponding value for nearly extremal black holes turns out to be
lower: « < 0.012. However we noted that, it approaches the
critical value derived for extremal black holes as the black
hole approaches extremality.

In a previous work we had found that, —though extremal
Kerr black holes can not— nearly extremal Kerr black holes
can be overspun by test fields [16]. We would like to note that
the derivation of backreaction effects carried out in this work,
directly apply to Kerr black holes with o« = 0. Therefore the
backreaction effects based on the argument by Will [54], also
reassure the validity of Wccce for Kerr black holes interacting
with test fields.

One would also expect the third law of black hole dynam-
ics to hold for Kerr-MOG black holes analogous to the Kerr
case. Our analysis for the nearly-extremal Kerr-MOG black
holes imply that the allowed range of frequencies for over-
spinning to occur does not pinch off even in the ¢ — 0
limit. Thus, neglecting backreaction effects, it first appears
that a nearly extremal Kerr-MOG black hole that is arbitrarily
close to extremality can be continuously driven to extremal-
ity by absorbing a test field with frequency wmax. However
the backreaction effects imply that test fields with frequency
® = wmax Will not be absorbed by nearly extremal Kerr-
MOG black holes arbitrarily close to extremality, provided

that ¢ < 0.03. Therefore the third law of black hole dynam-
ics is also valid for Kerr-MOG black holes with & < 0.03,
which includes the Kerr case with o« = 0.
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