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Abstract In order to estimate cosmic curvature from cos-
mological probes like standard candles, one has to mea-
sure the luminosity distance DL(z), its derivative with
respect to redshift D′

L(z) and the expansion rate H(z) at
the same redshift. In this paper, we study how such idea
could be implemented with future generation of space-based
DECi-hertz Interferometer Gravitational-wave Observatory
(DECIGO), in combination with cosmic chronometers pro-
viding cosmology-independent H(z) data. Our results show
that for the Hubble diagram of simulated DECIGO data act-
ing as a new type of standard siren, it would be able to con-
strain cosmic curvature with the precision of ΔΩk = 0.09
with the currently available sample of 31 measurements of
Hubble parameters. In the framework of the third generation
ground-based gravitational wave detectors, the spatial curva-
ture is constrained to be ΔΩk = 0.13 for Einstein Telescope
(ET). More interestingly, compared to other approaches aim-
ing for model-independent estimations of spatial curvature,
our analysis also achieve the reconstruction of the evolu-
tion of Ωk(z), in the framework of a model-independent
method of Gaussian processes (GP) without assuming a spe-
cific form. Therefore, one can expect that the newly emerged
gravitational wave astronomy can become useful in local
measurements of cosmic curvature using distant sources.

1 Introduction

The spatial curvature parameter Ωk is a very significant quan-
tity closely related to many fundamental issues in modern
cosmology, such as the structure and evolution of the Uni-
verse [1,2]. The most popular concept of the very early Uni-
verse undergoing an exponential phase of expansion pre-
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dicts that the radius of curvature of the Universe should
be very large, which means that cosmic curvature should
be close to zero [3]. Current cosmological observations,
e.g., the combined Planck 2018 cosmic microwave back-
ground (CMB) and baryon acoustic oscillation (BAO) mea-
surements, strongly favor this inflation theory and demon-
strate the flatness of the Universe (Ωk = 0.001 ± 0.002)
[4]. However, one should note that such stringent constraint
on the cosmic curvature is indirect and strongly relying on
the pre-assumption of a specific cosmological model (i.e.,
the cosmological constant plus cold dark matter model, usu-
ally abbreviated as ΛCDM model). In general, most studies
focusing on the cosmic curvature always assume that dark
energy is just a cosmological constant, while the Universe
is assumed flat in most of the dark energy studies. However,
recent analysis indicated that cosmological constant assump-
tion might cause tension between ΛCDM and dynamical
dark-energy model, while flat Universe assumption may lead
to an incorrect reconstruction of the dark energy equation of
state [5–10]. Besides, the combination of the Planck 2018
T T, T E, EE+lowE power spectra data alone slightly favor
a mildly closed Universe, i.e., Ωk = −0.044+0.018

−0.015 [4,11].
Any small change in the spatial curvature could have a huge
impact on the reconstructed history of the Universe. There-
fore, purely geometrical and model-independent methods of
inferring the spatial curvature have always been an important
issue in cosmology.

In particular, the distance sum rule [12], which charac-
terizes the relation between the distances of the background
source, the lens and the observer in the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric, has been proposed as a
model-independent method to constrain the curvature of the
Universe [13]. Such methodology was then applied to test the
validity to FLRW metric, based on the galactic-scale lensing
systems where strongly lensed gravitational waves and their
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electromagnetic counterparts can be simultaneously detected
[10]. More recently, Qi et al. [14], Zhou et al. [15] extended
the cosmic curvature analysis to higher redshift, using the lat-
est data sets of strong lensing systems [16,17] combined with
intermediate-luminosity quasars calibrated as standard rulers
[18]. Another straightforward method to constrain the cosmic
curvature has been proposed by Clarkson et al. [6], using the
expansion rate measurements H(z) and the transverse comov-
ing distances D(z). Such method is also model-independent,
which has been further developed with updated observational
SNe Ia data acing as standard candles [19–24,26–28], ultra-
compact structures in radio quasars acting as standard rulers
[10], and the Hubble diagram based on the non-linear rela-
tion between the UV and X-ray monochromatic luminosities
of quasars [29–31].

As a new window on the Universe, gravitational wave
(GW) signals create alternative opportunities. Namely, the
GW signals from inspiralling binary black holes (BH-BH)
and neutron stars (NS-NS) (or mixed BH-NS systems) can
be used as standard sirens providing the luminosity distances
in a direct way, not relying on the cosmic distance ladder
[32]. Compared with the observations of SNe Ia in the elec-
tromagnetic (EM) domain, the greatest advantage of GWs
is the independent calibration of luminosity distances. Some
recent studies have discussed the possibility of extending the
cosmic curvature test based on the simulated data of GW from
future gravitational wave detectors [33–35]. In this paper, we
will consider the reconstruction of cosmic curvature param-
eter Ωk at different redshifts [6], focusing on the standard
sirens accessible to the future space-borne GW detector, i.e.,
the DECi-hertz Interferometer Gravitational wave Observa-
tory (DECIGO), as well as the third generation GW ground-
based detector, i.e., the Einstein Telescope (ET). In the EM
domain, the recent measurements of Hubble parameters H(z)
are inferred from the differential ages of galaxies, i.e., cos-
mic chronometers (CC) acting as standard clocks. In order
to investigate the redshift dependence of Ωk without assum-
ing any specific functional form, the so-called Gaussian pro-
cesses (GP) [36] will also be applied to reconstruct the evolu-
tion of the curvature of the universe, which has been widely
used in recent works [37–41]. This paper is organized as fol-
lows. In Sect. 2, we give a brief introduction of the method-
ology and data used in this work. Our results and discussions
are presented in Sect. 3. Finally, the general conclusions are
summarized in Sect. 4.

2 Methodology and observational data

Under the assumption that the Universe is homogeneous and
isotropic on the large scales, the FLRW metric can be used
to describe its geometry as

ds2 = −dt2 + a2(t)

[
dr2

1 − Kr2 + r2(dθ2 + sin2θdφ2)

]
,

(1)

where t is the cosmic time and (r ,θ ,φ) are the comoving spa-
tial coordinates. The scale factor a(t) is the only gravitational
degree of freedom and its evolution (by virtue of the Ein-
stein’s equations) is determined by the matter and energy of
the Universe. The dimensionless curvature K = −1, 0,+1
corresponds to open, flat and closed Universe, respectively. In
such metric, the luminosity distance DL(z) can be expressed
as

DL(z) =

⎧⎪⎪⎨
⎪⎪⎩

c(1+z)
H0

√|Ωk | sinh
[√|Ωk|

∫ z
0

dz′
E(z′)

]
for ΩK > 0,

c(1+z)
H0

∫ z
0

dz′
E(z′) for ΩK = 0,

c(1+z)
H0

√|Ωk | sin
[√|Ωk|

∫ z
0

dz′
E(z′)

]
for ΩK < 0.

(2)

The dimensionless Hubble parameter E(z) is defined as
H(z)/H0, where H(z) is the Universe expansion rate and
H0 is the Hubble constant. The curvature parameter Ωk is
related to K as Ωk = −c2K/(a0H0)

2, where c is the speed
of light. The derivative of Eq. (2) will provide the cosmic cur-
vature Ωk , expressed by the Universe expansion rate H(z)
and transverse comoving distance D(z) as [6]

Ωk = [H(z)D
′
(z)]2 − c2

[H0D(z)]2 . (3)

The luminosity distance DL(z) is simply related to the trans-
verse comoving distance D(z) as D(z) = DL(z)/(1+z) [42],
while D

′
(z) = dD(z)/dz denotes the derivative with respect

to redshift z. In our analysis, we use the luminosity distance
as a function of redshift z based on simulated standard siren
data from DECIGO and ET to reconstruct D(z) and D

′
(z),

independently, and combine these two reconstructions with
independent H(z) measurements to derive Ωk .

2.1 Distance from GW standard siren DECIGO and ET

DECi-hertz Interferometer Gravitational-wave Observatory
(DECIGO) project proposed by Japan [43,44] is a future
space gravitational-wave antenna, whose currently most
attractive science objective is detecting the gravitational
waves from the inflation [45]. Unlike the ground-based
GW detectors (such as aLIGO and VIRGO), DECIGO was
designed most sensitive between 0.1 and 10 Hz to reach lower
frequency detection with drag-free spacecrafts. More impor-
tantly, this frequency range fills the gap between sensitivity
windows of ground based detectors and future LISA space-
borne detector. In particular, this opportunity would allow the
early detection (and measurements) of inspiralling sources
which would enter the ground-based detector a few years
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after. This would create unprecedented opportunity to pre-
cisely measure properties of such sources and to improve the
determination of their position on the sky. Aiming to improve
the detection sensitivity, DECIGO implements four clusters
of spacecraft, and each cluster consists of three spacecraft
with three Fabry–Perot Michelson interferometers, whose
arm length is 1000 km. The expected sensitivity is 10−25

Hz−1/2 for two clusters of DECIGO at the same position for
three years of mission [46]. Without any pre-assumptions
concerning cosmology, signals from inspiraling binary neu-
tron stars (NS-NS) and black holes (BH-BH) can provide
an absolute measurement of the luminosity distance [47,48].
The GW amplitude is related to the so-called chirp mass
(which can be measured from the GW signal’s phasing) and
the luminosity distance. Therefore, the luminosity distance
can be extracted from the amplitude and the rate of frequency
change. DECIGO will be able to detect the gravitational
waves from neutron star binaries even at a redshift of z ∼ 5
for five years of its mission and many intermediate-mass
black hole binary coalescences.

Focusing on the GW signals from the binary system with
component masses m1 and m2, one can define the chrip mass
Mc = Mη3/5, where M is the total mass of binary system
M = m1+m2 and η is symmetric mass ratio η = m1m2/M2.
In GW experiments, the Fourier transform of time domain
waveform can be computed as

h̃( f ) = A

DL(z)
M5/6

z f −7/6eiΦ( f ), (4)

where A is a geometrical average over the inclination angle of
the binary system A = (

√
6π2/3)−1, Mz – the so called red-

shifted chirp mass, is defined as Mz = (1+ z)Mc and DL(z)
is the luminosity distance. Φ( f ) is the frequency-dependent
phase caused by orbital evolution which is usually described
by post-Newtonian (PN) approximation (an approximation
to General Relativity in the weak-field, slow-motion regime)
of different order [49,50].

In order to estimate the uncertainty of the measurement
of the luminosity distance, one can use the following Fisher
matrix

Γab = 4Re
∫ fmax

fmin

∂ah̃∗
i ( f )∂bh̃i ( f )

Sh( f )
d f, (5)

where ∂a (∂b) is derivative with respect to parameter θa (θb).
The noise power spectrum Sh( f ) consists of the shot noise,
the radiation pressure noise and the acceleration noise. Based
on the mechanical parameters of the DECIGO tuned to the
0.1–10 Hz frequency window, i.e., the arm length 1000 km,
the output laser power 10 W with wavelength λ = 532 nm, the
mirror diameter 1m with its mass 100 kg, and the finesse of
Fabry–Perot Michelson interferometer cavity 10, the noise

power spectrum is fitted as [51]

Sh( f ) = 6.53 × 10−49

[
1 +

(
f

7.36Hz

)2
]

+4.45 × 10−51 ×
(

f

1Hz

)−4

× 1

1 +
(

f
7.36Hz

)2

+4.94 × 10−52 ×
(

f

1Hz

)−4

Hz−1. (6)

For the convenience of calculations, we assume equal mass
NS-NS binary system with m1 = m2 = 1.4 M�. Then
we have Mz = 1.22(1 + z)M� and η = 0.25. Therefore,
the luminosity distance is independent on other parameters
in the Fisher matrix and the instrumental uncertainty of the
measurement of the luminosity distance can be estimated as

σ instr
DL

=
√

Γ −1
aa . (7)

Concerning the uncertainty budget, the luminosity distance
precision per GW is taken as [52]

σDL =
√

(σ instr
DL

)2 + (σ lens
DL

)2. (8)

In our simplified case, σ instr
DL

� 2DL
ρ

, where ρ denotes the
signal-to-noise ratio (SNR) of DECIGO interferometers [53].
Meanwhile, the lensing uncertainty caused by the weak lens-
ing can be estimated as σ lens

DL
= 0.05zDL [54]. As a result,

the total uncertainty of DL is modeled as

σDL =
√(

2DL

ρ

)2

+ (0.05zDL)2 (9)

Finally, we employ the redshift distribution of the GW
sources observed on Earth expressed as [54]

P(z) ∝ 4πD2
c (z)R(z)

H(z)(1 + z)
, (10)

where Dc(z) is comoving distance, H(z) the expansion rate.
R(z) is the NS–NS coalescence rate, which according to [55,
56] can be approximated as:

R(z) =
⎧⎨
⎩

1 + 2z, z ≤ 1
3
4 (5 − z), 1 < z < 5
0, z ≥ 5.

(11)

In our simulation, we assume the flat ΛCDM as our fidu-
cial cosmological model with the matter density parame-
ter and the Hubble constant values (Ωm = 0.315, H0 =
67.4 km s−1 Mpc−1) taken afterPlanckCMB measurements
[4]. Recent analysis of [46] suggests that the space-based
GW detector DECIGO can detect up to 10,000 GW events
up to redshift z ∼ 5 in one year of operation. Thus, we
simulate a mock data of 10,000 GW events to be used for
the cosmic curvature constraint analysis. The redshift distri-
bution of our mock catalog is shown in Fig. 1. In order to
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Fig. 1 The scatter plot of the luminosity distances in the catalog of
10,000 simulated GW events detectable by the DECIGO

Fig. 2 The scatter plot of the luminosity distances in the catalog of
1000 simulated GW events observable by the third generation detector
ET

improve the reconstruction of D(z) we also simulate GW
events observable by the Einstein Telescope (ET), which
is the planned third-generation ground-based GW detector
[57]. Compared to the current advanced ground-based detec-
tors, ET was designed more sensitive between 1 Hz and 104

Hz. This and increased overall sensitivity, will expand the
detection space by three orders of magnitude [57]. As pro-
posed by the design document, it is made up of three collo-
cated underground detectors, each with 10 km arm and with
a 60◦ opening angle. Theoretically, ET will be able to detect
GWs from the NS-NS mergers up to the redshift z ∼ 2 and
BH-NS mergers up to the redshift of z ∼ 5 [52]. In our analy-
sis, we perform the Monte Carlo simulation of ET detectable
GW signals from NS-NS systems up to z ∼ 2. Specific sim-
ulation steps are similar to those used in [58,59]. The mock
catalog of 1000 simulated GW events observable by the ET
is displayed in Fig. 2.

Our goal is to employ Eq. (3) for the assessment of cos-
mic curvature. For this purpose we need not only DL(z) but
also the derivative of this function. Such derivative can be
reconstructed by many different methods. We have chosen

the following approach. First, we make an empirical fit to
the luminosity distance based on a third-order logarithmic
polynomial as in as in Risaliti & Lusso [29]

DP
L (z) = c

H0
ln(10)[x + a2x

2 + a3x
3 + O(x4)] (12)

where x = log(1 + z), a2 and a3 are two constants that need
to be fitted to the standard siren data sets. Compared to other
empirical fitting methods, such logarithmic parametrization
has an advantage of faster convergence at higher redshifts
(0 < z < 0). Let us remark that cosmography based on the
logarithmic polynomial expansion is expected to break down
at z > 2 and produce spurious effects as discussed in [70]. We
will discuss it further in the next section. For now, let us stress
that in the redshift range of H(z) on which we fit our cos-
mographic formula 12 the convergence is reasonable. More
specifically, to obtain the best-fit values of parameters and
their uncertainties, we use the Markov Chain Monte Carlo
(MCMC) method introduced by Foreman-Mackey et al. [60]
and implemented in the Python module called emcee.1 For
the standard siren data sets, the parameters a2 and a3 charac-
terizing the luminosity distance are optimized by minimizing
the χ2 objective function

χ2 =
n∑

i=1

[DGW
L − DP

L ]2

σ 2
GW

, (13)

where σ 2
GW can be obtained from the Eq. (10). The marginal-

ized probability distribution of each parameter and the cor-
responding marginalized 2-D confidence contours are pre-
sented in Figs. 3 and 4.

2.2 The expansion rate measurements H(z)

The expansion rate (i.e., the Hubble parameter H(z)) mea-
surements have been widely used in the research of the nature
of dark energy and the evolution of the Universe. The idea
of using the differential age evolution of passively evolving
galaxies has been proposed by Jimenez et al. [61] as a method
independent on any assumptions regarding the details of the
cosmological model. Namely, one can write the definition of
the expansion rate in the following form:

H(z) = ȧ

a
= − 1

1 + z

dz

dt
. (14)

The derivative of the redshift z with respect to cosmic time
t can be directly obtained by measuring the age difference
between the two galaxies at different redshifts. In the case of
early-type galaxies evolving passively on a timescale longer
than their age difference, certain features of their spectra,
such as the D4000 break enable us to measure the age differ-
ence of such galaxies. This is so-called differential age (DA)

1 https://pypi.python.org/pypi/emcee.
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Fig. 3 Marginalized constraints on a2 and a3 based on the standard
sirens catalog from the DECIGO

Fig. 4 Marginalized constraints on a2 and a3 based on the standard
sirens catalog from the third generation GW detector ET

or cosmic chronometer (CC) approach. There is also another
approach to obtain the H(z) data based on the radial baryon
acoustic oscillations (BAO) features from galaxy cluster-
ing [62–66]. However, the H(z) data obtained employing
such method are based on an assumed fiducial cosmological
model and the prior for the distance to the last scattering sur-
face from CMB observations [24]. Moreover, there exist a
deviation between those two H(z) compilations [25]. There-

fore, we do not use H(z) data obtained from BAO. Conse-
quently, we use only the latest CC measurements of H(z)
comprising totally 31 data-points covering the redshift range
0.070 < z < 1.965.

Besides using only a small sample of available H(z)
data to assess the cosmic curvature we also reconstruct the
H(z) function from the data. For this purpose we employ
a smoothing technique based on Gaussian processes (GP).
Such an approach, firstly proposed by [36], has been exten-
sively applied in various studies [22,41,67–69]. The crucial
issue in the GP technique is to determine the covariance func-
tion, with which one can derive the quantities at the redshifts,
where they have not been directly measured. In this work, we
use the squared exponential covariance function

k(x, x̃) = σ 2
f exp

(
− (x − x̃)2

2�2

)
, (15)

where x and x̃ are any two different points, � and σ f are two
hyperparameters, which characterize the bumpiness of the
function and can be optimized by GP with the observed data
set. � can be thought of as the characteristic length one has
to travel in x-direction to get a significant change in f (x),
whereas σ f denotes the typical change in the y-direction.
In contrast to the Matérn and Cauchy covariance function,
which are another popular choices, the squared exponential
covariance function has the advantage that it is infinitely dif-
ferentiable, which is useful for reconstructing the derivative
of the function [36,41]. By using the squared exponential
covariance function and the zero mean functionμ(z) (another
ingredient of GP approach), we can obtain the values of
data points at other redshifts which have not be observed.
This can effectively bridge the redshift gaps between cur-
rent data-points. Technically, we use the code called GaPP in
Python2 to derive our GP results. The latest measurements of
31 Hubble parameters obtained from CCs and the resulting
GP reconstruction of H(z) function are presented in Fig. 5.

Now, we combine the reconstructed D(z) and D′(z) with
the Hubble parameter H(z) to constrain the Ωk(z) according
to Eq. (3). Let us stress again that the standard sirens and
cosmic chronometers are independent of each other, which
indicates that such determination of the cosmic curvature is
model-independent.

3 Results and discussion

By applying the above described procedure to DL(z) recon-
structed from simulated catalog of standard sirens observable
by DECIGO and H(z) data from cosmic chronometers, we
obtain 31 independent measurements of the cosmic curva-
ture Ωk(z) at each redshift z, where H(z) is measured. They

2 https://github.com/carlosandrepaes/GaPP.
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Fig. 5 The latest measurements of 31 Hubble parameters from the
galaxy differential age method and the H(z) reconstruction function
with GP. Green dots denote CC measurements with corresponding 1-σ
uncertainties. Black line and blue region represent the reconstructed
H(z) function and its 1-σ uncertainty band

are shown in Fig. 6. The uncertainty bars displayed on this
figure were calculated from the uncertainty budget of D(z),
D′(z) and H(z).

One can summarize these measurements with the inverse
variance weighted mean

Ω̄k =
∑(

Ωk,i /σ
2
Ωk,i

)
∑

1/σ 2
Ωk,i

,

σ 2
Ω̄k

= 1∑
1/σ 2

Ωk,i

,
(16)

where Ω̄k stands for the weighted mean of cosmic curva-
ture and σΩ̄k

is its uncertainty. We find that, combination
of future DECIGO standard sirens and currently available
CC data gives Ω̄k = 0.004 ± 0.09. It is fully consistent
with the vanishing curvature – an assumption underlying our
GW data simulations and compatible with the constraints
obtained from the latest Planck CMB measurements [4]. Let
us recall that we are combining simulated and real data. The
precision of this estimate is comparable to the recent anal-
ysis of Cao et al. [10], which represented the precision of
ΔΩk ∼ 10−2 with 250 well-observed radio quasars. Such
conclusion is also well consistent with the cosmic curvature
derived from the strong lensing and supernova distance mea-
surements in the framework of another model-independent
test based on the distance sum rule [15].

When the current CC data are combined with forecasts for
the ET ground-based detector, one obtains Ω̄k = 0.009 ±
0.13. Individual reconstructed Ωk(z) are shown in Fig. 7.
Again the results are compatible with vanishing cosmic cur-
vature, however the precision of the final result is much
worse.

Since our simulated GW catalogs used to derive D(z)
and D′

L(z) are rich enough we attempted at dividing the
full sample into different redshift bins and assessed Ω̄k in

Fig. 6 31 measurements of the cosmic curvature parameter Ωk from
the standard sirens of GW space-based detector DECIGO and cosmic
chronometers. Inset in the upper right reveals more details

Fig. 7 31 measurements of the cosmic curvature parameter Ωk from
the standard sirens of GW third-generation ground-based detector ET
and cosmic chronometers. Inset in the upper right reveals more details

Table 1 Weighted average of Ωk in different redshift bins from the
standard siren of GW detector (DECIGO and ET) and standard clock
of cosmic chronometers H(z)

Redshift bins CC + DEC IGO CC + ET

0–2.0 0.004 ± 0.09 0.009 ± 0.13

0–0.5 −0.22 ± 0.63 −0.23 ± 0.74

0.5–1.0 −0.02 ± 0.27 −0.03 ± 0.34

1.0–1.5 0.45 ± 0.19 0.41 ± 0.24

1.5–2.0 −0.17 ± 0.12 −0.17 ± 0.17

each bin. More specific, we divide the H(z) measurements
into four groups, including 18 data points with redshifts
z < 0.5, 6 data points with redshifts 0.5 < z < 1.0, 4 data
points with redshifts 1.0 < z < 1.5 and 3 data points with
1.5 < z < 2.0. The cosmic curvature parameter obtained
in these sub-samples is presented in Table 1. Note that the
derived curvature is negative when z > 1.5, which is also
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Table 2 Weighted average of Ωk in different redshift bins from
CC+DECIGO based on fourth and fifth order logarithmic polynomial

Redshift bins 4th-order polynomial 5th-order polynomial

0–2.0 0.01 ± 0.10 0.0001 ± 0.11

0–0.5 −0.29 ± 0.66 −0.25 ± 0.66

0.5–1.0 −0.06 ± 0.29 −0.07 ± 0.28

1.0–1.5 0.46 ± 0.20 0.42 ± 0.22

1.5–2.0 −0.15 ± 0.13 −0.16 ± 0.15

consistent with the results from the model-dependent con-
straints in the literature [22].

Finally, as mentioned in [70] the third-order logarithmic
polynomial cannot be trusted at high redshift range (espe-
cially z > 2 region) and the influence of the breakdown
of the validity of log-polynomial expansion was discussed in
that paper. In order to check the performance of our approach
based on the third order expansion and to see how it relates
to the findings of [70], we repeated the whole procedure
with 4th and 5th-order logarithmic polynomial expansions
for different redshift bins. Corresponding results are listed in
Table 2. It can be seen that next orders of expansion give the
results compatible to the third order one. Of course, the order
at which we truncate the logarithmic polynomial expansion
affects the final result, but up to z ≈ 2 the deviations are not
dramatic, which is consistent with previous investigations
[70,71].

Moreover, we performed the Ωk(z) reconstruction using
not the point (or binned) CC data but the H(z) reconstruction
using a model-independent smoothing technique of Gaus-
sian processes [36]. Figure 8 displays such reconstructed Ωk

parameter as a function of redshift for two different scenarios:
combined CC + DECIGO data and CC + ET data. We expect
that as the precision of the future data improves (especially
the Hubble parameter H(z) based on the full sky BAO survey
up to redshift z ∼ 5 [3]), our approach will yield an even more
accurate determination of Ωk , especially at higher redshifts
[38]. We also repeated the Ωk reconstruction with cosmogra-
phy based on 4th and 5th-order log polynomial expansions.
The results turned out indistinguishable from those shown in
Fig. 8. Certainly, the impact of the breakdown of polynomial
expansions should be investigated before any cosmological
applications especially involving data at high redshifts. This
would be particularly important in the precision cosmology
era.

4 Conclusions

In this paper, we applied a model-independent technique to
constrain the cosmic curvature parameter Ωk at different red-
shift points directly, based on the idea expressed by Clarkson

Fig. 8 Gaussian process reconstruction of Ωk obtained from the com-
bined data sets of H(z) + DEC IGO (upper) and H(z) + ET (lower).
The blue regions are the 68% C.L. of the reconstructions

et al. [6]. Because currently we do not have samples of stan-
dard candles (DL(z) measurements) rich enough to imple-
ment this method, we used simulations of standard sirens
data obtainable from DECIGO and ET future space-borne
and ground-based detectors. They are expected to register
O(104) NS-NS inspirals up to z ∼ 5 or O(104) such events
up to z ∼ 2, respectively. The second necessary ingredient
of this method are independently obtained measurements of
expansion rates at different redshift. For this purpose we used
the current data obtained from passively evolving galaxies
(CC) covering the redshift range of 0.07 < z < 2.

Firstly, from simulated DL samples representing future
standard siren observations (DECIGO and ET) we recon-
structed the transverse comoving distance D(z) and its
derivative D′(z) with respect to redshift z. In order to achieve
this goal not relying on any specific cosmological model, we
used the third-order logarithm polynomial approximation of
DL(z) with undetermined coefficients, which could be opti-
mized numerically. Then, one was able to directly calculate
the curvature parameter Ωk combining these results with the
expansion rate H(z) measurements obtained from a sample
of cosmic chronometers.
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We found that the cosmic curvature could be constrained
as Ωk = 0.004 ± 0.09 when the DECIGO detected standard
sirens and cosmic chronometers were used. When the stan-
dard siren (ET) is considered, the cosmic curvature estimate
isΩk = 0.009±0.13. In other words the expected precision is
ΔΩk = 10−2 with the DECIGO+CC and ΔΩk = 10−1 with
the ET+CC. Compared to the latest model-independent esti-
mations of the spatial curvature using the distance sum rule
method [15], our results suggest a considerable improvement
in precision when the future GW observatories provide rich
statistics of DL(z) measurements. In order to surpass the lim-
itations of small CC sample we reconstructed H(z) function
using GP technique and used it together with reconstructed
DL(z) and D′

L(z) to investigate Ωk(z). This is important to
look if the current data, even though scarce, yet contain hints
that cosmic curvature could locally deviate from the overall
curvature assumed in FLRW metric. Such possibilities could
be expected as a result of back-reaction of inhomogeneities,
which entered non-linear regime during the structure forma-
tion [72].

Summarizing, the newly emerged gravitational wave
astronomy can acquire another dimension of being useful
in local measurements of cosmic curvature using distant
sources. Such approach, essentially different from doing fits
of globally defined (at the level of FLRW metric) curvature
parameter. Possible deviations between these two approaches
might be an extremely useful hints of phenomena and pro-
cesses overlooked in current cosmological studies.
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