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Abstract Gravitational critical collapse in the Einstein-
axion-dilaton system is known to lead to continuous self-
similar solutions characterized by the Choptuik critical expo-
nent γ . We complete the existing literature on the subject by
computing the linear perturbation equations in the case where
the axion-dilaton system assumes a parabolic form. Next, we
solve the perturbation equations in a newly discovered self-
similar solution in the hyperbolic case, which allows us to
extract the Choptuik exponent. Our main result is that this
exponent depends not only on the dimensions of spacetime
but also the particular ansatz and the critical solutions that
one started with.

1 Introduction

A well-known property of black holes as the end state of grav-
itational collapse is that they are completely defined by only
three numbers: their mass, angular momentum, and charge.
Choptuik revealed in [1] that there may be a fourth univer-
sal quantity characterizing the collapse itself. Following the
study of Christodolou in [2–4] on the spherically symmet-
ric collapse of scalar fields, Choptuik discovered a critical
behavior illustrating some sort of discrete spacetime self-
similarity. Expressing the amplitude of the scalar field fluc-
tuation by the number p, he found that p should exceed a
critical value pcrit in order to form a black hole. Further-
more, for values of p above the threshold, the mass of the
black hole Mbh (equivalently, its Schwarzschild radius rS)
exhibits the scaling law

rS(p) ∝ Mbh(p) ∝ (p − pcrit)
γ , (1)
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where the Choptuik exponent was found to be γ � 0.37
[1,5,6] in 4d for a single real scalar field. Note that in general
dimensions (d ≥ 4) the definitions get changed [7,8]

rS(p) ∝ (p − pcrit)
γ , Mbh(p) ∼ (p − pcrit)

(D−3)γ . (2)

Along the same lines, diverse numerical simulations with
different matter fields have been carried out [9–14]. For
example the critical collapse of a perfect fluid was performed
in [7,15–17]. In [16] the authors found γ � 0.36 and hence
it was conjectured in [18] that γ may be universal for any
matter field that is coupled to four dimensional gravity. Later
on, in [7,17,19] it was discovered that the Choptuik expo-
nent can be explored by dealing with perturbations of the
self-similar solutions. In order to do so, one needs to perturb
any field h (be it the metric or the matter content) as follows

h = h0 + ε h−κ (3)

where the perturbation h−κ has scaling −κ ∈ C which labels
the different modes. Among the allowed values of κ , we
define the most relevant mode κ∗ as the highest value of
Re(κ).1 It was shown in [7,17,19] that κ∗ is related to the
Choptuik exponent by

γ = 1

Reκ∗ . (4)

In [20] the case of axial symmetry had been studied and the
critical collapse in the presence of shock waves was reviewed
in [21]. The case of axion-dilaton critical collapse coupled to
gravity in four dimension was first examined in [22] which
found the value γ � 0.2641, hence raising serious doubts
concerning the universality of γ in four dimensions.

One motivation to study critical collapse in the axion-
dilaton system is the AdS/CFT correspondence [23–26],

1 The minus sign indicates a growing mode near the black-hole forma-
tion time t → 0.
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relating Choptuik exponent, the imaginary part of quasinor-
mal modes, and the dual conformal field theory [27]. Other
motivations include the holographic description of black hole
formation [8] as well as the physics of black holes and its
applications [28]. In type IIB string theory one is often inter-
ested in exploring the gravitational collapse on spaces that
can asymptotically approach to AdS5 × S5 where the mat-
ter content is described by the axion-dilaton system and the
self-dual 5-form field.

The entire families of distinguishable continuous self sim-
ilar solutions of the Einstein-axion-dilaton system in four
and five dimensions for all the three conjugacy classes of
SL(2,R) were recently explored in [31] that generalized the
previous efforts done in [32,33]. Based on some robust ana-
lytic and numerical techniques in [34], we did perturb criti-
cal solution of four-dimensional elliptic critical collapse and
were able to recover the known value [22] of γ ∼ 0.2641.
Hence this provides strong confidence in our ability to obtain
the other critical exponents in different dimensions as well
as for different classes of solutions.

In this article, after a brief recap on self-similar solutions
to the Einstein-axion-dilaton system, we set up a linear per-
turbation analysis which will allow us to extract the Choptuik
exponent in any dimensions. The new methodology that we
employ is quite generic and could be applied to other mat-
ter contents as well. Using this framework, we derive the
perturbation equations in all conjugacy classes of SL(2,R),
and particularly in the parabolic case which was not studied
before. We extract the Choptuik exponent in a new branch
of the 4d hyperbolic class of solutions and find that its value
is different from the other branches of solutions. Thus, our
results cast doubts concerning the universality of the Chop-
tuik exponent.

2 Self-similar solutions to Einstein-axion-dilaton
configuration

The Einstein-axion-dilaton system that coupled to gravity in
d dimensions is defined by the following action

S =
∫

dd x
√−g

(
R − 1

2

∂aτ∂a τ̄

(Imτ)2

)
. (5)

that can be described by the effective action of type II string
theory [35,36] where the axion-dilaton is defined by τ ≡
a + ie−φ . This action enjoys the SL(2,R) symmetry

τ → Mτ ≡ ατ + β

γ τ + δ
, (6)

where α, β, γ , δ are real parameters satisfying αδ −βγ = 1.
It was known that once quantum effects are taken into account

the SL(2,R) symmetry does reduce to SL(2,Z) and this S-
duality was also believed to be a non-perturbative symmetry
of IIB string theory [37–39]. Now from the above action one
can read off the equations of motion

Rab = T̃ab ≡ 1

4(Imτ)2 (∂aτ∂b τ̄ + ∂a τ̄ ∂bτ), (7)

∇a∇aτ + i∇aτ∇aτ

Imτ
= 0. (8)

We assume spherical symmetry on both background and per-
turbations so that the general form of the metric in d dimen-
sions is

ds2 = (1 + u(t, r))(−b(t, r)2dt2 + dr2) + r2d�2
q , (9)

τ = τ(t, r) , q ≡ d − 2 , (10)

where d�2
q is the angular part of the metric in d spacetime

dimensions. A scale invariant solution is found by requir-
ing that under a spacetime dilation (or scale transforma-
tion), (t, r) → (�t,�r), the line element gets changed as
ds2 → �2ds2. Thus, the metric functions should be scale
invariant, i.e. u(t, r) = u(z), b(t, r) = b(z), z ≡ −r/t .
Since the action (5) is invariant under the SL(2,R) transfor-
mation (6), τ only needs to be invariant and up to an SL(2,R)

transformation,

τ(�t,�r) = M(�)τ(t, r). (11)

We call a system of (g, τ ) respecting the above properties
a continuous self-similar (CSS) solution. Note that different
cases do relate to various classes of dM

d�

∣∣
�=1 [31], so that τ

can take three different forms,

τ(t, r) =

⎧⎪⎪⎨
⎪⎪⎩

i 1−(−t)iω f (z)
1+(−t)iω f (z)

, elliptic

f (z) + ω log(−t), parabolic
1−(−t)ω f (z)
1+(−t)ω f (z) , hyperbolic

(12)

where ω is an unknown real parameter and the function f (z)
must satisfy | f (z)| < 1 for the elliptic case and Im f (z) > 0
for the other two cases. Note that one can show that the the
ansatz τ(t, r) = (−t)ω f (z) also leads to the same equa-
tions of motion for hyperbolic case (it is simply a confor-
mal transformation of τ ). If we replace the CSS ansätze in
the equations of motion we then get a differential system of
equations for u(z), b(z), f (z). Due to spherical symmetry
one can show that u(z) can be expressed in terms of b(z) and
f (z) so that eventually we are left out with some ordinary
differential equations (ODEs)

b′(z) = B(b(z), f (z), f ′(z)), (13)

f ′′(z) = F(b(z), f (z), f ′(z)). (14)
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The above equations have five singularities [32] located at
z = ±0, z = ∞ and z = z± where the last singularities
are defined by b(z±) = ±z±. The latter correspond to the
homothetic horizon and it can be shown that z = z+ is just a
mere coordinate singularity [22,32], hence τ is regular across
it which translates back to the finiteness of f ′′(z) as z → z+.
Now one may observe that the vanishing of the divergent part
of f ′′(z) gives us a complex valued constraint at z+ which we
denote by G(b(z+), f (z+), f ′(z+)) = 0 where the explicit
form of G was given in [31].

Using regularity at z = 0 and some residual symmetries
one obtains the initial conditions b(0) = 1, f ′(0) = 0

f (0) =
⎧⎨
⎩
x0 elliptic (0 < x0 < 1)

i x0 parabolic (0 < x0)

1 + i x0 hyperbolic (0 < x0)

(15)

Here x0 is a real parameter. Hence, we have two con-
straints (the vanishing of the real and imaginary parts of G)
and two parameters (ω, x0). The discrete solutions in four and
five dimensions were found in [34]. These solutions are con-
structed by integrating numerically the equations of motion.
For instance, for the four dimensional elliptic case just one
solution is determined [32,40] as

ω = 1.176, | f (0)| = 0.892, z+ = 2.605 (16)

To deal with self-similar solutions for parabolic cases, the
following remarks are in order. First, we have an additional
symmetry as follows

ω → Kω, f (z) → K f (z), K ∈ R+ (17)

then τ also transforms as τ → K τ , which means that if
(ω, Im f (0)) is a solution, so is (Kω, K Im f (0)). The reason
behind it is that all equations of motion and the constraint
G(ω, Im f (0)) are invariant under this new scaling. There-
fore, the only real unknown parameter for parabolic class is
the ratio ω/Im f (0). We then need to look for the zeroes of
G(ω, Im f (0)) for only a real parameter ω/Im f (0). Hence
we just set Im f (0) = 1. For the five dimensional parabolic
case, we draw below the plot of the zeroes of the real and
imaginary parts of G(ω, 1).

From Fig. 1 in five dimensions we might note to the tiny
value of |G| for a specific value of ω. This may be related
to the only possible solution ray, but numerical accuracy is
insufficient to assess it with certainty. It is given by

|G| ∼ 0.006, ω ∼ 1.65. (18)

Note that remarks about the higher dimensional parbolic
solutions are given in [41]. On the other hand three different
solutions for the hyperbolic case in four dimensions were

Fig. 1 The plot of absolute value (blue), real and imaginary parts
(orange) of G(ω, 1) for the five dimensional parabolic case

Table 1 The three different
solutions in 4d hyperbolic case
were found in [34]

4d hyperbolic
ω Im f (0) z+

α 1.362 0.708 1.440

β 1.003 0.0822 3.29

γ 0.541 0.0059 8.44

determined in [34]. These three solutions denoted by α, β

and γ are summarized in Table 1.
Making use of the root-finding procedure, we also identify

a fourth solution δ for the four-dimensional hyperbolic class
(with accuracy less than the other solutions and G ∼ 10−5)
whose parameters are given by

ω = 0.6404, Im f (0) = 0.0015, z+ = 19.2923 (19)

where the graphical representation can be seen in [41].

3 Perturbative analysis

Here we derive the perturbation equations in general dimen-
sions. We will apply our method for the parabolic case, but
it could be taken as an extensive method which holds for all
matter content as well. Note that we have taken some of the
steps from [42] while with some algebraic calculations we
are able to remove u(t, r) and its derivative from the actual
computations.2 We perturb the exact solutions h0 (where h
denotes either b, u or f ) found in Sect. 2 according to

h(t, r) = h0(z) + ε h1(t, r) (20)

where ε is a small number. If we expand all the equations
in powers of ε, then the zeroth order part gives rise to back-
ground equations already studied in Sect. 2 and the linearized
equations for the perturbations h1(t, r) are related to linear

2 Similar perturbations of spherically symmetric background solutions
for Horava Gravity were also explored in [43].
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terms in ε. Let us consider the perturbations of the form

h(z, t) = h0(z) + ε(−t)−κh1(z), (21)

One finds the spectrum of κ by solving the equations for
h1(z) and indeed the general solution to the first-order equa-
tions is obtained with the linear combination of these modes.
We want to find the mode κ∗ with largest real part (assuming
a growing mode for t → 0, i.e Reκ > 0) that is related to
the Choptuik exponent by [7,17,19]

γ = 1

Reκ∗ (22)

Note that just like the four dimensional elliptic case, for sim-
plicity we consider only real modes κ∗. It can be shown
that the values κ = 0 and κ = 1 are gauge modes with
respect to global U (1) re-definitions of f and time transla-
tions respectively, see Section 3.1.1 of [34]. These modes
should be excluded from the computations.

3.1 Linearized equations of motion in any dimension for
the parabolic class

Let us apply this program to the parabolic case and explore
all the linearized perturbations in arbitrary dimension d =
q + 2 ≥ 4. One applies the perturbation ansatz (21) to all the
functions u, b, τ as

u(t, r) = u0(z) + ε (−t)−κu1(z), (23)

b(t, r) = b0(z) + ε (−t)−κb1(z), (24)

τ(t, r) = f (z) + ω log(−t), (25)

f (t, r) ≡ f0(z) + ε(−t)−κ f1(z). (26)

One calculates the Ricci tensor for the following metric

ds2 = (1 + u)(−b2dt2 + dr2) + r2d�2
q , (27)

where b and u should be replaced by the perturbed quanti-
ties (23), (24).

The zeroth-order and first-order parts of the Ricci tensor
are obtained from

R(0)
ab = lim

ε→0
Rab(ε), (28)

R(1)
ab = lim

ε→0

dRab(ε)

dε
. (29)

Likewise one does the same for the matter content, applying
the axion-dilaton perturbations (25), (26) so that

T̃ (0)
ab = lim

ε→0
T̃ab(ε), (30)

T̃ (1)
ab = lim

ε→0

dT̃ab(ε)

dε
. (31)

The Einstein field equations should be held order by order
hence

R(0)
ab = T̃ (0)

ab , R(1)
ab = T̃ (1)

ab . (32)

We now use some of the above equations to remove u(t, r)
and its derivatives from the other equations. Indeed by using
R(0)
tr = T̃ (0)

tr we remove u′
0(z), R(0)

i j = T̃ (0)
i j = 0 elim-

inates u0(z) (where i, j denote indices on the (d − 2)-
sphere), R(1)

tr = T̃ (1)
tr also removes u′

1(z), where eventually

R(1)
i j = T̃ (1)

i j = 0 is used to actually remove u1(z). From now
on we also remove the z argument of all functions, so that

qu′
0

2(1 + u0)
= ω( f ′

0 + f̄ ′
0) − 2z f̄ ′

0 f
′
0

( f0 − f̄0)2
, (33)

u0 = zb′
0

(q − 1)b0
, (34)

u1 = − (q − 1)b1u0 − zb′
1

(q − 1)b0
. (35)

Since the final form of u′
1(z) is complicated we will

not write it here. Therefore, u0, u′
0, u1, u′

1 are completely
expressed for all equations in terms of other functions. Using
the following combination of temporal and radial equations
of motion

C(ε) ≡ Rtt + b2 Rrr − T̃t t − b2 T̃rr = 0, (36)

we also remove the first derivative terms in b(t, r). Indeed
we recover the zeroth-order equation as follows

b′
0 = −

2
((
z2 − b2

0

)
f ′
0

(
z f̄0

′ − ω
)

+ ω
((
b2

0 − z2
)
f̄0

′ + ωz
))

qb0( f0 − f̄0)2
,

(37)

where the overbar on f0 denotes complex conjugation. In the
same way the first correction is defined by

dC(ε)

dε

∣∣
ε=0 = 0, (38)

which is an equation relating b′
1 to b0, b′

0 f0, f ′
0, f ′′

0 , and to
the other perturbations b1, f1, f ′

1, and which is really linear
in all perturbations. In the parabolic case this equation takes
the following form

(L1)b
′
1 = r((t − qt)b0 + rb′

0)

(
− qt3b1b′

0

r

+ qκt4b0b1b′
0

r(t − qt)b0 + r2b′
0

+ 4t2b0b1 f ′
0 f̄

′
0

s2

+4t2b2
0 f ′

0 f̄
′
0(− f1 + f̄1)

s3

123
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+4t2b2
0( f1 − f̄1)(tω + r f ′

0) f̄
′
0

rs3

+2t2b2
0 f ′

1 f̄
′
0

s2 + 2t2b2
0 f̄ ′

0(κt f1 − r f ′
1)

rs2

+4t2b2
0( f1 − f̄1)(tω + r f̄ ′

0) f
′
0

rs3

−4( f1 − f̄1)(tω + r f ′
0)(tω + r f̄ ′

0)

s3

−2t2b2
0 f ′

1(tω + r f̄ ′
0)

rs2

+2(−κt f1 + r f ′
1)(tω + r f̄ ′

0)

s2

−4t2b0b1(tω f̄ ′
0 + f ′

0(tω + 2r f̄ ′
0))

rs2

+2t2b2
0 f ′

0 f̄
′
1

s2

−2t2b2
0(tω + r f ′

0) f̄
′
1

rs2 + 2t2b2
0 f ′

0(κt f̄1 − r f̄ ′
1)

rs2

+2(−κt f̄1 + r f̄ ′
1)(tω + r f ′

0)

s2

)
, (39)

with

L1 = qt3b0((κ − q + 1)tb0 + rb′
0), s = ( f0 − f̄0). (40)

The perturbations are also scale invariant, thus making the
coordinate change (t, r) → (t, z), the factors of t cancels out.
We now introduce the perturbation ansätze in the τ equation
of motion (8). Replacing b′

0 according to (37) and solving
for f ′′

0 , one recovers the second order background equation
for f0,

qz
(
z2 − b2

0

)
( f0 − f̄0)

2 f ′′
0

= b2
0 f ′

0

(
2z f ′

0

(
z f̄0

′ − ω
)

− 2q f0
(
z f ′

0 + q f̄0
)

+2qz f̄0 f
′
0 + q2 f 2

0 − 2ωz f̄0
′ + q2 f̄0

2)
+z

(
2ωz f̄0

′ (
ω − z f ′

0

)

+2q f0
( (

ω − z f ′
0

)2 − f̄0
(
ω − 2z f ′

0

) )
−2q f̄0

(
ω − z f ′

0

)2

+q f̄0
2 (

ω − 2z f ′
0

) + q f 2
0

(
ω − 2z f ′

0

) )

+2z3

b2
0

(
ω − z f ′

0

)2
(
ω − z f̄0

′)
. (41)

Going to first order, the linearized equation for f ′′
1 is

(L2) f
′′
1 =

(
t2κ(1 + κ)b0 f1 − 2t2b0b1b

′
0 f

′
0

−t2b2
0b

′
1 f

′
0

+(κtb1 − rb′
1)(tω + r f ′

0)

−2b1(t
2ω2 + 2r tω f ′

0 + (r2 − t2b2
0) f

′2
0 )m0

−2b0( f1 − f̄1)(−t2ω2 − 2r tω f ′
0

+(−r2 + t2b2
0) f

′2
0 )m2

0

−2r t (1 + κ)b0 f
′
1 + qt3b3

0 f
′
1

r
−t2b2

0b
′
0 f

′
1−rb′

0(−tκ f1+r f ′
1)+m04b0

(
t2b0b1 f

′2
0

+κt f1(tω + r f ′
0) + t2b2

0 f ′
0 f

′
1 − r(tω + r f ′

0) f
′
1

)

+3t2b2
0b1(qt f ′

0 − r f ′′
0 )

r
− b1(t

2ω

+2r t f ′
0 − r2 f ′′

0 )

)
, (42)

where L2 = −r2b0 + t2b3
0 and m0 = 1

f0− f̄0
. This equation

is also scale-invariant. By integrating numerically the unper-
turbed equations, and also substituting b′

1 from Eq. (39) , we
derive the ordinary linear differential equations as follows

b′
1 = B1(b1, f1, f ′

1), (43)

f ′′
1 = F1(b1, f1, f ′

1). (44)

B1 and F1 are indeed functions linear in the perturbations
that have however non-linear dependence on the unperturbed
solution. The perturbed equations are also singular at z = 0
and b2(z) = z2. The perturbation equations for hyperbolic
case were derived in [34] where the modes are explored by
finding the κ values that are related to smooth solutions of
the perturbed equations (43), (44) which need to satisfy the
appropriate boundary conditions, which we will now discuss.

3.2 Boundary conditions for perturbations

We now turn to boundary conditions needed to solve
Eqs. (43), (44). First of all at z = 0 we rescale the time
coordinate, so that b1(0) = 0, and also using the regular-
ity condition for the axion-dilaton at z = 0 we find that
f ′
1(0) = 0 so that the freedom in f is reduced to f1(0) which

is an unknown complex parameter. We also demand that at
z+ (we recall that z+ is defined by the equation b(z+) = z+)
all equations and perturbations be regular so that all the sec-
ond derivatives ∂2

r f (t, r), ∂r∂t f (t, r), ∂2
t f (t, r) should be

finite as z → z+. Hence, f ′′
0 (z) and f ′′

1 (z) are also finite as
z → z+. For brevity, we introduce β = b0(z)− z and rewrite
Eqs. (42)–(41) as follows

f ′′
0 (β) = 1

β
G(h0) + O(1), (45)

f ′′
1 (β) = 1

β2 Ḡ(h0) + 1

β
H(h0, h1|κ) + O(1), (46)

where it is understood that h0 = (b0(z+), f0(z+), f ′
0(z+)),

h1 = (b1(z+), f1(z+), f ′
1(z+)). The vanishing unperturbed

123
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Fig. 2 Behaviour of arcsinh(det A(κ)) as a function of κ for the unique four-dimensional elliptic critical solution. For clarity, we plot
arcsinh(det A(κ)) in order to limit the range of values

Fig. 3 Behaviour of arcsinh(det A(κ)) as a function of κ for the fourth solution of 4 dimensional hyperbolic case, denoted 4Hδ. For clarity, we
plot arcsinh(det A(κ)) in order to limit the range of values

complex constraint is given by G(h0) = 0 at z+, and we
checked that it implies Ḡ(h0) = 0 at z+. Hence we are left
just with the complex-valued constraint H(h0, h1|κ) = 0.
Finally we solve this constraint for f ′

1(z+) in terms of f1(z+),
b1(z+), κ and h0. Thus this condition does reduce the free
parameters at z+ to just a real number b1(z+) and a complex
f1(z+). Finally we will have 6 unknowns including κ and
the following five-component vector:

Table 2 Choptuik exponents for the two last branches of solutions of
the 4 dimensional hyperbolic class

Solution κ∗ γ Failure region κsing Comments

4Hδ 2.5456 0.393 1 − 1.58 1.3304 See Fig. 4

4Hγ 2.293 0.436 1 − 1.5 1.32 See Fig. 5

X = (Re f1(0), Im f1(0), Re f1(z+), Im f1(z+), b1(z+))

(47)

123
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Fig. 4 A zoom on the last crossing of the plot of Fig. 3

Fig. 5 The behaviour of arcsinh(det A(κ)) for the 4Hγ solution near the last crossing

We also have the linear ODE’s Eqs. (43), (44) whose total
real order is five. Let us now briefly explain the numerical
procedure. Given a set of boundary conditions X , we inte-
grate from z = 0 to an intermediate point zmid and similarly
we integrate backwards from z+ to zmid. Finally we collect
the values of all functions (b1, Re f1, Im f1, Re f ′

1, Im f ′
1) at

zmid and encode the difference between the two integrations
in a “difference function” D(κ; X). By definition, D(κ; X)

is linear in X thus it has a representation as a matrix form

D(κ; X) = A(κ)X (48)

where A(κ) is a 5×5 real matrix depending on κ . So we need
to just find the zeroes of D(κ; X) and this can be achieved

by evaluating det A(κ) = 0. We carry out the root search
for the determinant as a function of κ where the root with
the biggest value will be related to the Choptuik exponent
through Eq. (22). It is worth highlighting one last point: the
perturbed equations of motion are singular whenever the fac-

tor W =
(
κ + 1 − q − z

b′
0

b0

)
in the denominator vanishes, so

that the numerical procedure fails at particular point. We can
get an estimate for the values of κ giving rise to this singular
behaviour as follows,

0 = W
∣∣
z=z+ = κsing

+1 − q − b′
0(z+) ⇒ κsing = q − 1 + b′

0(z+).

(49)
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Table 3 Partial results for the Choptuik exponents for the 4 and 5 dimensional elliptic and hyperbolic classes

Solution κ∗ γ Failure region κsing Comments

4E 3.7858 0.2641 1 − 1.4 1.224 See Fig. 2

4Hα 1 − 1.5 0.66 − 1 1 − 1.5 1.50 κ∗ likely inside failure region

4Hβ 1 − 1.55 0.64 − 1 1 − 1.55 1.4 κ∗ inside failure region

5Eα 1.186 0.843 2 − 2.25 2.21

5Hα 1.546 0.647 2.1 − 2.3 2.43

However, this apparent problem does not affect our evalua-
tion of the critical exponent because in most cases the most
relevant mode κ∗ lies outside that particular failure region.

4 Results

In [34] we had already tested the above techniques and
were able to derive the critical exponent for the unique
four-dimensional elliptic solution. For completeness we have
drawn the behaviours of det A(κ) near the last crossing of the
horizontal axis in Fig. 2. The position of the crossing is found
to be κ∗

4E ≈ 3.7858, that gives rise to the Choptuik expo-
nent γ4E ≈ 0.2641 which is in agreement with [40]. Notice
that for this solution, κsing = 1.224, and the integration fails
around 1 � κ � 1.4, which is well below the location of
the most relevant mode as it is seen in a range of κ values
in Fig. 2, where Mathematica was not able to complete the
computation of det A.

In the 4d hyperbolic case, there are four branches of solu-
tions that we denote by 4Hα, 4Hβ, 4Hγ and 4Hδ respec-
tively. The Choptuik exponent was not known in the 4Hδ

case, which is one of the new results of this article. In Fig. 3
we plot the behaviour of det A(κ) near the last crossing which
defines the most relevant mode,

κ∗
4Hδ ≈ 2.5456, (50)

so that the Choptuik exponent is

γ4Hδ ≈ 0.393 (51)

which is different from the Choptuik exponent for the third
critical solution γ4Hγ = 0.436 (already found in [34]) that
is illustrated in Fig. 5. We collect these results in Table 2.

For completeness, we include some other Choptuik expo-
nents in Table 3. We refer the reader to [34] for a complete
discussion of these other cases.

5 Conclusion

In this article, we have obtained the linear perturbation equa-
tions in all classes of solutions of the self-similar collapse

solution to the Einstein-axion-dilaton system, including the
parabolic case which was not studied previously. The method
which we employ is quite generic and could be applied to any
matter content in arbitrary dimensions as well. This is cer-
tainly a path that we intend to follow in the future.

Through a numerical procedure, we have obtained the
fastest growing mode of the perturbations that determine the
Choptuik exponent. We have applied this methodology to a
particular branch of solutions whose Choptuik exponent was
still unknown. Interestingly, we revealed that not only the
Choptuik exponent does depend on the spacetime dimension
but also it depends on matter content (which is composed
of an axion-dilaton system in this case) as well as the dif-
ferent branches of solutions of self-similar critical collapse.
Hence, one may conclude that the original conjecture about
the universality of Choptuik exponent is not satisfied. How-
ever, there might actually exist some universal behaviours
hidden in combinations of critical exponents and various
other parameters of the theory which have not been taken
into account by our current efforts.
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