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Abstract In the present investigation we use observational
data of f σ8 to determine observational constraints in the
plane (�m0, σ8) using two different methods: the growth fac-
tor parametrization and the numerical solutions method for
density contrast, δm . We verified the correspondence between
both methods for three models of accelerated expansion: the
�CDM model, the w0waCDM model and the running cos-
mological constant RCC model. In all case we consider also
the curvature as free parameter. The study of this correspon-
dence is important because the growth factor parametriza-
tion method is frequently used to discriminate between com-
petitive models. Our results we allow us to determine that
there is a good correspondence between the observational
constrains using both methods. We also test the power of
the f σ8 data to constraints the curvature parameter within
the �CDM model. For this we use a non-parametric recon-
struction using Gaussian processes. Our results show that the
f σ8 data with the current precision level does not allow to
distinguish between a flat and non-flat universe.

1 Introduction

The accelerated expansion of the universe is one of the
biggest problems in current cosmology, since there is no
coherent explanation for this accelerated expansion. Initially,
it was associated with a cosmological constant or vacuum
energy and subsequently models with scalar fields (also
known as quintessence models) were evoked. Other possi-
bilities include modified gravitation, extra dimensions, and
so on. For a recent review, see references [1–3].

The main evidence of accelerated expansion is based on
background observations, basically on cosmological distance
measurements using Supernovas Ia [4,5]. However, data on
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large-scale structure formation are essential to characterize
accelerated expansion. The most remarkable example is the
cosmic background radiation. Thus, for example, recent mea-
surements from the PLANCK satellite have allowed to mea-
sure the values of cosmological parameters with unprece-
dented precision. Currently we can say that the observational
evidence of accelerated expansion is robust using various
independent and complementary observational data [6–10].

Additionally, large surveys of galaxies are essential to
discriminate between competitive cosmological models that
characterize the accelerated expansion of the Universe. A
fundamental tool to distinguish between dark energy models
or models including new physics is the linear growth factor.
Observationally this factor can be derived from the study of
the perturbations of the galaxy density δg , which is related
to the perturbation of the matter through the bias parame-
ter: δg = bδm , being that the bias, b, can vary between the
values b ∈ (1, 3). Therefore, it is difficult to use the linear
growth factor, f = d ln δm

d ln a , as a cosmological test to con-
strain parameters. In this sense, a more feasible observable
turns out to be the product f σ8 [11] where σ8 is the variance
of the linear matter perturbations within spheres of radius
R = 8h−1Mpc. This observable can be determined using
RSD (Redshift Space Distortion) observations, as well as,
weak lensing measurements.

For a given cosmological model the observable f σ8 can
be theoretically determined using the linear perturbation the-
ory. However, there is an alternative approach which involves
introducing a parametrization for linear growth factor. This
parametrization was initially proposed and developed by Pee-
bles [12–14] considering that the linear growth factor must
be directly proportional to the matter parameter, which can
be adjusted for a given cosmological model.

For example, in the case of the flat �CDM model the
parametrization is f = �

γ
m , where γ is a constant around

γ = 6/11. In the literature this parametrization has been
intensively used to study the growth of the structures. Thus,

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-08785-z&domain=pdf
mailto:alan.toribio@ufes.br
mailto:julio.fabris@cosmo-ufes.org


1210 Page 2 of 12 Eur. Phys. J. C (2020) 80 :1210

Lightman and Schechter [15] studied the linear growth fac-
tor to determine the peculiar velocity in the case of a uni-
verse dominated by matter and a perturbation of spheri-
cal density. Lahav et al. [16] considered the linear growth
factor in a Universe with matter plus a cosmological con-
stant and determined an approximate form given by: f (z =
0) = �0.60

m0 + (1 + �m0
2 ) 1

70λ0, where λ0 = �

3H2
0

. Later, this

parametrization was reintroduced into the paradigm of the
accelerated expansion of the Universe by Wang and Stein-
hartd [17], and this idea was expanded by Linder [18–20],
among others. Recently, this approach has been widely used
to discriminate between modifying gravity models versus
dark energy models, see references [21–27].

In general, to study dynamical dark energy models it is
necessary to introduce the called growth index, γ (z), which
can depend on the redshift. In this sense, studies have been
carried out on the global mathematical properties of the
growth index, which allows us to study the general charac-
teristics of the dynamics of cosmological models, see recent
references [28,29].

Therefore, an important question is to investigate the sta-
tistical compatibility between the observational constraints
determined using the growth factor parametrization and the
constraints obtained using numerical solutions. This question
is essential to consider the growth factor as a useful tool to
discriminate between competitive models. Thus, in this arti-
cle we focus explicitly on this question. We study three cos-
mological models: the �CDM model, w0wa�CDM model
and the running cosmological constant, RCC , model, in all
cases we also consider the non-flat models. Additionally, we
study the power of the f σ8 data to constraint the curvature
parameter. For this we use the non-parametric method of
Gaussian processes.

Our paper is organized as follows. In Sect. 2, we briefly
presented the cosmological models studied and the recon-
struction non-parametric. In Sect. 3 is devoted to briefly con-
sider observational data. In Sect. 4, we present our results
and in Sect. 5 our conclusions.

2 Dark energy models

2.1 Flat and non-flat �CDM

The cosmological standard model is the �CDM model
which fits a large amount of observational data very well,
however, certain tensions have arisen in the statistical corre-
spondence of cosmological parameters. For example, the H0

tension: local measurements of the Hubble parameter have a
tension of at least 4σ with measurements of H0 using data
from the Planck Collaboration [9]. Also, some researchers
have determined a certain curvature tension [30], this is,

many observational data are statistically better fit for closed
curvature models, including Planck lensing data [31–44]. In
the present work we are interested in investigating the impli-
cations of introducing curvature in the study of linear growth
factor. Therefore, we consider the non-flat �CDM model,
where the Hubble parameter is given by,

H = H0

√
�m0(1 + z)3 + �k0(1 + z)2 + ��0, (1)

where we use the definitions:

�m0 = 8πGρm0

3H2
0

, ��0 = �

3H2
0

and �k0 = −k
a2H2

0
. (2)

where k is the spatial curvature which can be k = +1 for a
closed universe, k = 0 for a flat Universe and k = −1 for an
open universe. Additionally we have the restriction,

�m0 + ��0 + �k0 = 1. (3)

The H(z) function allows to fully characterize the cosmolog-
ical model at the background level, but to study the growth
of structures it is necessary to introduce deviations from the
background. To do this we consider the theory of cosmolog-
ical perturbations initiated by Lifshitz [45] which is, in the
linear regime, a well established consistent theory [46–48].

2.1.1 Numerical solution

Considering the theory of cosmological perturbations the
evolution of matter fluctuations, δm = δρm

ρm
, is governed by

the equation,

δ̈m(t) + 2H δ̇m(t) − 4πGρmδm(t) = 0, (4)

where the derivative is with respect to cosmic time. This equa-
tion has been derived having in mind modes deeply inside the
horizon. The observational data concerns this regime. In this
case, even if the equation has been obtained using the syn-
chronous gauge, it could also be obtained using other gauges.
For the same reason, the curvature intervenes in the perturba-
tive equation through the background. For modes well inside
the horizon the dark energy component is negligible [9].

However, for our calculations it is more convenient to
rewrite the previous equation in function of the redshift
obtaining the equation,

δ′′
m(z) +

(
H ′

H
− 1

1 + z

)
δ′
m(z)

−3

2
(1 + z)

H2
0

H2 �m0δm(z) = 0 (5)

This equation has been extensively studied and in the case
of a flat �CDM model there are analytical solutions, see
references [49–53],

δm(a) = a2F1

×
(

− 1

3w
,

1

2
− 1

2w
, 1 − 5

6w
, a−3w

(
1 − 1

�m

))
, (6)
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where the 2F1 is a hypergeometric function. In the case of
a non-flat Universe there are no analytical solutions, except
for some particular and approximate cases such as those pub-
lished by Hamilton [54]. In the present paper we obtain the-
oretical solutions of the observable f σ8 including curvature.
This is done by numerically solving the equation for the den-
sity contrast δm .

On the other hand, the observable σ8(z) is the redshift-
dependent rms fluctuations of the linear density field at R =
8h−1 Mpc and is given by

σ8(z) = σ8
δm(z)

δm(0)
(7)

where σ8 is the currently value. Therefore, with some approx-
imations on the linear scale we can derive the observable f σ8

from the solution of the Eq. (4), but first we define

f (a) ≡ d ln δm

d ln a
= −(1 + z)

d ln δm

dz
(8)

and using these definitions, we can write,

f (z)σ8(z) = −σ8(1 + z)
δ′
m(z)

δm(0)
(9)

This observable can be used to constraints cosmologi-
cal parameters using observational data determined from
(Redshift-space distortions) RSD measurements.

2.1.2 Growth factor parametrization

As mentioned, the growth index is a way to simplify the cal-
culations and is strongly based on theoretical considerations.
We can explicitly define the linear growth rate f in the form,

f (z) = d ln δm

d ln a
≈ �

γ
m(z). (10)

The initial motivation for this parametrization is the paper
of Peebles [12], where the author considers the case of a
universe dominated by matter and shows that the growing
solution of the Eq. (4) is directly proportional to �m . It is also
possible to motivate this parametrization for quintessence
models by following the [17] reference, where the Eq. (4)
can be written as a function of f . The authors determine the
growth index as γ = 6

11 + 3
200 (1 − �m) + O(2). Therefore,

a good approximation for the flat �CDM model is γ ≈ 6
11 .

Numerous investigations have used this parametrization to
study cosmological models, in particular see the references
[28,29]. In the present work we extend this parametrization

to include curvature. Therefore, based in this equation we
can obtain,

D(z) ≡ δm(z)

δm(0)
= exp

[
−

∫ z

0

�
γ
m

(1 + x)
dx

]
. (11)

We consider D(z) as normalized to unity at the present time.
Therefore, using this parametrization the observable f σ8 is
given by

f σ8(z) = σ8D(z)�γ
m (12)

where we have set σ8(z) = σ8D(z). In the case of �CDM
we consider the growth index, γ , as constant.

2.2 Dynamical dark energy: CPL-parametrization

One way to relax the cosmological constant is to introduce
a parametrization that varies over time. A fairly popular
parametrization that allows the inclusion of a wide family
of cosmological models and that somehow retains a certain
simplicity is the called CPL-parametrization given by the
form [18,19],

w(z) = w0 + wa
z

1 + z
, (13)

where w0 represents the cosmological constant and note
that (

dw(z)
dz )z=0 = wa one might consider this quantity a

natural measure of time variation. The CPL parametriza-
tion describes fairly gradual evolution from a value of w =
w0 + wa at early times to a present-day value of w = w0.
Thus we can write the Hubble parameter,

H(z) = H0

√
�m0(1 + z)3 + �k0(1 + z)2 + (1 − �m0 − �k0)(1 + z)3(1+w0+wa)e

−3wa z
1+z , (14)

where we have included the curvature parameter. This model
has been extensively used as a two parameter parametriza-
tion paradigm. In the reference [55,56] it was shown that
thawing quintessence models with a nearly flat potential
all converges toward the behavior given by −1.5(1 + w0).
Therefore, this parametrization allows extrapolating results
for quintessence-type models.

2.2.1 Numerical solution

In this case the cosmological perturbation theory allows us to
write an equation for the fluctuations of matter, δm analogous
to the Eq. (5), however considering the Hubble parameter
given by the previous Eq. (15). The calculation process is
similar to that developed for the �CDM model.
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Fig. 1 In the top, we can see observational constraints on the flat
�CDM model. In the bottom, we see the observational constraints
on the non-flat �CDM model. The �k0 parameter was marginalized in

the range of −0.1 < �k0 < 0.1. The green point is the best fit, the red
point is the Planck result and the blue point is the weak lensing result

2.2.2 Growth factor parametrization

The parametrization of the linear growth rate for this case is
given by the expression,

f = �m(z)γ (z) (15)

where we now consider γ as a function of the redshift
γ (z). This function is introduced to quantify the effects of
a dynamic dark energy model. Several functions have been
introduced as ansatz for the function γ (z), in this paper we
are going to use the following form,

γ (z) = γ0 + γa
z

1 + z
. (16)

This functional form for γ is well-behaved for late redshift
values and therefore can be suitably used for f σ8 data that
includes data up to approximately z ≈ 2.0.

2.3 Running cosmological model

This cosmological model is based on the results of the
renormalization group applied to cosmology. Specifically, a
quadratic model for the cosmological constant was presented
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Fig. 2 In the top, we can see observational constraints on the flat
w0waCDM model. In the bottom, we see the observational constraints
on the non-flat w0waCDM model. The �k0 parameter was marginal-

ized in the range of −0.1 < �k0 < 0.1. We using the best fitting for
w0 = −0.950, wa = 0.0965 and γ0 = 0.561 and γa = 0.068

in [57–60] called the running cosmological constant (RCC)
model. Furthermore, this model was extended for the case of
a gravitational logarithmic coupling [62]. In the present work
we study the quadratic model for the cosmological constant.
In this model, the energy density of the vacuum ρ�(z) can
be given as a quadratic function of the rate of expansion,

ρ� = ρ�0 + 3νM2
pl

8π
(H2 − H2

0 ), (17)

where the ν parameter is given by,

ν = σM2

12πM2
p
, (18)

the parameter M is an effective mass parameter representing
the average mass of the heavy particles in the grand uni-
fied theory (GUT ) near the Planck scale, after taking into
account their multiplicities. The coefficient σ can be positive
or negative, the sign depends on whether bosons (σ = +1)

or fermions (σ = −1) dominate in the loop contribution,
this is, it depends on whether fermions or bosons dominate
at the highest energies. In this framework, the energy density
in the RCC model is,

dρ�

d ln H
= σH2M2

16π2 , (19)
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Fig. 3 In the top, we can see observational constraints on the flat RCC model. In the bottom, we see the observational constraints on the non-flat
RCC model. The �k0 parameter was marginalized in the range of −0.1 < �k0 < 0.1

which was proposed based on the assumption that the renor-
malization group scale μ is identified with H(z). This scale
was originally proposed in [57,58] and it is based on the scale
dependency in the renormalization group framework. Thus
using the Friedmann equation and the conservation law we
can to determine the Hubble parameter H(z) as function of
the redshift,

H2

H2
0

= 1 +
(

�m0 − 2ν�k0

1 − 3ν

) (
(1 + z)3−3ν − 1

1 − ν

)

+�k0(z2 + 2z)

1 − 3ν
(20)

2.3.1 Numerical solution

The linear perturbations for the RCC model have been stud-
ied in various papers, for example, see [63,64] and in the
Newtonian gauge, see [65]. Also more recently using vari-
ous observational data [66]. Therefore, we can write for the
perturbations of matter,

δ̈m + (2H + Q) ˙δm − (4πGρm − 2HQ − Q̇)δm = 0 (21)

where point indicates derivative with respect to cosmic time.
The factor Q represents the variable cosmological constant
and is defined as,

Q = ρ̇�

ρm
. (22)
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Fig. 4 In the top, we can see observational constraints on the model KCPL using numerical solution. In the bottom, we see the observational
constraints using growth index. In all the figures we use the best fits for the parameters (�m0, �k0, γ0, γa) shown in Table 1

For our case it is more convenient to rewrite the previous
equation in function of the redshift as,

d2δm

dz2 +
[
d ln H

dz
− 1

(1 + z)

(
1 + Q

H

)]
dδm

dz

=
(

3

2
�m − 2Q

H
+ (1 + z)

H

dQ

dz

)
δm

(1 + z)2 . (23)

If we consider the condition that Q = 0, then the above
equation reduces to Eq. (5), as expected.

2.3.2 Growth factor parametrization

In this case the same prescription of the previous cases is also
followed so we can write the growth factor in accordance with
the reference [64],

f = d ln δm

d ln a
≈ �̃

γ (a)
m = �m(a)γ (a)

1 − ν
, (24)

where we use the same form for the growth index as the
previous case given by the Eq. (15). The function �m0(a) is
given by

�m(a) = �m0a−3(1−ν)

H2(a)/H2
0

(25)

where the H2(a)/H2
0 is given by the Eq. (19) and if ν = 0

again reduces to the case of �CDM model. In this case we
consider the parameter �̃m instead of �m , since if we con-
sider the regime at high redshift z >> 1, the matter param-
eter is �m ≈ (1 − ν). In this way for our parametrization
given by the Eq. (24) we obtain at large redshift z >> 1 the
normalized value of approximately f ≈ 1.

2.4 Curvature and f σ8 data in the non-flat �CDM

We investigated the power of the data f σ8 to constrain the
curvature parameter. For this we reconstruct the observable
f σ8 directly from observational data using the non-parameter
method of Gaussian processes [67]. We compare this recon-
struction with the best fits for the flat �CDM case, as well as,
for the non-flat model. In principle this allows us to observe
the effect of the curvature parameter. To carry out this recon-
struction we use the public package Gapp [67,68].
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Table 1 Best-fitting parameters 1σ confidence intervals

Parameter Numerical Solution Growth Index

K�CDM

�m0 0.277 ± 0.118 0.277 ± 0.165

�k0 0.075 ± 0.204 0.083 ± 0.165

σ8 0.791 ± 2.00 0.799 ± 2.00

γ0 0.599 ± 0.080

KCPL

�m0 0.303 ± 0.70 0.299 ± 0.83

�k0 −0.043 ± 0.123 −0.069 ± 0.170

σ8 0.749 ± 0.050 0.774 ± 0.050

w0 −0.950 ± 0.250 −0.900 ± 0.400

wa 0.0965 ± 0.365 −0.107 ± 0.367

γ0 0.561 ± 1.07

γa 0.068 ± 0.100

K RCC

�m0 0.283 ± 0.070 0.299 ± 0.81

�k0 0.065 ± 0.195 0.050 ± 0.132

σ8 0.795 ± 0.204 0.770 ± 181

ν 0.00001 ± 0.00005 0.005 ± 0.012

γ0 0.58 ± 0.212

γa −0.01 ± 0.070

In general, a Gaussian process can be written as [69]:

f (x) ∼ GP (μ(x), k(x, x̃)) , (26)

where the value of f when evaluated at a point x is a Gaussian
random variable with mean μ(x). Additionally, the value of
the function f at the point x is not independent of the value of
the function f at some other point nearby x̃ , but is related by
the covariance function k(x, x̃). If we consider observational
data (xi , yi ) with yi = f (xi ) ± σi and assuming that the
errors are gaussian. We can to reconstruct the function f at
chosen points. This function is denoted by f ∗. In general,
this reconstructed function has a reconstructed mean given
by,

f̄ ∗(x) =
N∑

i, j=1

k(x, xi )(M
−1)i, j ( f (x j ) − μ(z)). (27)

In our reconstruction we chosen as prior mean function μ(z)
a constant value and for the standard deviation:

σ(x) = k(x, x) −
N∑

i, j=1

k(x, xi )(M
−1)i, j k(x j , x) (28)

where Mi j = k(xi , x j ) + ci j and ci j represents the covari-
ance of the input data. For our calculations, we assume the
exponential function as a covariance function which is given
by

k(x, x̃) = σ 2
f exp

(
− (x − x̃)2

2�2

)
, (29)

where σ f and � are called hyperparameters which are deter-
mined by maximizing the log marginal likelihood [69],

ln = −1

2

∑
[ f (xi ) − μ(xi )](M−1)i, j [ f (x j ) − μ(x j )]

−1

2
ln |M | − 1

2
N ln 2π, (30)

where M represent the determinant of Mi j . It is important
to note that instead of optimizing these hyperparameters,
they can be marginalized by using, for example, the MCMC
method. However, a simple method of testing the validity of
the optimization process is to vary the initial value of the
hyperparameters and see if the values obtained change sig-
nificantly. We have done this process for the f σ8 data and
we determine that our hyperparameters do not change sig-
nificantly. Therefore, we are confident in using the optimiza-
tion process. On the other hand, the MCMC method should
be used to obtain high precision restrictions associated with
high quality data.

3 Observational data

In the present investigation we use as observational data the
f σ8 data, which are independent of the bias and may be
obtained using the redshift space distortion (RSD) technique.
The data used are the data compiled in the reference [70] and
consists of 63 datapoints. In this case the chi-squared is given
by the expression,

χ2
f σ8

= V i
f σ8

C−1
i j V j

f σ8
(31)

where the C−1
i j is the inverse covariance matrix. We assume

that it is a matrix diagonal except for WiggleZ data subset,
in this case we have,

CWigglesZ
i j =

⎡

⎣
6.400 2.570 0.000
2.570 3.969 2.540
0.000 2.540 5.184

⎤

⎦ , (32)

Also the vector V i is defined as:

V i = f σ obs
8 − f σ the

8

q(zi ,�m0,�
f iducial
m0 )

, (33)

where f σ the
8 is the theoretical prediction of the f σ8 observ-

able for each cosmological model. The q represents the fidu-
cial correction factor introduced in the reference [70]. If an
incorrect cosmology is adopted when converting redshift to
distance, then the apparent spatial distribution of galaxies
will be distorted, therefore, it is necessary to introduce a cor-
rection factor, q, which can be defined as [70],
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Fig. 5 In the top, we can see observational constraints on the models KCPL using numerical solution. In the bottom, we see the observational
constraints on the models KCPL using growth index. The �m0 parameter was marginalized in the range of 0.1 < �m0 < 0.5

q = H(z)dA

H f id(z)d f id
A

, (34)

where dA is the angular distance. The numerator corresponds
to the best fit of the �m0 parameter in the studied cosmology
and the denominator corresponds to the fiducial cosmology
of each survey. We minimize the chi-squared to obtain the
observational constraints on the cosmological parameters.

4 Results

Our results for the �CDM model are shown in Fig. 1 where
we can see that for the flat case both the parametrization
and the numerical result provide equivalent results. However,
when we include the curvature parameter the parametrization
provides better compatibility between the f σ8 data and the
Planck data (1σ ). In general, for the �CDM model, we can
notice an equivalence between the two methods when deter-
mining observational constraints on cosmological parame-
ters. In Fig. 2 we show the results for the w0waCDM model.
We can see that in the flat case the correspondence is remark-
able. However, when we introduce the curvature as a free

parameter, the effect of a greater number of parameters is
observed in the more open contours.

In Fig. 3 we shown the results for the RCC model with
and without curvature. We can see that in both cases the
correspondence is remarkable. The RCC model is the quite
competitive when we consider all the models investigated in
the present work. Our results are consistent with the results
published in the literature on this model [66], which show
the advantages of having a model with dynamic dark energy
and with the minimum number of free parameters.

It is interesting to mention that in Figs. 1, 2 and 3 we
have marginalized the curvature parameter over an interval of
−0.1 < �k < +0.1 and we have observed that an increase
in this interval has no significant effect on the probability
contours. However, when we study the observational con-
straints in the parameter space (�K0 , σ8), a strong degen-
eracy between them is observed. Therefore, in Fig. 4 we
increase the variation interval of the parameters (�K0 , σ8) to
verify this degeneracy. All models show higher degeneracy
for values �K0 < −0.4. However, it is interesting to mention
that the numerical solution of the RCC model allows us to
better constraints the parameter space (�K0 , σ8) when com-
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pared with the other models. Additionally to compare our
results with other well established results we have included
in the Figs. 1, 2 and 3 the likelihood contours for Planck [9]
and for recent weak lensing survey of the project Kids [71]1.

In Fig. 4 we show observational constraints on the param-
eters that define the KCPL model. We can see that there is a
strong degeneration of the parameter space w0 −wa and also
in the parameter space w0 − σ8 and wa − σ8. In all cases we
have used the best fits for the other parameters as shown in
Table 1. The numerical solution is the one that allows us to
obtain the best constraints on the w0 − σ8 parameters. With
2σ we can see that an interval of 0.7 < σ8 < 0.9 corresponds
to an interval of approximately −1.7 < w0 < −0.5.

We also investigated the effect of the curvature parameter.
For this, in Fig. 5 we show the observational constraints in
the (�k0, σ8) plane. We note that both methods are equivalent
for the three investigated models. It is interesting to mention
that in the case of the CPL model, the best fit for the �k0

parameter corresponds to a closed model.
In the top of the Fig. 6 we shown the f σ8 observable for

different values of the curvature parameter. We can observe
that the highest sensitivity of the f σ8 observable is in the
range: 0.5 < z < 1.0. In the figure bottom, we present the
non-parametric reconstruction using Gaussian processes and
the best fit curves (blue curve for �CDM and red dashed
curve for K�CDM). We can see that into current preci-
sion we cannot distinguish between flat and non-flat �CDM
models.

5 Conclusions

In the present work, we use two different methods to deter-
mine observational constraints on three cosmological mod-
els: the �CDM model, the ω0ωaCDM model and the RCC
model (in all cases we include the curvature parameter). The
first method is the parametrization of the growth factor and
the second method consists of numerical solutions of the
equation for the density contrast of matter, δm . The data used
are structure formation data and are given in function of the
observable f σ8. The data used in this work are compiled in
the reference [70] and have some overlapping observations.
This can lead to a strong covariance for the sample, however,
we consider the covariance matrix of the WiggleZ data points
and apply the correction factors to reduce any bias that arises
from the assumed fiducial model according to the reference
[70]. Furthermore, in Figs. 1, 2 and f3 we have shown that
our results are consistent with well-known results from the

1 We have used the data of the project Kids available publicly at
the electronic address: http://kids.strw.leidenuniv.nl/sciencedata.php.
Specifically we have used the article data [71] that includes KiDS +
V I K I NG − 450 observations.

Fig. 6 In the top, we can see the f σ8 observable for the �CDM model
for different values of the curvature parameter using numerical solu-
tions. We use the following values of the curvature parameter (from the
upper curve to the lower one): �k0 = −0.2,−0.1, 0, 0.1, 0.2. In the
bottom, we shown the non-parametric reconstruction of the observable
f σ8 and the blue curve represents the best fit for the flat case and the
dashed red curve represents the best fit for the non-flat case

literature such as Planck’s results and weak lensing data. It is
also important to note that in general the uncertainties in the
f σ8 data are large and do not allow high-precision analyzes
to impose strident restrictions on cosmological parameters.
Therefore, it is important to mention that our results can be
achieved within these limitations.

Thus, specifically, we study the parameter spaces (�m0, σ8)

and (�K0, σ8). We show the best fits within 1σ in Table 1 we
can see that the parametrization does not come into tension
with the numerical results and explicitly justifying the use
of the parametrized version. This verification has not been
considered in the literature and in view of the large amount
of research using the parametrized version, we believe that it
justifies showing this correspondence directly in the deriva-
tion of observational constraints.

Additionally, como mencionado, we also study the power
of the data f σ8 for constraints the curvature parameter. In
Fig. 6 we show that the non-parametric reconstruction of the
f σ8 does not allow to differentiate between a flat and non-
flat universe. We can also identify that for the data f σ8 the
interval in redshift 0.5 < z < 1.00 is the most sensitive to
the curvature parameter. In this sense, observational projects
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such as Euclid or LSST2 will allow us to obtain a greater
number of data within this redshift interval and may be fun-
damental to determine the curvature parameter.
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