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Abstract The dynamics of the quantum Fisher information
of the parameters of the initial atomic state and atomic transi-
tion frequency is studied, in the framework of open quantum
systems, for a static polarizable two-level atom coupled in
the multipolar scheme to a bath of fluctuating vacuum elec-
tromagnetic fields in cosmic string space-time. Our results
show that with the presence of cosmic string, the quantum
Fisher information becomes position and atomic polariza-
tion dependent. It may be enhanced or depressed as com-
pared to that in flat space-time case. Remarkably, when the
atom is extremely close to the cosmic string and the polariza-
tion direction of the atom is perpendicular to the direction of
the cosmic string, the quantum Fisher information has been
totally protected from the fluctuating vacuum electromag-
netic fields. So on the one hand, near a cosmic string, pre-
cision of estimation can be enhanced by ranging the radial
distance between the probe atom and the cosmic string; on
the other hand, the cosmic string can be sensed by studying
the distribution of parameter induced state-separation.

1 Introduction

In estimation theory, the Fisher information which deduced
by the Cramér–Rao bound [1,2] describe how well one can
estimate a parameter from the probability distribution of the
measures. When quantum measurements are performed on
quantum mechanical systems, the observed outcomes follow
a probability distribution. Optimizing the measurements and
estimator, the Fisher information is extended to the so-called
quantum Fisher information (QFI) which gives the preci-
sion limit of the parameter estimation in quantum metrology
[1–5]. With different models of the probe systems and differ-
ent parameters to be estimated, many applications of quan-
tum metrology have been done such as quantum frequency
standards [6], optimal quantum clock [7], measurement of
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gravity accelerations [8], clock synchronization [9], only to
name a few. Since the central task in quantum metrology is
to improve the precision of parameter estimation, a straight-
forward way to enhance the precision is to increase the QFI
of the state of probe systems. It was shown that the use of
correlated systems such as entangled states can improve the
precision of parameter estimation [6,10–23]. However, in
reality, interaction between a system and an environment is
unavoidable and the quantum decoherence induced by such
interactions may decrease the QFI and destroy the quantum
entanglement in the probe system exploited to improve the
precision, which in turn degrades the estimation precision
[24–43]. As a result, how to control the effects of environ-
ment on estimation precision becomes an important issue in
quantum metrology.

One environment which no system can be isolated from
is the vacuum that fluctuates all the time in quantum sense.
In free flat space-time, vacuum fluctuations always make the
QFI of initial parameter of the state of probe two-level atom
decay [44]. However, vacuum fluctuations can be modified.
In the presence of the boundary, field modes are reflected by
the boundary and the superposition of the incoming and out-
going modes make the QFI position and polarization depen-
dent. The precision of the estimation may even be shielded
from the vacuum fluctuations in certain circumstances [44].
Even without the boundary, field modes may be reflected by
some curved space-times, and QFI may becomes position
dependent in such space-times.

The cosmic string space-time is one of those space-times.
The cosmic strings appear as predictions of grand unification
theories which are extended, one-dimensional, closed and
infinite linear objects leading to topological defects of space-
time. They emerge during the symmetry breaking phase tran-
sitions in the early universe [45,46] and become the probable
sources of gravitational waves [47–49], gamma-ray bursts
[50], and high-energy cosmic rays [51]. The idea of cosmic
strings draws great attention in the context of the brane-world
scenarios of the superstring theory [52–57]. In cosmic string
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space-time, space-time is locally flat and what distinguishes
it from a Minkowski spacetime is its nontrivial topology char-
acterized by the deficit angle. Since the cosmic string only
modifies the global space-time topology while leaving the
local space-time flatness, it is pretty like what a conducting
boundary does to a flat space-time. In this regard, QFI may
also be protected through cosmic string with proper arrange-
ment of the probe atom. So we plan to study the dynamics
of the QFI of the parameters of the initial atomic state and
atomic transition frequency, in the framework of open quan-
tum systems, for a static polarizable two-level atom coupled
in the multipolar scheme to a bath of fluctuating vacuum elec-
tromagnetic fields in cosmic string space-time and to analyze
the precision-protection arrangement in cosmic string space-
time. Then we will further discuss the probability of detec-
tion of properties of cosmic string through parameter induced
state-separation which is also determined by QFI of the probe
atom.

2 Quantum Fisher information and dynamical
evolution of a two-level atom coupled with vacuum
fluctuations in cosmic string spacetime

When we estimate an unknown parameter X from a given
quantum state P(X), the unknown parameter can be inferred
from a set of positive-operator valued measures on the state.
After optimizing the measurement and the estimator, a pre-
cision limit of the unknown parameter estimation is given by
[5]

Var(X) ≥ 1

NFX
, (1)

where N represents the repeated times and FX denotes the
quantum Fisher information of parameter X . For two-level
system, the state of the system can be expressed in the Bloch
sphere representation as

P = 1

2
(I + ω · σ ), (2)

where ω = (ω1, ω2, ω3) is the Bloch vector and σ =
(σ1, σ2, σ3) denotes the Pauli matrices. As a result, FX can
be expressed in a simple form [42]

FX =
{ .|∂Xω|2 + (ω·∂Xω)2

1−|ω|2 , |ω| < 1,

|∂Xω|2, |ω| = 1.
(3)

For an arbitrary two-level system with initial state

|ψ〉 = cos
θ

2
|+〉 + eiφ sin

θ

2
|−〉, (4)

where θ and φ correspond to the weight parameter and phase
parameter, |+〉, |−〉 denote the excited state and ground state
of the probe system respectively. The Bloch vector of the state
can be represented as ω = (sin θ cos φ, sin θ sin φ, cos θ),

and the quantum Fisher information of θ and φ can be eas-
ily calculated as Fθ = 1 and Fφ = sin2 θ . However, the
environment always cause the decoherence of the state of
probe system, which affect the future evolution of QFI as
well as the precision of estimation unavoidably. An envi-
ronment no system can be isolated from is the vacuum that
fluctuates all time. If we use a two-level atom as the probe
system, the electromagnetic vacuum fluctuations becomes
the unavoidable environment. If we put the atom in free flat
space-time, the QFI for initial parameters is found to be decay
with time Fφ = sin2 θ e−γ0τ , Fθ = e−γ0τ [44]. Here the
decay rate is determined by the spontaneous emission rate
γ0 in Minkowski vacuum. However, the vacuum fluctuations
can be modified. If we put the atom near a boundary, the
QFI becomes position and atomic polarization dependent.
The QFI as well as the precision of the estimation may be
enhanced in compared to those in unbounded case [44]. Just
like what happens in the boundary case, the vacuum fluctu-
ations can also be modified by the curved space-time itself
even without boundary. Where and how to put the atom in the
curved space-time to get better precision becomes an impor-
tant issue in curved space-time quantum metrology. Since the
cosmic string only modifies the global space-time topology
while leaving the local space-time flatness intact, which is
pretty like what a conducting boundary does to a flat space,
we firstly consider the quantum metrology in cosmic string
space-time.

For this purpose, let us study a static polarizable two-level
atom interacting with fluctuating electromagnetic fields in
vacuum in cosmic string space-time. We suppose that a static,
straight cosmic string lies along the z-direction. So the metric
in the cylindrical coordinate system (t, ρ, θ, z) is given by

ds2 = dt2 − dρ2 − ρ2dθ2 − dz2, (5)

where 0 ≤ θ < 2π
ν

, ν = (1 − 4Gμ)−1 with G and μ being
the Newton’s constant and the mass per unit length of the
string respectively. In this space-time background, the vector
potential of electromagnetic field can be solved as [58,59]

Aρ(t, �x) = 1√
2

∫
dμ j

[(c+ j f+ j + c− j f− j ) + (c†
+ j f

∗+ j + c†
− j f

∗− j )],
Aθ (t, �x) = − iρ√

2

∫
dμ j

[(c+ j f+ j − c− j f− j ) − (c†
+ j f

∗+ j − c†
− j f

∗− j )],
Az,t (t, �x) =

∫
dμ j [c3 j,0 j f0 j + c†

3 j,0 j f
∗
0 j ] (6)

with

fξ j (�x) = 1

2π

√
ν

2ω
J|νm+ξ |(k⊥ρ)ei(νmθ+k3z), (7)
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in which∫
dμ j =

∞∑
m=−∞

∫ ∞

−∞
dk3

∫ ∞

0
dk⊥k⊥, (8)

cξ j (t) = cξ j (0)e−iωt , c†
ξ j = c†

ξ j (0)eiωt are respectively the
annihilation and creation operators for a photon with quan-
tum numbers j = (k3, k⊥,m) at time t with commutation
relations

[cξ j (t), c
†
ξ j ′(t)] = δ j, j ′ f or ξ = ±1, 3, (9)

[c0 j (t), c
†
0 j ′(t)] = −δ j, j ′ f or ξ = 0. (10)

Here ω =
√
k2

3 + k2⊥, and the symbol J denotes BesselJ
function.

The total Hamiltonian of the coupled system can be writ-
ten as H = Hs + H f + H ′, where Hs = 1

2 ω0σ3 is the
Hamiltonian of the atom with ω0 denoting the transition fre-
quency. H f denotes the Hamiltonian of the free electromag-
netic field and its explicit expression is not required here. The
Hamiltonian that describes the interaction between the atom
and the electromagnetic field can be written in the multipolar
coupling scheme as

H ′(τ ) = −er · E(x(τ )), (11)

where e is the electron electric charge, e r is the atomic
electric dipole moment, and E(x) denotes the electric field
strength.

We let ρtot = ρ(0) ⊗ |0〉〈0| denoting the initial total den-
sity matrix of the system. Here ρ(0) is the initial reduced
density matrix of the atom which corresponds to the atomic
state in Eqs. (4), and |0〉 is the vacuum state of the field. The
evolution of the total density matrix ρtot in the proper time
τ reads [60,61]

∂ρtot (τ )

∂τ
= −i[H, ρtot (τ )]. (12)

We assume that the interaction between the atom and field is
weak. So, the evolution of the reduced density matrix ρ(τ)

can be written in the Kossakowski–Lindblad form [62–64]

∂ρ(τ)

∂τ
= −i

[
Heff , ρ(τ )

] + L[ρ(τ)] , (13)

where

L[ρ] = 1

2

3∑
i, j=1

ai j
[
2 σ jρ σi − σiσ j ρ − ρ σiσ j

]
. (14)

The coefficients of the Kossakowski matrix ai j can be
expressed as

ai j = Aδi j − i Bεi jkδk3 − Aδi3δ j3, (15)

with

A = 1

4
[G(ω0) + G(−ω0)], B = 1

4
[G(ω0) − G(−ω0)].

(16)

We define a two-point correlation function G+(x−x ′) which
is related to the two-point functions of the electromagnetic
fields 〈0|Ei (x)E j (x ′)|0〉 as

G+(x − x ′)= e2
3∑

i, j=1

〈+|ri |−〉〈−|r j |+〉 〈0|Ei (x)E j (x
′)|0〉.

(17)

Then its Fourier and Hilbert transforms G(λ) and K(λ) fol-
lows

G(λ) =
∫ ∞

−∞
d�τ eiλ�τ G+(

�τ
)

,

K(λ) = P

π i

∫ ∞

−∞
dω

G(ω)

ω − λ
. (18)

By absorbing the Lamb shift term, the effective Hamiltonian
Heff can be written as

Heff = 1

2
�σ3 = 1

2
{ω0 + i

2
[K(−ω0) − K(ω0)]} σ3, (19)

where � is the effective level spacing of the atom. By apply-
ing Eq. (2) to Eq. (13), the Bloch vector with proper time τ

can be solved as:

ω1(τ ) = sin θ cos(�τ + φ) e−2Aτ ,

ω2(τ ) = sin θ sin(�τ + φ) e−2Aτ , (20)

ω3(τ ) = cos θ e−4Aτ − B

A
(1 − e−4Aτ ).

3 Influence of vacuum fluctuations on initial parameter
estimation

Let us now examine how the vacuum fluctuations affect the
quantum Fisher information as well as the precision of the
initial parameter estimation. The electric two-point function
can be written as

〈0|Ei (x)E j (x
′)|0〉 = ∂0∂

′
0〈0|Ai (x)A j (x

′)|0〉
+∂i∂

′
j 〈0|A0(x)A0(x

′)|0〉. (21)

Applying the vector potential in Eqs. (6) and the trajectory
of the static atom

t (τ ) = τ, ρ(τ ) = ρ, θ(τ ) = θ, z(τ ) = z, (22)

the electric-field two-point functions can be calculated as

〈0|Eρ(x)Eρ(x ′)|0〉 = ν

8π2

∫
dμ j e

iω(τ−τ ′)

×
[
ω

2
(J 2|νm+1|(k⊥ρ) + J 2|νm−1|(k⊥ρ))

− 1

ω

(
d J|νm|(k⊥ρ)

dρ

)2]
, (23)
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〈0|Eθ (x)Eθ (x
′)|0〉 = νρ2

8π2

∫
dμ j e

iω(τ−τ ′)

×
[
ω

2
(J 2|νm+1|(k⊥ρ) + J 2|νm−1|(k⊥ρ))

− 1

ω

ν2m2

ρ2 J 2|νm|(k⊥ρ)

]
, (24)

〈0|Ez(x)Ez(x
′)|0〉 = ν

8π2

∫
dμ j

k2⊥
ω

J 2|νm|(k⊥ρ)eiω(τ−τ ′).

(25)

So the Fourier transform of the correlation functions is
given by:

G(λ) =
∑
i

e2|〈−|ri |+〉|2λ3

3π
fi (λ, ρ, ν)θ(λ), (26)

with

fρ(λ, ρ, ν) = 3ν

4

∑
m

×
∫ 1

0
dt

t√
1 − t2

[(2 − t2)J 2|νm+1|(λρt)

+t2 J|νm|+1(λρt)J|νm|−1(λρt)], (27)

fθ (λ, ρ, ν) = 3ν

4

∑
m

×
∫ 1

0
dt

t√
1 − t2

[(2 − t2)J 2|νm+1|(λρt)

−t2 J|νm|+1(λρt)J|νm|−1(λρt)], (28)

fz(λ, ρ, ν) = 3ν

2

∑
m

∫ 1

0
dt

t3

√
1 − t2

J 2|νm|(λρt). (29)

Thus the coefficients of the Kossakowski matrix ai j and the
effective level spacing of the atom now become

A = B = γ0

4

(∑
i

αi fi (ω0, ρ, ν)

)
, (30)

� = ω0 + γ0

2πω3
0

P
∫ ∞

0
dω ω3

×
(

1 −
∑
i

αi fi (ω0, ρ, ν)

)(
1

ω + ω0
− 1

ω − ω0

)
,

(31)

where γ0 = e2|〈−|r|+〉|2 ω3
0/3π , αi = |〈−|ri |+〉|2/|

〈−|r|+〉|2 . Physically, αi represents the relative polariz-
ability and they satisfy

∑
i αi = 1. We let f (ω0, ρ, ν) ≡∑

i αi fi (ω0, ρ, ν). As a result, the quantum Fisher infor-
mation of the initial weight and phase parameters can be
expressed as follows

Fφ = sin2 θ e−γ0 f (ω0,ρ,ν)τ (32)

and

Fθ = e−γ0 f (ω0,ρ,ν)τ . (33)

From the results, we find that the decay rates are multiplied
by a factor f (ω0, ρ, ν) in compare to those in flat space-time
case.

3.1 The case for ν = 1.

When ν = 1, the deficit angle disappears and the cosmic
string space-time reduces to the flat space-time without cos-
mic strings. Following the properties of the BesselJ function∑
m

J 2|m|(x) = 1,
∑
m

J|m|+1(x)J|m|−1(x) = 0, (34)

fi (ω0, ρ, ν) = 1 (i = ρ, θ, z). So the dacay rate of QFI
becomes γ0 which is just the decay rate of QFI in a free
Minkowski space-time. As a result, for ν = 1, the results in
Minkowski space-time are recovered as expected.

3.2 The case for ν > 1.

We first consider the asymptotic behavior when ωρ � 1, one
has

fρ(ω0, ρ, ν) ≈ fθ (ω0, ρ, ν) ≈ 3ν2(ν + 1)

�[2ν + 2] (ω0ρ)2(ν−1),

fz(ω0, ρ, ν) ≈ ν. (35)

So atoms with different polarization behave differently.
When the polarization is along the z-axis, i.e., αρ = αθ = 0,
the decay rate becomes ν times of that in the Minkowski vac-
uum case, which makes the QFI decay even faster than that
in flat space-time. However, when the polarization is perpen-
dicular to the z-axis, i.e., αz = 0, the decay rate approaches
zero, which means that the QFI is protected from electromag-
netic vacuum fluctuations when the atom is extremely close
to the cosmic string and the polarization direction of the atom
is perpendicular to the direction of the cosmic string.

For a generic atom-string distance, the QFI may be
decreased, or enhanced as compared to that in flat space-
time case. Since the expressions of QFI is really com-
plicated, we now give some results of numerical in this
case. To show the properties of relations among decay rate,
atom-string distance and atomic polarization graphically,
in Fig. 1, we plot f (ω0, ρ, 1.5) as a function of ρ for
α = (1, 0, 0), (0, 1, 0), (0, 0, 1) which correspond to the
radial polarization, tangential polarization, polarization par-
allel to the string cases respectively.

The oscillatory behavior displayed in Fig. 1 is similar to
that in boundary flat space case [44], the QFI can either be
decreased, or enhanced as compared to that in flat space-time
case with proper atom-string distance and proper polariza-
tion. Apparently, the QFI is protected from electromagnetic
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Fig. 1 f as a function of ρ for α = (1, 0, 0), (0, 1, 0), (0, 0, 1) respectively. Here ρ is in the unit of 1/ω0

vacuum fluctuations when the atom is extremely close to the
cosmic string and the polarization direction of the atom is
perpendicular to the direction of the cosmic string. Similar
conclusion is obtained in boundary flat space case [44]. When
the atom is extremely close to the boundary and the polariza-
tion direction of the atom is perpendicular to the direction of
the boundary, the QFI is protected from electromagnetic vac-
uum fluctuations. However, we should note that the behav-
iors of the QFI for probe atoms in the same position with
different polarization directions perpendicular to the direc-
tion of the boundary are the same in bounded flat space-time,
while the behaviors of the QFI for probe atoms in the same
position with different polarization directions perpendicular
to the direction of the cosmic string are different in cosmic
string space-time. Furthermore, the oscillatory behavior of
QFI in cosmic string space-time is also determined by the
property factor ν of cosmic string, which indicates different
cosmic strings lead to different behaviors of QFI.

4 Sensing cosmic string through oscillatory behavior of
QFI

From the point of statistical distance between states, quan-
tum Fisher information [1–5] which is the metric in parame-
ter space is a proper candidate to describe the discrimination
of states corresponding to small increment of the parame-
ter: {dBures[P(X), P(X + dX)]}2 = 1

4 FXdX2 [5]. Here
dBures denotes the Bures distance which can be estimated
through probability distributions of proper measurements on
the states. As a result, Fφ can be calculated through the
Bures distance between states P(φ) and P(φ + dφ), which
makes Fφ itself observable from probability distributions of
the measurements.

As the oscillation appears when ν > 1, we can use Fφ to
examine the existence of cosmic string. Since the oscillatory
behavior of decay rate of Fφ depends on ν, the magnitude
of ν can be deduced from the distribution of Fφ . Since Fφ

is independent on z and θ , one can easily find the radial
direction of location of cosmic string through the increments
of Fφ corresponding to the increments of coordinates. Then
along the direction of ρ, the cosmic string is located at where
Fφ of a probe atom with radial polarization reaches to its
maximum value.

5 Effects of vacuum fluctuations on atomic frequency
estimation

As is shown, the presence of cosmic string may protect the
estimation precision of the initial parameters from the influ-
ence of the environment in proper circumstances. We may
also wonder what happens if the parameter to be estimated is
the property of the probe atom. Now we consider the param-
eter to be estimated is the atomic frequency ω0. By using
Eqs. (3) and (20), the quantum Fisher information of ω0 can
be calculated after dropping the terms which are of higher
order in terms of the electric dipole moment as

Fω0 ≈ sin2 θ e−γ0 f (ω0,ρ,ν)τ τ 2 (36)

So the maximum quantum Fisher information is obtained for
θ = π

2 with the form

Fω0 ≈ e−γ0 f (ω0,ρ,ν)τ τ 2. (37)

Applying the equation
∂Fω0
∂τ

= 0, we find that the maximum
of Fω0 = 4

γ 2
0 f (ω0,ρ,ν)2 e

−2 can be reached at τ = 2
γ0 f (ω0,ρ,ν)

.

Due to the oscillatory behavior of f (ω0, ρ, ν) as is shown
in Fig. 1, both the optimal measurement time and the maxi-
mal quantum Fisher information may either be enhanced or
depressed in compare to those in flat space-time. For an arbi-
trary polarization, in regions where f (ω0, ρ, ν) > 0, both the
optimal measurement time and the maximal quantum Fisher
information are enhanced as compared to those in flat space-
time case, while in regions where f (ω0, ρ, ν) < 0, they are
depressed.
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6 Conclusion

In summary, the dynamics of QFI for a static polarizable
two-level atom coupled in the multipolar scheme to a bath
of fluctuating vacuum electromagnetic fields is studied in
cosmic string space-time. When we estimate the parame-
ters of initial atomic state, we find that with the presence of
the cosmic string, QFI becomes position and atomic polar-
ization dependent, which makes the precision of estimation
decreased, enhanced or remain unchanged depending on the
atom-string distance and atomic polarization. When the atom
is extremely close to the cosmic string and the polarization
direction of the atom is perpendicular to the direction of cos-
mic string, the QFI may even be shielded from the influence
of the vacuum fluctuations as if it were a closed system. The
oscillatory behavior of decay rate of QFI is also in relation
with the property ν of the cosmic string, which makes it
possible to sense the cosmic string through QFI-determined
Bures distance.
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mun. 3, 1063 (2012)
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