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Abstract We provide a tensor calculus for n-number of
N = (1, 0) linear multiplets in six dimensions. The cou-
pling of linear multiplets is encoded in a function FI J that is
subject to certain constraints. We provide various rigid and
local supersymmetric models depending on the choice of the
function FI J and provide an interesting off-diagonal super-
invariant, which leads to an R2 supergravity upon elimination
of auxiliary fields.
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1 Introduction

Six dimensional supergravity theories [1–7] have been stud-
ied from various perspectives as they can be helpful in our
understanding of the fundamental properties of the nature.
The N = (1, 0) gauged theory, known as the Salam–Sezgin
model [8], spontaneously compactifies on M4 × S2 with
N = 1 supersymmetry, thus becoming a natural starting
point of phenomenological studies with a string theory ori-
gin [9]. When extended with certain higher derivative terms,
six dimensional N = (1, 0) supergravity provides a use-
ful testbed for checking proposals regarding string duality
at higher orders [10–12]. Six dimensional supergravity theo-
ries also found themselves applications in AdS3/CFT2 cor-
respondence [13], thus providing a framework for studying
the superconformal field theory in two dimensions.

Initial works on six-dimensional supergravity were based
on the Noether procedure and the construction ofN = (1, 0)

supergravity as well as its matter couplings was put into a
systematic approach using superconformal tensor calculus
in [14]. This approach, which was originally developed in
[15–18], is an off-shell methodology based on enhancing the
symmetries as much as possible which restricts the possible
couplings of fields within a multiplet and ease the construc-
tion of an action principle. In six dimensions, the confor-
mal N = (1, 0) supergravity is based on the superalgebra
OSp(6, 2|1) with the generators

Pa , Mab , D , Ka ,Ui j , Q
i
α , Siα , (1.1)

where a, b, . . . are the Lorentz indices, α is a spinor index and
i, j = 1, 2 is an SU (2) index. Here, the first four generators,
{Pa, Mab, D, Ka} are the generators of conformal algebra.
Ui j is the generator of SU (2) R-symmetry and Qi

α and Siα
are the generators of the Q-SUSY and the S-SUSY respec-
tively. In the superconformal approach to supergravity, one
associates a gauge field to each generator and imposes a set of
constraints to relate the gauge theory of OSp(6, 2|1) super-
algebra to gravity. For six-dimensional N = (1, 0) theory,
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such a set of constraints separates the gauge fields in a depen-
dent and independent set of fields such that the independent
set does not provide an equal number of off-shell bosonic and
fermionic degrees of freedom. This can be cured by adding a
matter content, which is not unique and lead to two different
Weyl multiplets: the standard Weyl multiplet and the dilaton
Weyl multiplet [14]. It is, however, not possible to obtain a
consistent two-derivative supergravity with a standard Weyl
multiplet1 but a dilaton Weyl multiplet coupled to a scalar
(hyper) [14,20], or a non-linear [14], or a real O(2n) [21] or
a linear multiplet is necessary [14]. If an off-shell supergrav-
ity is required, then the linear multiplet is the simplest and the
most utilized option whose gauge fixing of redundant super-
conformal symmetries lead to an off-shell six dimensional
N = (1, 0) supergravity.

In [19,22], it was shown that the linear multiplets are
also essential in the construction of higher derivative mod-
els. Thus, following the previous work on four dimensional
tensor multiplets [23] and five dimensional linear multiplets
[24], our aim in this paper is to provide a detailed investiga-
tion of six dimensional N = (1, 0) linear multiplets, their
rigid and supergravity couplings and their higher derivative
actions. As we will discuss in the next sections, the cou-
plings of n-number of linear multiplets are controlled by a
function FI J which is a function of SU (2) triplet of scalars
Li j of the linear multiplet. The function is not completely
free but constrained by symmetries of the theory, although
the restrictions are quite generic and mild and we provide
various possible choices of FI J .

This paper is organized as follows. In Sect. 2, we first intro-
duce rigid vector and linear multiplet and their supersymmet-
ric coupling. The vector multiplet is an essential element in
the construction of an action principle for the linear multi-
plets and their coupling gives rise to an a rigid linear multiplet
action once we express the elements of the vector multiplet
in terms of a proper combination of the elements of the linear
multiplet. At this step, we introduce the function FI J which
completely determines the interaction of linear multiplets.
Various choices of FI J as well as rigid higher derivative
models are discussed. Finally, we provide the dimensional
reduction of vector and linear multiplets to 5D. In Sect. 3,
we introduce local superconformal two-derivative vector and
linear multiplet actions. The linear multiplet action can be
obtained both in the standard and the Weyl multiplet back-
ground. For the vector multiplet, the necessity for a com-
pensating scalar for scaling symmetry implies either the use
of dilaton Weyl multiplet or a linear multiplet. From a more
minimalist approach, we provide a model in a dilaton Weyl
multiplet. Nonetheless, we discussed an ansatz for a confor-
mal vector-linear multiplet action, which we plan to address

1 A consistent model for the standard Weyl multiplet can be achieved
by the addition of higher curvature terms, see [19].

its details in a future publication. Next, in Sect. 4 we gauge
fix and provide various supergravity models. These mod-
els include off-shell Poincaré supergravity both in Einstein
and Jordan frames, the supersymmetric coupling of linear
multiplets to supergravity and an off-diagonal RYi j invariant
which would lead to an on-shell six dimensional R2 super-
gravity upon coupling to an off-shell vector multiplet and
the elimination of auxiliary fields. We give our comments
and conclusions in Sect. 5.

2 Rigid linear multiplet couplings

The six dimensional N = (1, 0) linear multiplets can be
realized off-shell in a general superconformal background.
In this section, we focus on its rigid supersymmetric real-
ization on flat Minkowski background. The linear multiplet
consists of an SU (2) triplet of scalars Li j , a tensor gauge
field Eμν and an SU (2) Majorana spinor ϕi of negative chi-
rality. The supersymmetry transformation rules (εi ) can be
given as follows2 [14,25]

δLi j = ε̄(iϕ j),

δϕi = 1

2
/∂Li jε j − 1

4
/Eεi ,

δEμν = ε̄γμνϕ, (2.1)

where the Q-supersymmetry parameter, εi , is of positive chi-
rality. Furthermore, Eμ is a constrained vector, ∂μEμ = 0,
and is related to the tensor gauge field Eμν via

Eμ = ∂νE
μν. (2.2)

2.1 Composite vector multiplets

Supersymmetric two-derivative actions for linear multiplets
can be constructed by using vector multiplets as compos-
ite multiplets. The vector multiplet consists of a vector field
Wμ, an SU (2) Majorana spinor of positive chirality 	i and
a triplet of scalar fields Y i j . The supersymmetry transforma-
tions are given as [14,25]

δWμ = −ε̄γμ	,

δ	i = 1

8
γ · Fεi − 1

2
Y i jε j ,

δY i j = −ε̄(i /∂	 j), (2.3)

where Fμν = ∂μWν − ∂νWμ. The key point in the construc-
tion of linear multiplet actions is that the supersymmetric

2 We use the conventions of [25]. In particular, the spacetime signature
is (−,+,+,+,+,+) and ψ iγ(n)χ

j = tnχ jγ(n)ψ
i where t0 = t3 =

t4 = −1 and t1 = t2 = h5 = t6 = 1. When SU (2) indices on spinors
are omitted, northwest -southeast contraction is understood.
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coupling of a linear multiplet to a vector multiplet takes the
following form [14,25]

L = Yi j L
i j + 2	̄ϕ + 1

4
FμνE

μν. (2.4)

As was already demonstrated in four [23] and five dimen-
sions [24], such auxiliary expressions can be used to derive
supersymmetric Lagrangians for n-linear (or vector) multi-
plets. Such a construction is based on the observation that it
is possible to construct composite expressions from the ele-
ments of the linear (or vector) multiplet that precisely trans-
form as a vector (or linear) multiplet. Once such an expres-
sion is obtained, it can be used in the auxiliary action (2.4)
to construct a supersymmetric linear (or vector) multiplet
action.

To construct an interacting n-linear multiplets, we follow
the footsteps of [23,24] and introduce a real functionFI J (L)

which is a function of the linear multiplet scalars Li j . Note
that the index I, J = 1, 2, . . . , n label the number of linear
multiplets. A reasonable guess would be to start the construc-
tion by setting the lowest element of the vector multiplet as
	i

I = FI J /∂ϕi I , however, if FI J �= δI J , then such a start-
ing point does not have the transformation structure given by
(2.3). A starting point that gives rise to the correct structure
is

	i
I = FI J /∂ϕi J + FI J K jk /∂Li j JϕkK − 1

2
FI J K

i j /E J
ϕK
j

+1

6
FI J K L

i jklγ aϕ J
j ϕ̄

K
k γaϕ

L
l , (2.5)

where

FI J K i j = ∂FI J

∂Li j K
, and FI J K Li jkl = ∂FI J

∂Li j J ∂LklK
(2.6)

The necessity that composite expression for 	i
I transforms

like the fermionic component of the vector multiplet implies
three important constraints on FI J and its descendants

FI J K
i j = FI (J K )

i j , FI J K i[ jk]l = 0. (2.7)

Upon varying the composite expression (2.5) and insisting
on the transformation rules (2.3), we obtain the following
composite expressions for Y I

i j and F I
ab

Y i j
I = −FI J�Li j J − FI J Kkl∂a L

ik J ∂a L jlK

−FI J Kk
(i∂a L

j)k J EaK − 1

4
FI J K

i j E J
a E

aK ,

−1

4
FI J K

i j ϕ̄ J /∂ϕK − 2FI J K
k(i ϕ̄ J

k /∂ϕ j)K

−FI J K L
pqk(i∂a L

J j)
k ϕ̄

K
p γ aϕL

q

+1

2
FI J K L

k(i j)l ϕ̄ J
k γ aϕK

l EL
a

− 1

12
FI J K LM

i jklmn ϕ̄ J
k γaϕ

K
l ϕ̄L

mγ aϕM
n ,

FabI = −2∂[a
(
FI J E

J
b]

)
+ 2FI J K j

k∂[a L jl J ∂b]LK
lk

+2∂[a
(
FI J K

i j ϕ̄ J
i γb]ϕK

j

)
. (2.8)

Before we proceed to the actual construction of the action, a
couple of remarks on these composite formulae are in order.
First of all, these composite expressions match with the ones
in [14,25] if only a single linear multiplet is chosen. In term of
FI J such a choice would correspond to setting F11 = L−1.
In the same spirit, an n-number of non-interacting linear mul-

tiplets can be obtained by setting FI J = δI J
(
L I

)−1
where

(L I )2 = L I
i j L

i j I [23]. Second, we note that although Fab is

closed, i.e. ∂[a F I
bc] = 0, it is not exact [23]. Consequently,

the present form of the vector-linear action (2.4) is essential
to us although its last term can be written as AμEμ by means
of an integration by parts. Finally, it is important to note that
the index I is fixed while the index J is being summed over.
This is also reflected by the fact that FI J has no particular
symmetry in the (I J ) indices. This was first noted in [24] and
it was shown that a non-symmetric choice plays an important
role in the construction of higher derivative superinvariants.

It is also possible to construct vector multiplet actions
using the auxiliary action (2.4) as well as a composite linear
multiplet that is constructed from the elements of the vector
multiplet.

Li j = Yi j , ϕi = −/∂	i , Ea = ∂bF
ba . (2.9)

The vector multiplet action will be of particular use in con-
structing higher derivative actions for linear multiplets.

2.2 Supersymmetric linear and vector multiplet actions

With the composite fields in hand, we now proceed to give the
rigid supersymmetric linear multiplet action. Substituting the
composite formulae (2.5) and (2.8) into the auxiliary action
(2.4) we obtain

LL = −FI J L
I
i j�Li j J − FI J Kkl L

I
i j∂a L

ik J ∂a L jlK

−FI J Kk
i L I

i j∂a L
jk J EaK − 1

2
FI J E

aI E J
a

−1

4
FI J K

i j L I
i j E

J
a E

aK + 1

2
FI J K j

k EabI ∂a L
jl J ∂bL

K
lk
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−1

4
FI J K

i j L I
i j ϕ̄

J /∂ϕK

−2FI J K
ki L I

i j ϕ̄
J
k /∂ϕ j K + 2FI J ϕ̄

I /∂ϕ J

+1

2
FI J K L

ki jl L I
i j ϕ̄

J
k /EL

ϕK
l + FI J K

i j ϕ̄ I
i /E J

ϕK
j

+1

2
FI J K

i j ϕ̄ J
i /E I

ϕK
j − 2FI J K jk ϕ̄

I
i /∂Li j JϕkK

+FI J K Lk
ipq L I

i j ϕ̄
K
p /∂L jk JϕL

q

−1

3
FI J K L

i jkl ϕ̄ I
i γ aϕ J

j ϕ̄
K
k γaϕ

L
l

− 1

12
FI J K LM

i jklmnL I
i j ϕ̄

J
k γaϕ

K
l ϕ̄L

mγ aϕM
n , (2.10)

up to partial integrations. Once again, we remind the reader
that the index I is fixed and not being summed over. However,
if we choose to sum over the I index as well, then the linear
multiplet action can be written as

LL = −1

2
FI J ∂a L

I
i j∂

a Li j J + 1

4
FI J E

I
a E

aJ

−1

2
FI J K j

k EabI ∂a L
jl J ∂bL

K
kl , (2.11)

up to an overall minus sign and partial integrations. Here we
only provide the bosonic part and made use of the following
definitions [23]

FI J = 2F(I J ) + FK I J
i j LK

i j ,

FI J K
i j = 3F(I J K )

i j + FL I J K
kli j LL

kl , (2.12)

and heavily used the following SU (2) identities [23]

Kik L
jk + K jk Lik = δ

j
i KmnL

mn, (2.13)

Ki j Lkl − Kkl Li j = εikε
mn (

KlmLnj + K jmKnl
) |(i, j)(k,l).

At this stage, a brief discussion on various choice of FI J is
in order

(i) FI J = δI J : For this choice, FI J is independent of Li j

and all descendants of FI J vanish. The map between
the vector and the linear multiplets significantly sim-
plifies, i.e. for a single linear multiplet we have

	i = /∂ϕi , Y i j = −�Li j , Fab = −2∂[a Eb], (2.14)

and the linear multiplet action is given by

LL = −∂a Li j∂
a Li j + 1

2
EaE

a − 2ϕ̄ /∂ϕ. (2.15)

up to an overall minus sign and boundary terms. The
map (2.14) and the action (2.15) will be particularly
useful in the construction of higher derivative linear
and vector multiplet actions.

(ii) FI J = δI J (L I )−1: This choice is particularly relevant
to the construction of superconformal linear multiplet
actions. In this case, we have

FI J K
i j = −(L I )−3Li j I , FI J K L

i jkl = (L I )−5
(

3Li j I L jk I +
(
L I

)2
εi(kεl) j

)
. (2.16)

For a single linear multiplet, the bosonic part of
Lagrangian that corresponds to this choice is

LCL = −1

2
L−1∂a Li j∂

a Li j + 1

4
L−1EaE

a

+1

2
L−3EabLl

k∂a L
kp∂bLlp, (2.17)

up to an overall minus sign and boundary terms.

We may also use the composite expressions for the com-
ponents of the linear multiplet (2.9) to construct a vector
multiplet action

LV = −1

4
FabF

ab − 2	̄/∂	 + Y i jYi j . (2.18)

As with the linear multiplet action, the composite formulae
(2.9) as well as the vector multiplet action (2.18) are use-
ful in the construction of higher derivative linear and vector
multiplet actions.

When coupled to supergravity, N = (1, 0) higher deriva-
tive vector and linear multiplet actions are known to give
rise to higher curvature superinvariants [19,22]. In the case
of rigid supersymmetry, we may obtain a higher derivative
linear multiplet action by employing the composite vector
multiplet fields (2.9) in the vector multiplet action (2.18)

LL = 1

M2

(
�Li j�Li j − ∂[a Eb]∂ [a Eb] + 2�ϕ̄ /∂ϕ

)
, (2.19)

where M is some mass parameter. We may follow a similar
procedure for the vector multiplets and use the composite
linear multiplet (2.14) into the linear multiplet action (2.15)

LV = 1

M2

(
−∂aYi j∂

aY i j + 1

2
∂bF

ab∂cFac − 2�ϕ̄ /∂ϕ

)
.

(2.20)

One may alternatively wish to use the linear multiplet action
(2.17), however, this Lagrangian involved inverse powers of
L . To construct a higher derivative vector multiplet action in
such a fashion, we first need to consider two distinct linear
multiplets represented by (Li j , ϕi , Ea) and (L ′

i j , ϕ
′
i , E

′
a) and
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choose FI J as

F22 = L−1, F21 = −L−3L ′
i j L

i j , F11 = F12 = 0. (2.21)

As noted in [24], such a choice is not symmetric in (1,2)
indices and satisfies all properties associated with FI J . In
this case, we may use the primed multiplet as a composite
vector multiplet to obtain a higher derivative vector multiplet
action. However, such an action also includes the fields of the
unprimed linear multiplets.

2.3 Reduction to five dimensions

The rigid supersymmetric actions for five dimensional N =
2 vector and linear multiplet actions has already been estab-
lished for single and multiple number of multiplets [26–28].
As these multiplets and models can be obtained from a six
dimensional N = (1, 0) theory by a circle reduction, a brief
discussion on this issue would be in order before we end our
discussion on the rigid six dimensional vector and linear mul-
tiplets. The components of the vector multiplet decomposes
according to
(
Wa,	

i ,Yi j
)

→
(
Wâ,W5, λ

i ,Yi j

)
, (2.22)

and the linear multiplet decomposes according to
(
Li j , ϕ

i , Ea

)
→

(
Lij, ϕ̂

i , Eâ, E5

)
, (2.23)

where Eâ is the four-dimensional divergence-free vector
field, i.e. ∂ âEâ = 0. To be more precise, let us introduce
our convention for gamma-matrices, supersymmetry param-
eter ε and Dirac conjugated spinors [29]

γa = i�â�5, ε = ε , ε̄ = iε̄�5. (2.24)

We now make the following ansatz for the fields of the five
dimensional N = 2 vector multiplet [29]

Wa = Aâ, W5 = ρ, Yi j = −Yi j , 	 = −1

2
λ (2.25)

and obtain the supersymmetry transformation rules as

δρ=1

2
iε̄λ, δAμ̂ =1

2
ε̄�μ̂λ,

δλi= − 1

4
� · Fεi − 1

2
i/∂ρεi − Y i jε j , δY i j= − 1

2
ε(i /∂λ j)

(2.26)

These transformation rules precisely match with the ones
given in [27]. For the fields of the linear multiplet, we make
the following ansatz

Li j = Li j , ϕi = �5ϕ̂
i , Ea = −2EOa, E5 = −2N, (2.27)

which gives rise to the following supersymmetry transforma-
tion rules

δLij =iε̄(i ϕ̂ j), δϕ̂i = − 1

2
i/∂Lijεj − 1

2
i/Eεi,

δEâ = − 1

2
iε̄�âb̂∂

b̂ϕ̂, δN =1

2
ε̄ /∂ϕ̂. (2.28)

These transformation rules precisely match with [27] and its
application to supersymmetric linear multiplet Lagrangian
(2.10) reproduces the five dimensional linear multiplet
actions [24].

2.4 Superconformal vector and linear multiplets

So far we only considered vector and linear multiplets that
are representation of six-dimensional N = (1, 0) super-
Poincaré algebra. However, these multiplets can be assigned
full N = (1, 0) superconformal symmetry in which case the
fields pick up additional dilatation (�D) and special super-
symmetry (η) transformations. For the linear multiplet, the
transformation rules are given by

δLi j = ε̄(iϕ j) + 4�DL
i j ,

δϕi = 1

2
/∂Li jε j − 1

4
/Eεi − 4Li jη j + 9

2
�Dϕi ,

δEa = ε̄γab∂
bϕ − 5η̄γaϕ + 5�DEa, (2.29)

and for the vector multiplet, the transformation rules are

δWμ = −ε̄γμ	,

δ	i = 1

8
γ · Fεi − 1

2
Y i jε j + 3

2
�D	i ,

δY i j = −ε̄(i /∂	 j) + 2η̄(i	 j) + 2�DY
i j . (2.30)

These additional symmetries have immediate implications
on the function FI J . First of all, the scaling dimension of
FI J must be −4 in order to match the scaling dimension of
both sides in the composite formulae (2.5) and (2.8)

δDFI J (L) = −4�DFI J (L). (2.31)

As a result, the choice FI J = δI J no longer holds in
the superconformal case, FI J = δI J (L I )−1 or the non-
symmetric choice (2.21) are still valid. Next, we turn to the
special supersymmetry transformations of the fields. As 	i

is S-SUSY invariant, FI J must satisfy

FI J K ik L
k j K = −1

2
δ
j
i FI J . (2.32)

We may multiply this identity with LkmJ and obtain a useful
result [23]

FI J K i j L
J
pq L

pqK = −FI J L
J
i j , (2.33)

which further implies that

FI J L
I
i j L

i j J = FI J L
I
i j L

i j J . (2.34)
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To summarize, the conformal FI J needs to satisfy the fol-
lowing four identities

FI J K
i j = FI (J K )

i j , FI J K i[ jk]l = 0,

δDFI J = − 4�DFI J (L), FI J K ik L
k j K = −1

2
δ
j
i FI J .

(2.35)

While the composite superconformal vector multiplet can
be achieved by the proper choice ofFI J , the composite linear
multiplet (2.9) immediately fails due to the scaling dimen-
sion of the fields. However, one may push the idea that a
superconformal composite linear multiplet can be obtained
by mapping a vector as well as a compensating linear multi-
plet. For instance, one can start with the following ansatz for
the SU (2) scalar of a primed vector multiplet L ′

i j

L ′
i j I = MI J Y

J
i j + MI J Kk(i ϕ̄

kK	J
j), (2.36)

where MI J is a function of Li j i.e. MI J = MI J (L). By
demanding proper dilatation, S- and Q-SUSY transforma-
tions, it is possible to push this ansatz to all fields and find the
constraints that the function MI J should satisfy. However,
as we will see in the next section, there is a simpler possi-
bility to achieve a superconformal composite linear multi-
plet when we couple to conformal supergravity. The “dila-
ton Weyl multiplet” of N = (1, 0) superconformal theory
includes a dilaton field σ and a dilatino field ψ i that we can
use to compensate the dilatation and S-SUSY transforma-
tions of the superconformal completion of the map (2.9).

3 Conformal supergravity

In the previous section, we discussed the superconformal
transformations of linear and vector multiplets that are
defined in flat space where we dealt with space-time indepen-
dent transformation parameters. In a superconformal back-
ground, where the rigid parameters are replaced by space-
time ones, the transformation rules contain the gauge fields
of the superconformal theory. In general, however, the gauge
fields do not have the right counting to form a closed back-
ground “Weyl” multiplet but the inclusion of matter fields is
necessary. For the six dimensional N = (1, 0) theory there
are two sets of possible matter fields, one leading to the so-
called standard Weyl multiplet and the other leading to the
dilaton Weyl multiplet. We defer the details of these multi-
plets to the Appendix A. The Q− and S−supersymmetry
transformation rules for the linear multiplet are given by
[14,25]
δLi j = ε̄(iϕ j),

δϕi = 1

2
/DLi jε j − 1

4
/Eεi − 4Li jη j ,

δEa = ε̄γabDbϕ + 1

24
ε̄γa · T−ϕ

−1

3
ε̄iγaχ

j Li j − 5η̄γaϕ, (3.1)

where the superconformal covariant derivatives are defined
as

DμL
i j = ∂μL

i j − 4bμL
i j + 2Vμ

(i
k L

j)k − ψ̄(i
μ ϕ j),

Dμϕi = ∂μϕi − 9

2
bμϕi − V i j

μ ϕ j − 1

2
/DLi jψμj

+1

4
/Eψ i

μ + 4Li jφ j . (3.2)

As in the rigid case, the algebra closes if Ea satisfies [14,25]

Da Ea − 1

2
ϕ̄χ = 0, (3.3)

where the superconformal covariant derivative of Ea is
defined as

DμEa = ∂μEa − 5bμEa + ωμa
bEb − ψ̄μγabDbϕ

− 1

24
ψ̄μγaγ · T−ϕ

+1

3
ψ̄ i

μγaχ
j Li j + 5φ̄μγaϕ. (3.4)

Note that the constraint equation (3.3) requires an additional
ϕ̄χ term in order to maintain the Q− and S−invariance of
the constraint. The constraint on Ea allow us to define a four-
form gauge field Eμνρσ which can be dualized to a two-form
gauge field Eμν that is defined via

Ea = eμ
aDνE

μν, (3.5)

where the supersymmetry transformation rule for Eμν is
given by

δEμν = ε̄γμνϕ + ϕ̄
ρ
i γμνρε j L

i j . (3.6)

The gauge fields of the Weyl multiplets that appear here are
the sechsbein eμ

a , the spin-connection ωμ
ab, the dilatation

gauge field bμ, the SU (2) R-symmetry gauge field V i j
μ , and

the Q− and the S− supersymmetry gauge fields ψ i
μ and φi

μ.
As the matter multiplets are inert under special conformal
symmetry, its corresponding gauge field fμa does not appear
in the transformation rules. The set of fields (ωμ

ab, fμa, φi
μ)

are not independent but can be expressed in terms of the inde-
pendent fields (eμ

a, bμ,V i j
μ ,ψ i

μ). Transformation rules also
consist of a real scalar field D, an antisymmetric tensor of
negative duality T−

abc and an SU (2) Majorana-Weyl spinor of
negative chirality χ i . These matter fields are the fundamental
fields of the standard Weyl multiplet but can be expressed in
terms of a dilaton Weyl multiplet coupled to a tensor multi-
plet. For the vector multiplet, the Q− and S− transformation
rules are given by [14,25]

δWμ = −ε̄γμ	,
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δ	i = 1

8
γ · F̂εi − 1

2
Y i jε j ,

δY i j = −ε̄(i /D	 j) + 2η̄(i	 j), (3.7)

where the superconformal field strength F̂μν(W ) and the
supercovariant derivative Dμ	i are defined as

F̂μν(W ) = 2∂[μWν] + 2ψ̄[μγν]	,

Dμ	i = ∂μ	i − 3

2
bμ	i + 1

4
ωμ

abγab	
i − 1

2
Vμ

i
j	

j

−1

8
γ · F̂ψ i

μ + 1

2
Y i jψμj . (3.8)

With the supersymmetry transformation rules in hand, we are
now in a position to generalize rigid composite vector mul-
tiplet (2.5) and (2.8) and to construct local linear and vector
multiplet actions. The starting point of an action principle
is the generalization of rigid auxiliary action (2.4) with the
inclusion of the Weyl multiplet fields [14,25]

e−1LV L = Y i j Li j + 2	̄ϕ − Li j ψ̄
i
μγ μ	 j + 1

4
FμνEμν.

(3.9)

Given the properties (2.31) and (2.35), the composite vector
multiplet is given by

	i
I = FI J /Dϕi J + FI J K jk /DLi j JϕkK + 2

3
FI J L

i j Jχ j

+ 1

12
Fi jγ · T−ϕi J − 1

2
FI J K

i j /E J
ϕK
j

+1

6
FI J K L

i jklγ aϕ J
j ϕ̄

K
k γaϕ

L
l ,

Y i j
I = −FI J�cLi j J − FI J KklDa L

ik JDa L jlK

−FI J Kk
(iDa L

j)k J EaK − 1

4
FI J K

i j E J
a E

aK ,

−1

3
FI J L

i j J D + 1

6
FI J χ̄

(iϕ j)J

+4

3
FI J K

k(i L j)l J χ̄kϕ
K
l + 1

12
FI J K

i j ϕ̄γ · T−ϕ

−1

4
FI J K

i j ϕ̄ J /DϕK − 2FI J K
k(i ϕ̄ J

k /Dϕ j)K

−FI J K L
pqk(iDa L

J j)
k ϕ̄

K
p γ aϕL

q

+1

2
FI J K L

k(i j)l ϕ̄ J
k γ aϕK

l EL
a

− 1

12
FI J K LM

i jklmn ϕ̄ J
k γaϕ

K
l ϕ̄L

mγ aϕM
n ,

F̂abI = −2D[a
(
FI J E

J
b]

)
+ 2FI J L

i j J R̂abi j (V)

+2FI J K j
kD[a L jl JDb]LK

lk + FI J
¯̂Rab(Q)ϕ J

+2D[a
(
FI J K

i j ϕ̄ J
i γb]ϕK

j

)
. (3.10)

where R̂μν
i j (V) and R̂μν

i (Q) are the superconformal covari-
ant curvatures of the gauge fields Vμ

i j and ψ i
μ respectively,

see Appendix A. The superconformal d’Alembertian �cL I
i j

is defined as

�cLi j
I =

(
∂a − 5ba + ωb

ba
)
Da L

i j
I − 8 fa

a Li j
I

+2Vμ(i
kDμL

j)k
I − ψ̄(i

μDμϕ
j)
I − 1

6
ψ̄μγ μχLi j

I

+1

6
ψ̄(i

μ γ μχk)L j
k I + 1

6
ψ̄( j

μ γ μχk)Li
k I

− 1

24
ϕ̄

(i
I γ · T−γ μψ j)

μ − ϕ̄
(i
I γ μφ j)

μ . (3.11)

As mentioned in the previous section, it is not possible to con-
struct a conformal action for the vector multiplet unless we
use a compensating multiplet. The compensating multiplet
can be chosen as a linear multiplet, however, a local vector
multiplet action then contains the fields of vector, linear as
well as a Weyl multiplet. From a more minimalist approach,
it is possible to use the dilaton Weyl multiplet to compensate
the conformal symmetries. In that case, the correct transfor-
mation rule for a composite Li j can be obtained by using
the scalar field of the dilaton Weyl multiplet σ as well as the
dilatino field ψ i as extra fields [14]

Li j = σY i j + 2ψ̄(i	 j). (3.12)

The rest of the composite linear multiplet can then be
obtained by the Q-variation of the composite Li j , which is
given by [14]

ϕi = −σ /D	i − 1

2
/Dσ 	i + 1

24
γ · H 	i

+1

4
γ · F̂ ψ i + Y i jψ j ,

Eμν = −σ Fμν − 1

4
εμνρσλτ B

ρσ Fλτ

+2	̄γμνψ + σ	̄γ ργμνψρ, (3.13)

where Hμνρ is the field strength of two-form gauge field Bμν ,
which is one of the matter fields in the dilaton Weyl multiplet

Hμνρ = 3∂[μBνρ] + 3ψ̄[μγνρ]ψ + 3

2
σψ̄[μγνψρ]. (3.14)

With the composite multiplets and the action principle (3.9) it
is possible to construct local superconformal actions for vec-
tor and linear multiplets. For the linear multiplet, the action
contains a Ricci scalar term via the composite Yi j due to
superconformal d’Alembertial of Li j . This action can there-
fore be used to express an off-shell Poincaré supergravity
after gauge fixing. Noticing that the bosonic part of compos-
ite F̂abI can be written as

FabI = −2∂[a
(
FI J E

J
b] − 2FI J L

J
i jVb]i j

)

+2FI J K j
k∂[a L jl J ∂b]LK

lk , (3.15)

we give the bosonic part of the linear multiplet action for
n-number of linear multiplets as

e−1LL = −FI J L
I
i j�cLi j J − FI J Kkl L

I
i j DaL

ik J DaL jlK
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−FI J Kk
i L I

i j DaL
jk J EaK ,

−1

4
FI J K

i j L I
i j E

J
a E

aK − 1

3
FI J L

I
i j L

i j J D

−1

2
FI J E

aI E J
a + FI J E

aI L J
i jV i j

a

+1

2
FI J K j

k EabI ∂a L
jl J ∂bL

K
lk , (3.16)

where the SU (2) covariant derivative is defined as

DμL
i j = ∂μL

i j + 2Vμ
(i
k L

j)k . (3.17)

As before, there is no sum in the I index and no particular
symmetry in (I, J ) indices. However, if we choose to sum
over the index I , then the bosonic part of the supersymmetric
action considerably simplifies

e−1LL ,SW = 2

5
FI J L

I
i j L

i j J R − 2

15
FI J L

I
i j L

i j J D (3.18)

−1

2
FI J DaL

I
i j D

aLi j J + 1

4
FI J E

I
a E

aJ ,

+FI J E
aI L J

i jV i j
a − 1

2
FI J K j

k EabI ∂a L
jl J ∂bL

K
kl ,

where FI J and its descendants are as defined (2.12) and R is
the Ricci scalar. There are three notable features of this action.
First, as the linear multiplet is inert under special conformal
transformations, bμ, the gauge field of dilatations, is the only
independent field that transforms non-trivially under special
conformal symmetry. As a result, all bμ terms cancel each
other out and the action does not contain a bμ term. Second,
the scalar field D imposes a severe constraint on the scalars of
the linear multiplet, i.e. FI J L I

i j L
i j J . Such a constraint also

annihilates the pre-factor of the Ricci scalar, not allowing us
to obtain off-shell Einstein–Hilbert supergravity after gauge
fixing. Third, as can be seen from the composite formulate
(3.10), the field equation for T−

abc imposes a constraint on the
fermionic fields. Thus, we use the map between the standard
and the dilaton Weyl multiplets, see Appendix A, and estab-
lish the linear multiplet action in a dilaton Weyl multiplet
background

e−1LL ,DW = 1

2
FI J L

I
i j L

i j J R − 1

2
σ−1FI J L

I
i j L

i j J�σ

− 1

24
σ−2FI J L

I
i j L

i j J HabcH
abc

−1

2
FI J DaL

I
i j D

aLi j J + 1

4
FI J E

I
a E

aJ

+FI J E
aI L J

i jV i j
a

−1

2
FI J K j

k EabI ∂a L
jl J ∂bL

K
kl . (3.19)

As we will discuss in detail, the presence of two scalar fields,
σ and Li j , allow us two distinct gauge fixing possibilities, one
giving rise to an off-shell supergravity in the Jordan frame
and the other in Einstein frame. Deferring this discussion to
the next section, we give the bosonic part of the conformal

vector multiplet action

e−1LV = −1

4
σ FabFab − 1

16
εabcde f BabFcd Fef

+σY i jYi j , (3.20)

where we use the composite linear multiplet (3.12) and (3.13)
as well as the local vector-linear action (3.9). Finally, for
future reference, we take the vector multiplet in the local
vector-linear action and the composite linear multiplet to be
different, which gives rise to a vector multiplet action for two
vector multiplets

e−1LVV ′ = −1

4
σ FabF ′

ab − 1

16
εabcde f BabFcd F

′
e f

+σY i jY ′
i j , (3.21)

where the second multiplet is expressed by the primed quan-
tities (	′

i ,W
′
μ,Y ′

i j ).

4 Off-shell supergravity models with multiple linear
multiplets

In this section, we take advantage of the conformal linear
and vector multiplet actions to construct various off-shell
supergravity models. First, we use the superconformal linear
multiplet action in the dilaton Weyl multiplet background
(3.19) to obtain an off-shell description of six dimensional
N = (1, 0) supergravity. This can be achieved in two ways,
one giving rise to Einstein-frame model and the other giving
rise to a Jordan-frame model, depending on the gauge fixing
condition. Next, we eliminate the auxiliary fields and present
the on-shell supergravity coupled to n-number of linear mul-
tiplets. Finally, we discuss higher derivative models where
the leading terms are not higher-order curvature terms but
curvature terms coupled to auxiliary fields. When coupled
to Poincaré supergravity, off-diagonal invariants give rise to
on-shell higher curvature supergravity models after the elim-
ination of auxiliary fields.

4.1 Poincaré supergravity

An off-shell Poincaré supergravity can be obtained from the
conformal linear multiplet action (3.19) by gauge fixing the
redundant dilatation, special conformal and special super-
symmetry transformation, see Table 1. It is also possible to
break the SU (2) R-symmetry to a U (1) subgroup.

Einstein-frame off-shell supergravity

If we consider a single linear multiplet coupled to dilaton
Weyl multiplet, which corresponds to setting F11 = L−1 in

123
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(3.19), we may adopt the following gauge fixing conditions

bμ = 0, Li j = 1√
2
δi j L , L = 1, ϕi = 0, (4.1)

where the first choice fixes special conformal symmetry, the
second one breaks the SU (2) R-symmetry to U (1), the third
breaks the dilatation symmetry and the last one fixes the
special supersymmetry. As a result, we obtain an off-shell
Poincaré supergravity in Einstein frame [14,25]

e−1L = 1

2
R − 1

4
EaEa + V ′

ai jV ′i j
a + 1√

2
EaV ′

a
i jδi j

−1

2
σ−2∂μσ∂μσ − 1

24
σ−2HμνρH

μνρ, (4.2)

where we only provide the bosonic part. Due to our gauge
choice that breaks the SU (2) R-symmetry, we also decom-
pose the SU (2) R-symmetry gauge fieldV i j

a into its trace and
traceless part

Va = Va
i jδi j , V ′

a
i j = Va

i j − 1

2
δi jVa

klδkl . (4.3)

When n-linear multiplet coupling is considered, we may
adopt the following gauge fixing conditions to obtain the
supergravity coupling of (n−1)-linear multiplets to off-shell
supergravity in Einstein frame

bμ = 0, FI J L
I
i j L

i j J = 1, FI J K
i jϕK

j L
I
mnL

mnJ

+2FI J L
i j Iϕ J

j = 0. (4.4)

where the second choice fixes the dilatation symmetry while
the last one fixes the special supersymmetry. As a result, we
obtain an off-shell action for linear multiplets

e−1L = 1

2
R − 1

2
σ−2∂μσ∂μσ − 1

24
σ−2HμνρH

μνρ

−1

2
FI J DaL

I
i j D

aLi j J

+1

4
FI J E

I
a E

aJ + FI J E
aI L J

i jV i j
a

−1

2
FI J K j

k EabI ∂a L
jl J ∂bL

K
kl , (4.5)

where the scalars L I
i j and the fermions ϕ I are restricted by

the Eq. (4.4).

Jordan-frame off-shell supergravity

We may use the scalar of the dilaton Weyl multiplet σ to fix
the dilatation symmetry. In this case, the consistent set of
gauge fixing condition is given by [30]

bμ = 0, σ = 1, ψ i = 0, (4.6)

where the first choice fixes special conformal symmetry, the
second one fixes the dilatations and the third one fixes special

supersymmetry. In this case, the off-shell supersymmetric
action is given by

e−1L = gLin

(
1

2
R − 1

24
HμνρH

μνρ

)
− 1

2
FI J DaL

I
i j D

a Li j J

+1

4
FI J E

I
a E

aJ

+FI J E
aI L J

i jV i j
a − 1

2
FI J K j

k EabI ∂a L
jl J ∂bL

K
kl , (4.7)

where the potential gLin(L) ≡ gLin is defined by

gLin = FI J L
I
i j L

i j J . (4.8)

4.2 Off-diagonal RYi j invariant and R2 supergravity

When higher curvature supergravity models are needed, the
most straightforward strategy is to construct off-shell mod-
els, if possible, then add the off-shell higher curvature mod-
els to the off-shell Poincaré supergravity and perturbatively
eliminate the auxiliary fields order by order in the small
perturbation parameter, see i.e. [19,22,31] for six and five
dimensional examples. This approach has been widely used
in various dimensions for a various number of supercharges.
The supersymmetric higher curvature models usually include
coupling between the auxiliary field of the off-shell Poincaré
supergravity and the curvature terms. Then, the elimination of
auxiliary fields leads to gravitational higher derivative terms,
spoiling the particular combination one is after. Off-diagonal
invariants are supersymmetric off-shell models where the
leading terms are not higher-order curvature terms but curva-
ture terms coupled to auxiliary fields. Previously, these mod-
els have been used to eliminate such undesired couplings
[32–34]. Here, we aim to construct an off-diagonal invariant
that leads to an on-shell R2-supergravity (with a coupling to
vector multiplet) which can be compared with [19,22].

We start with a composite superconformal vector multiplet
that is achieved according to a single conformal truncation,
i.e.

F11 = L−1, F111
i j = −L−3Li j . (4.9)

Upon gauge fixing (4.6), the composite off-shell vector mul-
tiplet, (	′

i ,W
′
μ,Y ′

i j ), is given by

Y ′i j = −L−1DaDaL
i j + 1

2
L−1Li j R − 1

24
L−1Li j HabcH

abc

+L−3Lkl DaL
ik DaL jl

+L−3EaLk
(i Da L

j)l + 1

4
L−3Li j Ea Ea,

F ′
ab = −2∂[a

(
L−1Eb] − 2L−1Li jVb]i j

)

−2L−3L j
k∂[a L jl∂b]Llk . (4.10)

where

DaDaL
i j = (∂a + ωb

ba)DaL
i j + 2Va(i

k DaL
j)k . (4.11)
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Note that we only present the bosonic fields here and the
fermionic fields can be read from (3.10) given the single
multiplet truncation condition (4.9). This composite vector
multiplet can be used in the two vector multiplet action (3.21),
which takes the following form after gauge fixing (4.6)

e−1LVV ′ = −1

4
FabF ′

ab − 1

16
εabcde f BabFcd F

′
e f

+Y i jY ′
i j , (4.12)

and the resulting off-diagonal action, which we refer to as
RYi j action, is given by

e−1LRYi j = −L−1Yi j D
aDaL

i j + 1

2
L−1Yi j L

i j R

− 1

24
L−1Li j Yi j HabcH

abc

+L−3Yi j Lkl DaL
ik DaL jl + L−3EaYi j Lk

i DaL
jl

+1

4
L−3Yi j L

i j Ea Ea,

+1

2
Fab

(
∂a

(
L−1Eb − 2L−1Li jVb

i j
)

+L−3L j
k∂a L

jl∂bLlk

)

+1

8
εabcde f BabFcd

(
∂e

(
L−1E f − 2L−1Li jV f

i j
)

+L−3L j
k∂eL

jl∂ f Llk

)
. (4.13)

With this off-diagonal action in hand we can obtain an R2

extended Einstein-Maxwell supergravity by considering the
following action

L = LEH + LV + LRYi j + gLV L , (4.14)

where LEH refers to the off-shell Poincaré supergravity in
Jordan frame (4.7), LV L refers to the vector-linear coupling
(3.9), LV refers to the off-shell vector multiplet action

e−1LV = −1

4
FabFab − 1

16
εabcde f BabFcd Fef

+Y i jYi j , (4.15)

andLRYi j is the off-diagonal RYi j action (4.13). Upon impos-
ing the field equation for Yi j , which solves Yi j as

Y i j = 1

2
L−1DaDaL

i j − 1

4
L−1Li j R + 1

48
L−1Li j HabcH

abc

−1

2
L−3Lkl DaL

ik DaL jl − 1

2
L−3EaLk

(i DaL
j)l

−1

8
L−3Li j Ea Ea − 1

2
gLi j , (4.16)

we obtain R2 action via Y i jYi j term in the vector multiplet
action. As shown in [30], an off-shell version of the Salam–
Sezgin model [8] can be obtained by a combination of a
single linear multiplet truncation of the off-shell Poincaré
supergravity in Jordan frame (4.7), the off-shell vector mul-
tiplet action (4.15) and a local vector-linear multiplet action
(3.9). With the off-diagonal RYi j action, one may improve
off-shell Salam–Sezgin model of [30] with RYi j action, in

which case the elimination of the auxiliary field Yi j would
lead to an R2 extension of Salam - Sezgin model.

5 Discussion

In this paper, we provide a systematic analysis of linear mul-
tiplets of six dimensionalN = (1, 0) supergravity, which has
been shown to be crucial in the construction of higher curva-
ture models [19,22]. Our analysis start with an investigation
of rigid linear multiplets, in which case the couplings of linear
multiplets are determined by a functionFI J (L) that is subject
to two mild constraints (2.7). After establishing the relation
between the five dimensional N = 2 and six dimensional
N = (1, 0) rigid linear multiplets, we repeat our analysis for
the case of full N = (1, 0) superconformal symmetry which
paves the way for the local supersymmetric couplings of lin-
ear multiplets. For the local superconformal models, we work
in a dilaton Weyl multiplet background and use superconfor-
mal tensor calculus to provide a superconformal linear mul-
tiplet action for n-number of linear multiplets. For this case,
the function FI J (L) picks up two more constraints which
are imposed due to dilatation and S-supersymmetry invari-
ance (2.35). These constraints are also mild and we provide
various examples of FI J for the superconformal scenario.
Finally, we discussed various gauge fixing procedures and
off-shell supergravity models. In particular, we discussed an
off-diagonal invariant, which we refer to as the RYi j invari-
ant (4.13), which leads to an R2-extended Einstein–Maxwell
supergravity upon imposing the field equations.

There are various directions to pursue following our work.
First, it would be interesting to investigate the supersymmetry
solutions of an R2-extended Einstein–Maxwell supergravity.
The off-shell model that we have in mind here is given by the
equation (4.14). Note that there is also an off-shell R2 model
constructed in [19,22] which can be added to the combination
that we discussed in (4.14). It remains to be checked whether
these two different paths to improve the Salam–Sezgin model
with an R2 term lead to the same physical theory. Second,
noticing that a composite superconformal linear multiplet
contain a constrained vector E ′

a given by (3.13)

E ′
a = Db(σ F̂ba) + · · · , (5.1)

where we remind the reader that Eμν is related to Ea via
Ea = eμ

aDνEμν . Therefore, a linear multiplet action that
contains an EaEa term would produce a higher derivative
vector multiplet action with an F�F term. Such a model
can easily be obtained with a non-symmetric choice of FI J

given in (2.21) where the unprimed multiplet can be used as a
compensating multiplet and the primed multiplet can be used
as a composite linear multiplet. Note that as F22 = L−1 for
the non-symmetric choice, an action for such an FI J would
contain a term L−1E ′

a E
′a due to FI J E I

a E
aJ in (3.16). Thus,
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upon using the composite expression for Ea in (5.1) one
would obtain the desired higher derivative vector multiplet
action. This result should be compared with [36,37]. Finally,
it would be interesting to see if other off-diagonal invariants
can be constructed and if they can have interesting physical
implications in higher derivative extended supersymmetric
models.
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Appendix A: Weyl multiplets of D = 6, N = (1, 0)
supergravity

In this section, we briefly review the elements of six dimen-
sional superconformal tensor calculus. We refer [14,25,35]
to readers interested in a more detailed treatment. The six
dimensional N = (1, 0) conformal tensor calculus is based
on the exceptional superalgebra OSp(6, 2|1) with the gen-
erators

Pa, Mab, D, Ka,Ui j , Q
i
α, Siα, (A.1)

with the corresponding gauge fields

eμ
a, ωμ

ab, bμ, fμ
a,Vμ

i j , ψ i
μ, φi

μ, (A.2)

where a, b, . . . are the Lorentz indices μ, ν . . . are the world
vector indices, α is a spinor index and i, j = 1, 2 is an
SU (2) index. In the set of generators of the superconformal

algebra, {Pa, Mab, D, Ka} represent the generators of the
conformal algebra.For the remaining generators, Ui j is the
SU (2) generator and Qi

α and Siα are the generators of the
Q-SUSY and the S-SUSY respectively.

A set of constraints, known as the conventional con-
straints, can be applied to the set of gauge fields (A.2),
which leaves

(
eμ

a , bμ ,Vμ
i j , ψ i

μ

)
as independent fields and(

ωμ
ab , fμa , φi

μ

)
becomes dependent. However, a simple

counting argument shows that the number of bosonic and
fermionic degrees of freedom do not match and one needs
to include matter fields to form a Weyl multiplet. One pos-
sible choice, leading to the standard Weyl multiplet, is the
inclusion of a real scalar field D, an antisymmetric tensor of
negative duality T−

abc and an SU (2) Majorana-Weyl spinor
of negative chirality χ i . The Q-SUSY, S-SUSY and special
conformal transformation rules are given by [14,25]

δeμ
a = 1

2
ε̄γ aψμ,

δψ i
μ = ∂μεi + 1

2
bμεi + 1

4
ωμ

abγabε
i + Vμ

i
jε

j

+ 1

24
γ · T−γμεi + γμηi ,

δbμ = −1

2
ε̄φμ − 1

24
ε̄γμχ + 1

2
η̄ψμ − 2λKμ,

δV i j
μ = 2ε̄(iφ j)

μ + 2η̄(iψ j)
μ + 1

6
ε̄(iγμχ j),

δT−
abc = − 1

32
ε̄γ deγabcRde(Q) − 7

96
ε̄γabcχ,

δχ i = 1

8

(Dμγ · T−)
γ μεi − 3

8
γ · Ri j (V)ε j

+1

4
Dεi + 1

2
γ · T−ηi ,

δD = ε̄γ μDμχ − 2η̄χ , (A.3)

where the covariant curvatures are given by

DμT
−
abc = ∂μT

−
abc − 3ωμ

d [aT−
bc]d − bμT

−
abc

+ 1

32
ψ̄μγ deγabcRde(Q) + 7

96
ψ̄μγabcχ,

Dμχ i =
(
∂μ − 3

2
bμ + 1

4
ωμ

abγab

)
χ i + Vμ

i
jχ

j

−1

8

(
Dνγ · T−)

γ νψ i
μ + 3

8
γ · Ri j (V)ψμj

−1

4
Dψ i

μ − 1

2
γ · T−φi

μ, (A.4)
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and the relevant modified group theoretical curvatures are

Rμν
a(P) = 2∂[μeν]a + 2b[μeν]a + 2ω[μabeν]b

−1

2
ψ̄μγ aψν,

Rμν
ab(M) = 2∂[μων]ab + 2ω[μacων]cb

−8 f[μ[aeν]b] + ψ̄[μγ abφν]

+ψ̄[μγ [a Rν]b](Q) + 1

2
ψ̄[μγν]Rab(Q)

−1

6
e[μ[aψ̄ν]γ b]χ − 1

2
ψ̄μγcψνT

−abc,

Rμν
i j (V) = 2∂[μVν]i j − 2V[μk(iVν] j)k − 4ψ̄[μ(iφν] j)

−1

3
ψ̄[μ(iγν]χ j),

Rμν
i (Q) = 2

(
∂[μ + 1

2
b[μ + 1

4
ω[μabγab

)
ψ i

ν] + 2V[μi
jψ

j
ν]

− 1

12
γ · T−γ[νψ i

μ] − 2γ[νφi
μ]. (A.5)

Within the standard Weyl multiplet, the dependent fields are
given by

ωμ
ab = 2eν[a∂[μeν]b] − eρ[aeb]σ eμ

c∂ρeσc

+1

4

(
2ψ̄μγ [aψb] + ψ̄aγμψb) + 2eμ

[abb],

fμ
a = 1

8

(
R′

μ
a(M) − 1

10
eμ

a R′(M)
) − 1

8
T−

μcdT
−acd + 1

240
eμ

aD,

φi
μ = − 1

16

(
γ abγμ − 3

5
γμγ ab)R′

ab
i (Q) − 1

60
γμχ i , (A.6)

Here, the primed quantities are defined as

R′
μν

ab(M) ≡ Rμν
ab(M) + 8 f[μ[aeν]b],

R′
μν

i (Q) = Rμν i (Q) + 2γ[νφi
μ]. (A.7)

The definitions of the dependent fields are equivalent to
imposing the following set of constraints on the group theo-
retical curvatures

0 = Rμν
a(P),

0 = eν
bRμν

ab(M) − T−
μbcT

−abc + 1

12
eμ

aD,

0 = γ μRμν(Q) + 1

6
γνχ

i . (A.8)

Alternatively, one may consider to add a dilaton field σ ,
a dilatino field ψ i and a two-form gauge field Bμν to the
content of gauge fields to match the bosonic and fermionic
degrees of freedom. This is most straightforwardly obtained
by coupling the standard Weyl multiplet to a tensor multiplet
which consists of a dilaton field σ , a dilatino field ψ i and a
self-dual antisymmetric tensor field F+

abc. The closure of the
superconformal algebra on these fields imposes the following

constraints [14,25]

0 = /Dψ i − 1

6
σχ i − 1

12
γ · T−ψ i ,

0 = �cσ − 1

6
Dσ + 1

3
F+ · T− + 7

6
χ̄ψ,

0 = Dc (
F+
abc − 2σT−

abc

) − R̄ab(Q)ψ − 1

6
χ̄γabψ, (A.9)

where the relevant covariant curvatures are defined as

Dμψ i = (
∂μ − 5

2
bμ + 1

4
ωμ

abγab
)
ψ i + Vμ

i
jψ

j − 1

48
γ · F+ψ i

μ

−1

4
/Dσψ i

μ + σφi
μ,

Dμσ = (
∂μ − 2bμ

)
σ − ψ̄μψ. (A.10)

These constraints can be solved to relate the fields of standard
Weyl multiplet to the dilaton Weyl multiplet. As we mostly
worked out the bosonic part of supersymmetric actions, here
we will present the bosonic part of the map between the
multiplets and the full supersymmetric map can be found in
[25] in our conventions

D = 15

4
σ−1�σ − 3

4
R + 5

16
HμνρH

μνρ,

F+
μνρ + 2σT−

μνρ = Hμνρ, (A.11)

where R is the Ricci scalar. Finally, the Q-SUSY S-SUSY
and special conformal transformation rules for the dilaton
Weyl multiplet are

δeμ
a = 1

2
ε̄γ aψμ ,

δψ i
μ = ∂μεi + 1

2
bμεi + 1

4
ωμ

abγabε
i + Vμ

i
jε

j

+ 1

48
σ−1γ · Hγμεi + γμηi ,

δbμ = −1

2
ε̄φμ − 1

24
ε̄γμχ + 1

2
η̄ψμ − 2λKμ,

δV i j
μ = 2ε̄(iφ j)

μ + 2η̄(iψ j)
μ + 1

6
ε̄(iγμχ j) ,

δσ = ε̄ψ,

δBμν = −ε̄γμνψ − σ ε̄γ[μψν] ,

δψ i = 1

48
γ · Hεi + 1

4
/Dσεi − σηi . (A.12)
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