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Abstract In this work, we extend for the first time the
spherically symmetric Schwarzschild and Schwarzschild–
De Sitter solutions with a Finsler–Randers-type perturbation
which is generated by a covector Aγ . This gives a locally
anisotropic character to the metric and induces a deviation
from the Riemannian models of gravity. A natural framework
for this study is the Lorentz tangent bundle of a spacetime
manifold. We apply the generalized field equations to the
perturbed metric and derive the dynamics for the covector
Aγ . Finally, we find the timelike, spacelike and null paths on
the Schwarzschild–Randers spacetime, we solve the time-
like ones numerically and we compare them with the classic
geodesics of general relativity. The obtained solutions are
new and they enrich the corresponding literature.

1 Introduction

In the context of research on generalized metric spaces,
Finsler, Lagrange and Finsler-like geometries have played
an important role in modified theories of gravity, general
relativity and cosmology. In the last two decades, a devel-
opment of these promising topics of research has extended
the limits of general relativity and cosmology by including
locally-anisotropic approaches. Over the last two decades
field equations have been thoroughly studied in the con-
text of Finsler, Lagrange, generalized Finsler and Finsler-
like geometries as well as in scalar–tensor theories. The
basic feature of these theories is the presence of extra terms
in the equations of motion due to the intrinsic geometrical
spacetime anisotropy. In this framework the term “spacetime
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anisotropy” is related to the Lorentz violation feature of the
geometry. This approach may provide the necessary platform
in understanding one of the most crucial problems in cos-
mology which is related with the underlying mechanism of
cosmic acceleration and thus of dark energy. There is a lot of
work in the literature on “spacetime anisotropic” geometries
and below we briefly present some relevant works.

Generalized Einstein field equations have been studied in
the Finsler, Lagrange, generalized Finsler and Finsler-like
spaces, for an osculating gravitational approach in which the
second variable y(x) is a tangent/vector field [1–3] and in
Finsler cosmology [4–8]. Different sets of generalized Ein-
stein field equations were derived for the aforementioned
spaces in the framework of a tangent bundle [9–17] and
for the momentum space on the cotangent bundle [18–23].
Additionally, Lorentz invariance violation in Finsler/Finsler-
like spacetime and in Finsler cosmology in very special
relativity has also been studied in a large series of papers
[5,24–27]. Investigations on generalized scalar–tensor the-
ories with Finsler-like structure modeled on a vector bun-
dle with two-internal fibers have also been done [28–30].
Also, the causality problem and light cones for different types
of Finsler spaces have been investigated in [31–34]. In this
context the Raychaudhuri equations with locally anisotropic
internal variables which are providing extra effective terms
have been derived in [16,18,35–37]. Investigations of the
extended Friedmann equations in Finsler spaces with extra
internal degrees of freedom [4] and dynamical analysis (crit-
ical points) [38,39] provide a better understanding of the
dynamical properties of the Finsler–Randers cosmological
models. To this end, articles in the framework of the weak
field and pp-waves in Finsler spacetime can be found in
[16,35,40] and potentially they can be used in order to test
the performance of the Finslerian gravitational theory against
current observations of gravitational waves.
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It is well known in gravitation and cosmology that the
Schwarzschild metric constitutes a fundamental ingredient
of general relativity. This metric describes the most general
spherical symmetric solution of the Einstein field equations
in a region of spacetime where the energy–momentum tensor
vanishes.

In the context of a Finsler/generalized Finsler space, an
extension of a locally anisotropic perturbation of a Finsler
type Schwarzschild metric has been studied by different
authors. In some of these works, possible observational pre-
dictions are given based on the direction-dependent struc-
ture of spacetime. We would like to point out that our study
is realized in a Schwarzschild–Randers model which is dif-
ferent from the works of other researchers on the Finslerian
extensions of a classic Schwarzschild metric [41–51]. In our
approach, we use sufficiently generalized Einstein field equa-
tions on a Lorentz tangent bundle of a spacetime manifold.

In Sect. 2 we introduce the basic framework and geometric
structures of our model.

In Sect. 3 we study a Schwarzschild metric in a spe-
cial Finsler-like spacetime of Randers type. This study
provides a locally anisotropic perturbation of the classical
Schwarzschild metric of the Riemannian structure in a nat-
ural way, induced by a covector field of the base manifold.
In addition, the geometrical setting that we use, namely the
framework of a Lorentz tangent bundle of a Riemannian
spacetime, contains additional degrees of freedom compared
to classic gravity. The generalized field equations which have
been derived in [17] are applied on the perturbed metric of
our Schwarzschild–Randers spacetime and are solved for the
covector field.

In Sect. 4, we study particle paths for our generalized
spacetime. We follow the approach in [17] which takes into
account the effect of internal degrees of freedom on the point
particle dynamics. We apply the solution of the covector
derived in the previous sections and we obtain an explicit
form for the path equations which is an extension of classi-
cal geodesics of general relativity. Finally, as an application,
we solve the timelike paths numerically and compare them
with the geodesics of general relativity.

2 Preliminaries

The natural background space for a locally anisotropic grav-
ity is the tangent bundle of a differentiable Lorentzian space-
time manifold called a Lorentz Tangent Bundle (we will refer
to it as T M hereafter) [15,22]. T M is itself an 8-dimensional
differentiable manifold, so we can define coordinate charts
and tensors on it in the usual way. We briefly present the
basics for this structure, for more details see Sect. 2.

The Lorentz tangent bundle T M is locally covered by
a coordinate map {xμ, yα} where the range of values for

the indices of the x variables is κ, λ, μ, ν, . . . = 0, . . . , 3
and the range of values for the indices of the y vari-
ables is α, β, . . . , θ = 4, . . . , 7. An adapted basis on T M

is
{
δμ = ∂

∂xμ − Nβ
μ

∂
∂yβ , ∂̇α = ∂

∂yα

}
and its dual basis is{

dxμ, δyα = dyα + Nα
ν dxν

}
.

The bundle T M is equipped with a Sasaki-type metric G:

G = gμν(x, y) dxμ ⊗ dxν + vαβ(x, y) δyα ⊗ δyβ (1)

where the metric of the horizontal space (h-space) gμν and
the metric of the vertical space (v-space) vαβ are defined
to be of Lorentzian signature (−,+,+,+). In the rest of
this work, the following homogeneity conditions will be
assumed: gμν(x, ky) = gμν(x, y), vαβ(x, ky) = vαβ(x, y),
k > 0. These conditions are met when the following relations
hold:

gαβ = ±1

2

∂2F2
g

∂yα∂yβ
(2)

vαβ = ±1

2

∂2F2
v

∂yα∂yβ
(3)

where the functions Fg , Fv satisfy the following conditions:

1. Fm , m = g, v, is continuous on T M and smooth on
˜T M ≡ T M \ {0} i.e. the tangent bundle minus the null
set {(x, y) ∈ T M |Fm(x, y) = 0}

2. Fm is positively homogeneous of first degree on its sec-
ond argument:

Fm(xμ, kyα) = kFm(xμ, yα), k > 0 (4)

3. The form

fαβ(x, y) = 1

2

∂2F2
m

∂yα∂yβ
(5)

defines a non-degenerate matrix:

det
[
fαβ

] �= 0 (6)

with gαβ = δ̃
μ
α δ̃ν

βgμν and the sign in the rhs of (2), (3) is
chosen so that the resulting metric has the corrrect signature.

When the above conditions are met, our metric is called
a (pseudo-)Finsler metric. Details about the connection, cur-
vature and torsion structures can be found in Sect. 2.

3 Field equations

In this chapter we consider a general metric (1) on the tan-
gent bundle of a spacetime manifold constituted from a hor-
izontal and a vertical part. In this consideration, we set the
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horizontal part to be the classical Schwarzschild metric and
the vertical part to be a Randers-type perturbation of the
Schwarzschild metric, so the form of our metric will be a
Schwarzschild–Randers metric. We also consider a similar
case for a Schwarzschild–De Sitter–Randers metric. This is a
different type of metric than the Finsler–Randers one which
has been considered in the framework of cosmological study
by different authors [4,8,37,39,52–56]. In these cases, the
horizontal part is a Friedmann–Robertson–Walker model. In
both models the velocity and the vertical part play the role of
intrinsic anisotropic perturbation of the traditional metrics.
We already know the form of the Schwarzschild metric, so
we need to find an explicit form for the Randers-type per-
turbation which contains the additional information of local
anisotropy.

3.1 Field equations on the Lorentz tangent bundle

In this paragraph, we present a set of field equations for
the dynamic variables of our generalized framework. These
equations are:

Rμν − 1

2
(R + S) gμν

+ (δ(λ
ν δκ)

μ − gκλgμν)(DκT β
λβ − T γ

κγ T
β

λβ) = κTμν (7)

Sαβ − 1

2
(R + S) vαβ

+ (vγ δvαβ − δ(γ
α δ

δ)
β )(DγC

μ
μδ − Cν

νγC
μ
μδ) = κYαβ (8)

gμ[κ ∂̇αL
ν]
μν + 2T β

μβg
μ[κCλ]

λα = κ

2
Zκ

α (9)

with

Tμν ≡ − 2√|G|
Δ

(√|G|LM
)

Δgμν
= − 2√−g

Δ
(√−gLM

)

Δgμν

(10)

Yαβ ≡ − 2√|G|
Δ

(√|G|LM
)

Δvαβ
= − 2√−v

Δ
(√−vLM

)

Δvαβ

(11)

Zκ
α ≡ − 2√|G|

Δ
(√|G|LM

)

ΔNα
κ

= −2
ΔLM

ΔNα
κ

(12)

where LM is the Lagrangian of the matter fields, δ
μ
ν and δα

β

are the Kronecker symbols, |G| is the absolute value of the
determinant of the total metric (1), and

T α
νβ = ∂̇βN

α
ν − Lα

βν (13)

are torsion components, where Lα
βν is defined in (A.14). From

the form of (1) it follows that
√|G| = √−g

√−v, with g, v
the determinants of the metrics gμν, vαβ respectively. This
relation was used in (10)–(12).

Equations (7)–(9) are derived from an extension of the
Hilbert-Einstein action on the eight-dimensional Lorentz tan-
gent bundle and constitute a generalization of the Einstein
field equations of general relativity. They are appropriate for
the study of locally anisotropic models of gravity with inter-
nal degrees of freedom. For details on their derivation from
a Hilbert-like action on the Lorentz tangent bundle see [17].

We will make some comments in order to give a physi-
cal interpretation in relation to the Eqs. (10)–(12). Lorentz
violations produce anisotropies in the space and the matter
sector. These act as a source of local anisotropy and can con-
tribute to the torsion, connection, curvature components and
to the energy–momentum tensors of the horizontal and verti-
cal space Tμν and Yαβ . As a result, the curvatures Rμν and R
as well as the energy–momentum tensor Tμν contain the addi-
tional information of local anisotropy of the metric and the
matter fields. Sαβ, S and Yαβ , on the other hand, are objects
with no equivalent in Riemannian gravity. They contain more
information about local anisotropy which is produced from
the metric vαβ which includes additional internal structure of
spacetime. Finally, the nonlinear connection Nα

μ , a structure
which induces an interaction between internal and external
spaces [29], can also contribute to all the above-mentioned
objects, while the energy–momentum tensor Zκ

α shows the
variation of LM with respect to Nα

μ and it reflects the depen-
dence of matter fields on the nonlinear connection [17]. This
is different from Tμν and Yαβ which depend on just the exter-
nal or internal structure respectively.

Notice that the field equations (7)–(9) reduce to the usual
Einstein field equations of general relativity (GR) in the limit:

gμν(x, y) → gμν(x) (14)

vαβ(x, y) → gαβ(x) = δ̃μ
α δ̃ν

βgμν(x) (15)

Nα
ν (x, y) → 1

2
yγ gαβ∂νgβγ . (16)

We observe that when the metric gμν(x, y) is reduced to a
Riemannian one according to (14) then the connection coef-
ficients Lμ

κλ(x, y) (eq. (A.13)) reduce to the Christoffel sym-
bols:

γ
μ
κλ(x) = 1

2
gμν(∂κgνλ + ∂λgνκ − ∂νgκλ) (17)

and the Cartan torsion tensor (A.15) vanishes:

Cμ
να = 0. (18)

From (15) it becomes clear that the internal structure (y
variable) of spacetime doesn’t provide additional informa-
tion about the geometry, since the metric vαβ of the internal
structure reduces to the metric gμν(x) of base spacetime (x
variable).

Moreover, we see that the Cartan-type [22] nonlinear con-
nection (16) ensures that T α

να = 0. Indeed, from Eq. (13) and
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from the conditions (14–16) we get

T α
να = ∂̇αN

α
ν − 1

2
gαβ∂νgαβ

= 1

2
gαβ∂νgαβ − 1

2
gαβ∂νgαβ = 0. (19)

Now, as long as conditions (14) and (15) are satisfied, the
metric tensor (1) takes the Sasaki form [57]

G = gμν(x) dxμ ⊗ dxν + gαβ(x) δyα ⊗ δyβ (20)

Based on (20), it is straightforward to calculate the curva-
tures Rμν and R from (A.29) and (A.30) respectively in the
GR limit of the Lorentz tangent bundle gravity and we find
that they reduce to the Ricci tensor Rμν and Ricci scalar R
of general relativity for the metric gμν . As expected, the cur-
vatures Sαβ and S (Eqs. (A.26) and (A.28)) both vanish in
this limit.

From the above relations (14–20) it follows that, in the
GR limit, the corresponding field equations (7–9) boil down
to

Rμν − 1

2
Rgμν = κTμν (21)

−1

2
Rgαβ = κYαβ (22)

Zκ
α = 0 (23)

where Rμν and R are the Ricci tensor and scalar of gen-
eral relativity for the metric gμν , as we mentioned above.
Of course in Eq. (21) G denotes the Newton’s constant and
κ = 8πG

c4 , while the energy momentum tensor Tμν is given
by (10). From the the trace of Eq. (21) we obtain R = −κT ,
hence Eq. (22) gives

Yαβ = 1

2
Tgαβ. (24)

This is the GR limit for the energy–momentum tensor Yαβ .
Finally, from (12) and (23) we conclude that in the GR

limit the matter fields have no direct dependence on the non-
linear connection.

3.2 Schwarzschild–Randers spacetime

As we mentioned above, the horizontal part gμν of the metric
(1) will be taken to be the Schwarzschild metric so that

gμνdxμdxν = −
(

1 − Rs

r

)
dt2 + dr2

1 − Rs
r

+ r2dθ2 + r2 sin2 θ dφ2 (25)

where Rs = 2GM is the Schwarzschild radius (we have set
the speed of light constant c = 1).

In the following, we assume a function Fv of Randers type
from which we will derive vαβ by using (3):

Fv =
√

−gαβ(x)yα yβ + Aγ (x)yγ (26)

where gαβ = gμνδ̃
μ
α δ̃ν

β is the Schwarzschild metric and
Aγ (x) is a covector which will be determined by the equa-
tions. We focus on the timelike subspace of the internal y-
space with respect to the Schwarzschild metric (gαβ(x)yα yβ <

0) hence the minus sign under the square root. We take Aγ (x)
to be a weak term (|Aγ (x)| � 1), hence we neglect high order
terms from the calculations. In addition, we consider as the
appropriate form for the nonlinear connection the one given
in (16) i.e. its GR limit value on the tangent bundle:

Nα
μ = 1

2
yβgαγ ∂μgβγ (27)

This choice will give us a locally anisotropic gravitational
model which deviates minimally from general relativity due
to the extra Randers term Aγ yγ in (26).

We calculate the metric tensor vαβ of (26) from (3):

vαβ = −1

2

∂2F2
v

∂yα∂yβ
(28)

and we find

vαβ = gαβ(x) + 1

a
(Aβgαγ y

γ + Aγ gαβ y
γ + Aαgβγ y

γ )

+ 1

a3 Aγ gαεgβδ y
γ yδ yε, (29)

where we have set a =
√

−gαβ yα yβ . From (29) we see that
the metric vαβ takes the form

vαβ(x, y) = gαβ(x) + wαβ(x, y) (30)

where we have set

wαβ = 1

a
(Aβgαγ y

γ + Aγ gαβ y
γ + Aαgβγ y

γ )

+ 1

a3 Aγ gαεgβδ y
γ yδ yε (31)

Its inverse is vβγ = gβγ −wβγ so that vαβvβγ = gαβgβγ =
δ
γ
α to first order in wαβ . The total metric over the tangent

bundle is then written as

G = gμν(x) dxμ ⊗ dxν + [gαβ(x) + wαβ(x, y)] δyα ⊗ δyβ

(32)

We remark that, as we can see from (30), the metric vαβ(x, y)
is a Finslerian perturbation of the Riemannian metric gαβ(x).
We observe that if we let wαβ → 0 then the field equations
(7)–(9) reduce to the Einstein field equations of general rel-
ativity.
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Next we will calculate the terms for (7) and (8). From
the definitions (A.29) and (A.30) we see that when gμν has
no explicit dependence on y then Rμν and R reduce to the
classical Ricci tensor and scalar of general relativity. Addi-
tionally, since gμν(x) is the Schwarzschild metric, both Rμν

and R are zero. Here we have assumed vacuum solutions, so
the energy momentum tensors are zero and the Eqs. (7) and
(8) become

−1

2
Sgμν + (δ(λ

ν δκ)
μ − gκλgμν)(DκT β

λβ − T γ
κγ T

β
λβ) = 0

(33)

Sαβ − 1

2
S vαβ

+(vγ δvαβ − δ(γ
α δ

δ)
β )(DγC

μ
μδ − Cν

νγC
μ
μδ) = 0 (34)

Field equation (9) gives us no additional information since
all three terms vanish identically in our case. We can simplify
Eq. (34) by calculating Cμ

μδ from (A.15) and we find that it is
zero since the metric gμν depends only on x . Then by taking
the trace of the remaining terms in (34) we can show that Sαβ

and S are also zero, so the field equation (33) becomes
(
δ(λ
ν δκ)

μ − gκλgμν

) (
DκT β

λβ − T γ
κγ T

β
λβ

)
= 0. (35)

We substitute (A.14) and (27) in (13) and after some calcu-
lations we get

T α
να = −1

2
δνw (36)

with w = gαβwαβ . The above relation (36) shows us that the

torsion is of first order on wαβ so the terms T γ
κγ T β

λβ from (35)
are omitted. Then by taking the trace of the remaining terms
in (35) we have the equation that follows:

gμνDμT α
να = 0 (37)

Substituting the latter equation to (35) we find

D(μT α
ν)α = 0 (38)

By the definition of the covariant derivative in (A.10), Eq.
(38) becomes

δ(μT α
ν)α − Lκ

μνT α
κα = 0 (39)

Using Eqs. (31) and (36) we get T α
να in terms of Aβ :

T α
να = −5

2
δν

(
Aβ

yβ

a

)
. (40)

It is straightforward to show that

δμ

(
yα

a

)
= −Eγ

βμ

yβ

a
(41)

with

Eγ
βμ(x) ≡ 1

2
gαγ ∂μgαβ (42)

Using (40) and (41) we get

T α
να = −5

2
Kνγ

yγ

a
(43)

with

Kνγ (x) ≡ ∂ν Aγ − AβE
β
γ ν. (44)

from relation (43) we can calculate (39):
(
∂(μKν)γ − Eβ

γ (μKν)β − Lλ
μνKλγ

) yγ

a
= 0. (45)

Relation (45) must hold for every y. Since the expression in
parentheses does not depend on y, we conclude that it must
identically vanish:

∂(μKν)γ − Eβ

γ (μKν)β − Lλ
μνKλγ = 0 (46)

Remark. By comparing (A.14) and (42) we get a relation of
the form Lα

βμ = Eα
βμ +O(A). If we use this in (44) and (46)

we get the equation D(μDν)Aγ = 0, which is equivalent to
the system of Eqs. (44) and (46). Contracting this with gμν

gives

�Aγ = 0 (47)

with � ≡ gμνDμDν .
In order to fully determine the metric (32) for the respec-

tive subspace of the internal space, we need gμν(x) and
Aγ (x). The first is already defined in (25), so we need to
solve (46) for Aγ (x) to get a full expression for the metric in
our space. If we use the definitions (42) and (44) on relation
(46), we get the equation that we need to solve for A(x):

∂μ∂ν Aγ − 1

2
gβδ∂νgδγ ∂μAβ − 1

2
gβδ∂μgδγ ∂ν Aβ

+ 1

4
Aβ

(
1

2
gβεgδζ ∂νgεδ∂μgγ ζ + 1

2
gβεgδζ ∂μgεδ∂νgγ ζ

− ∂μg
βδ∂νgγ δ − ∂νg

βδ∂μgγ δ − 2gβδ∂μ∂νgγ δ

)

− 1

2
gκλ(∂μgκν + ∂νgκμ − ∂κgμν)

×
(

∂λAγ − 1

2
Aβg

βδ∂λgγ δ

)
= 0, (48)

where gμν(x) is the Schwarzschild metric (25). Once we get
A(x) from (48), we can calculate wαβ(x, y) from (31) and
then use the result to calculate the full metric (32).

A similar analysis holds for the spatial subspace of the
internal space. In that case, instead of (26) and (28) we have

Fv =
√
gαβ yα yβ + Aγ y

γ (49)

and

vαβ = 1

2

∂2F2
v

∂yα∂yβ
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= gαβ(x) + 1

a
(Aβgαγ y

γ + Aγ gαβ y
γ + Aαgβγ y

γ )

− 1

a3 Aγ gαεgβδ y
γ yδ yε, (50)

where a = √
gμν yμyν for the spacelike sector of gμν taking

into consideration the signature of the metric. Following the
same steps as above, we reach the same equation for Aγ , i.e.
Eq. (48). Therefore, solving this equation will give us the
metric for both the timelike and spacelike (with respect to
gαβ ) sub-spaces of the internal space.

We will solve (48) analytically with separation of vari-
ables, see Appendix B for more details. After calculations
we find the solution

Aγ (x) =
[
Ã4

∣∣∣∣1 − RS

r

∣∣∣∣
1/2

, 0, 0, 0

]
(51)

with Ã4 a constant. This is a timelike covector since
gαβ AαAβ = −( Ã4)

2 < 0. It is interesting to mention that the
horizon of the Schwarzschild–Randers metric is correlated
with that of Schwarzschild. Practically, the quantity Aγ can
be seen as a distortion factor which quantifies the deviation
from the pure Schwarzschild solution. Obviously, the solu-
tion (51) on small spherical scales (r ∼ Rs) tends to zero.
On the other hand, for r 
 Rs the Schwarzschild - Ran-
ders metric tends asymptotically to Minkowski. Finally, we
see that this metric has a singularity in r = 0 similarly with
the classic Schwarzschild one. The Schwarzschild–Randers
model will be further studied for intrinsic singularities and
horizons in a future research.

3.3 Schwarzschild–De Sitter–Randers spacetime

We will follow the same procedure as in the previous para-
graph but for a Schwarzschild–Randers spacetime with a
cosmological horizon, namely a Schwarzschild–De Sitter–
Randers spacetime. In this scenario, we take the horizontal
part of the metric (1) to be:

gμνdxμdxν = −
(

1 − Rs

r
− �

3
r2

)
dt2

+ dr2

1 − Rs
r − �

3 r
2

+ r2dθ2 + r2 sin2 θ dφ2

(52)

while, as before, the metric tensor vαβ will be derived from
the Lagrangian (26) and relation (28), where gαβ = δ̃

μ
α δ̃ν

β is
now given by (52). The latter is a static spherically symmetric
vacuum solution for the classical Einstein field equations
with a cosmological constant �:

Rμν − 1

2
gμνR + gμν� = 0 (53)

with Rμν and R the Ricci tensor and scalar of general rela-
tivity. In accordance, we introduce a cosmological constant
term to the field equations (7) in vacuum:

Rμν − 1

2
(R + S) gμν

+ (δ(λ
ν δκ)

μ − gκλgμν)(DκT β
λβ − T γ

κγ T
β

λβ) + gμν� = 0 (54)

The tensors Rμν and R reduce to the standard Ricci tensor
and scalar of general relativity for the metric (52) since the
latter has no direct dependence on y. Additionally, from (8)
in vacuum we get S = 0 the same way as in the previous
paragraph. Therefore, using (53) in Eq. (54) we get relation
(35) again. It is obvious that the procedure is the same as
before and only the explicit form of gμν(x) changes. As such,
we reach the same equation for Aγ , namely relation (48) with
gμν given by (52). Again, by separation of variables, one finds
(see Appendix B):

Aγ (x) =
[
Ã4

∣∣∣∣1 − RS

r
− �

3
r2

∣∣∣∣
1/2

, 0, 0, 0

]
(55)

4 Paths in the Schwarzschild–Randers spacetime

Now that we have Aγ and hence the full metric, we can study
particle trajectories in T M . A Lagrangian for point particles
in the total space of the Lorentz tangent bundle has been
proposed in [17]:

L(x, ẋ, y) = (agμν ẋ
μ ẋν + bδ̃α

μvαβ ẋ
μyβ + cvαβ y

α yβ)1/2

(56)

with a, b, c constants. The associated equations of motion
are

(gκν + zδ̃α
κ δβ

ν vαβ)ẍκ + (γνκλ + zσνκλ)ẋ
κ ẋλ = 0 (57)

and

yα = δ̃α
μ ẋ

μ (58)

with

σνκλ = 1

2
(δ̃α

ν δ̃
β
λ ∂κvαβ + δ̃α

ν δ̃β
κ ∂λvαβ − δ̃α

κ δ̃
β
λ ∂νvαβ) (59)

and z = −b2/4ac is a constant. The Christoffel symbols of
the first kind for the metric gκν(x) are

γνκλ = 1

2
(∂κgνλ + ∂λgνκ − ∂νgκλ) (60)

The term δ̃α
κ δ̃

β
ν vαβ is the metric of the v-space lowered

down to the h-space via the generalized Kronecker symbols

which are defined as δ̃
μ
α = δ̃α

μ = 1 for a = μ+4 and equal to
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zero otherwise.1 We will write for convenience δ̃α
κ δ̃

β
ν vαβ =

vκν and similarly δ̃α
κ δ̃

β
ν wαβ = wκν .

We define gκν = gκν + zvκν and we observe that its
inverse is gμν = (1 + z)−2(gμν + zvμν) in the sense that
gκνg

μν = δ
μ
κ to first order in wμν . Contracting (57) with gμν

gives

gμνgκν ẍ
κ+(gμνγνκλ + zgμνσνκλ)ẋ

κ ẋλ = 0

⇔ ẍμ+ (1 + z)−2[γ μ
κλ + zσμ

κλ

+ zvμν(γνκλ + zσνκλ)]ẋκ ẋλ = 0 (61)

where γ
μ
κλ = gμνγνκλ and σ

μ
κλ = gμνσνκλ. After some

straightforward calculations, eq. (61) gives

ẍμ + γ
μ
κλ ẋ

κ ẋλ = − z

1 + z
(σ̃

μ
κλ − wμνγνκλ)ẋ

κ ẋλ, (62)

with

σ̃
μ
κλ ≡ 1

2
gμν (∂κwνλ + ∂λwνκ − ∂νwκλ) (63)

The horizontal part of the tangent vector on the paths is
ẋμ = dxμ/ds with s an affine parameter along the path
defined as [17]:

s = s0 +
∫ λ1

λ0

√
±gμν(x, y)

dxμ

dλ

dxν

dλ
dλ (64)

with s0, λ0 and λ1 constants and λ is an arbitrary parameter of
the path. The sign of gμν(x, y) is determined by the tangent
vector of the path, specifically if dxν/dλ is timelike with
respect to gμν(x, y) (gμν(x, y)

dxμ

dλ
dxν

dλ
< 0) then we get

“−”, likewise for a spacelike tangent vector with respect to
gμν(x, y) (gμν(x, y)

dxμ

dλ
dxν

dλ
> 0) we get “+”.

The paths (62) will play the role for our model that the
geodesics play for general relativity. As is the case for the
latter, we need a classification of path segments with respect
to their character i.e. timelike, null and spacelike. We define:

– Timelike segment: gμν(x)ẋμ ẋν < 0 at every point
– Null segment: gμν(x)ẋμ ẋν = 0 at every point
– Spacelike segment: gμν(x)ẋμ ẋν > 0 at every point

Therefore, the character of the path is determined by the
metric tensor gμν(x) of the horizontal subspace. We define
the proper time τ as

τ = τ0 +
∫ λ1

λ0

√
−gμν(x)

dxμ

dλ

dxν

dλ
dλ, (65)

1 In general, δ̃α
μ and δ̃ν

β can be used to lift an object from the horizontal
to the vertical subspace of T T M or lower down one from the vertical to
the horizontal subspace. This allows us to perform algebraic operations
between components of tensors belonging to different sub-spaces of
T T M .

where τ0 is constant. By comparing relations (64) and (65)
we see that the parameter s on the paths (62) cannot be written
as an affine transformation of the proper time in general.

We remark that Eq. (62) reduces to the classic geodesics
equation of general relativity when the perturbation wαβ goes
to zero, as it should.

4.1 Timelike paths

To begin, we rewrite the perturbation (31) as

wνλ = gλρ Aνu
ρ + gνρ Aλu

ρ + (gνλ + gνσ gλτu
σuτ )Aρu

ρ

(66)

with

uν ≡ yν

a
(67)

where a = √−gμν yμyν and we have lowered down Aγ and
yγ using the generalized Kronecker deltas. It is straightfor-
ward to show

∂μu
ν = −1

2
∂μgκλu

κuλuν (68)

Using (63), (66) and (68) we calculate

σ̃
μ
κλy

κ yλ = a2gμν

{(
gλσ ∂κ Aν + 2gνσ ∂κ Aλ − 3

2
gλσ ∂ν Aκ

+ 2Aσ ∂κgνλ + Aν∂κgλσ − 3

2
Aσ ∂νgκλ

)
uσuκuλ

+ 1

2
(−Aνgλρ∂κgστ + Aλgνρ∂κgστ

+ 2Aρgλτ ∂κgνσ + 2gνσ gλτ ∂κ Aρ − Aκgλρ∂νgστ

− gκσ gλτ ∂ν Aρ)uσuτuρuκuλ

−3

4
Aρ(2gνσ gκτ ∂λgξπ

− gκσ gλτ ∂νgξπ )uσuτuρuκuλuξuπ

}
(69)

Now, if we take into account that gμνuμuν = −1, the above
relation gives

σ̃
μ
κλy

κ yλ = a2
{
gμν (∂ν Aκ − ∂κ Aν) u

κ

+ gμν

(
gνσ ∂κ Aλ + Aσ ∂κgνλ + 3

2
Aν∂κgλσ

− 1

4
Aκ∂νgσλ

)
uσuκuλ

+ Aλ∂κgστu
σuτuμuκuλ

}
. (70)
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Substituting the relations (58), (60), (66) and (70) into (62)
we get

ẍμ + γ
μ
κλ ẋ

κ ẋλ

= − z

1 + z

{
agμν (∂ν Aκ − ∂κ Aν) ẋ

κ

+ 1

a

[
Aν

(
∂κgνλ − 1

2
∂νgκλ

)
+ ∂κ Aλ

]
ẋμ ẋκ ẋλ

+ 1

a

(
1

4
gμνAκ∂νgσλ + gμνAκ∂λgσν + Aμ∂κgλσ

)
ẋσ ẋκ ẋλ

+ 1

2a3 Aλ∂κgστ ẋ
σ ẋτ ẋμ ẋκ ẋλ

}
(71)

This is the generalized path equation for the timelike sector
of the metric gμν(x).
Remark. If we set a = 1 at some fixed point then (71) can be
written as

ẍμ + γ
μ
κλ ẋ

κ ẋλ − e

m
Fμ

κ ẋ
κ

= e

m

{[
Aν

(
∂κgνλ − 1

2
∂νgκλ

)
+ ∂κ Aλ

]
ẋμ ẋκ ẋλ

+
(

1

4
gμνAκ∂νgσλ + gμνAκ∂λgσν + Aμ∂κgλσ

)
ẋσ ẋκ ẋλ

+ Aλ∂κgστ ẋ
σ ẋτ ẋμ ẋκ ẋλ

}
(72)

with Fκν = ∂ν Aκ − ∂κ Aν the field strength tensor of Aν and
we have set z

1+z := − e
m where e the electric charge and m

the mass of the particle. If we ignore the r.h.s of the above
equation then (72) will have the same form as the equation of
a charged particle subject to the Lorentz force with an elec-
tromagnetic vector potential Aγ in the Riemannian setting.
A similar equation which is derived from a Finsler–Randers
Lagrangian and contains a Lorentz force term has been stud-
ied in [37]. However, in our more generalized setting we also
get the r.h.s. perturbation term which depends on Aν and
its first derivatives. Therefore, a possible relation between
our Schwarzschild–Randers metric and the Lorentz force
requires further investigation and goes beyond the scope of
this work.

Now, it is known that we can always approach a time-
like path (geodesic) with a proper time parameter broken
null path with the same endpoints [58]. In this approxima-
tion it is considered that the number of null path segments
with infinitesimal distance between two neighboring points
increases following the timelike path. Therefore, the final
null path of zero length (with respect to gμν) approaches
the timelike path (71), however the parameter along them is
replaced by an appropriate affine one.

Substituting to (71) the solution (51) we get the explicit
form of the timelike paths components for r > Rs :

ẗ + 1 − f

r f
ṙ ṫ

= − z

1 + z
Ã4

{(
1

2
a f −3/2ṙ + 2

a
f −1/2ṙ ṫ2

+ 1

a
f −5/2ṙ3

)
1 − f

r

− 2r

a
f −1/2(ṙ θ̇2 + sin2 θ ṙ φ̇2 + r

2
sin 2θ θ̇ φ̇2)

+ ṫ

[
1

a

(
− f −3/2 + 1

2
f −1/2

)
ṫ ṙ

1 − f

r

+ 1

2a3

(
− {

f 1/2 ṫ3ṙ + f −3/2 ṫ ṙ3}1 − f

r

+ 2 f 1/2r
{
ṫ ṙ θ̇2 + sin2 θ ṫ ṙ φ̇2 + r

2
sin 2θ ṫ θ̇ φ̇2}

)]}

(73)

r̈ + f (1 − f )

2r
ṫ2 − 1 − f

2r f
ṙ2 − r f

(
θ̇2 + sin2 θφ̇2)

= − z

1 + z
Ã4

{(
1

2
a f 1/2 ṫ − 1

4a
f 3/2 ṫ3

− 5

4a
f −1/2ṙ2 ṫ

)
1 − f

r

+ 1

2a
f 3/2r

(
ṫ θ̇2 + sin2 θ ṫ φ̇2)

+ ṙ

[
1

a

(
− f −3/2 + 1

2
f −1/2

)
ṫ ṙ

1 − f

r

+ 1

2a3

(
− {

f 1/2 ṫ3ṙ + f −3/2 ṫ ṙ3}1 − f

r

+ 2 f 1/2r
{
ṫ ṙ θ̇2 + sin2 θ ṫ ṙ φ̇2 + r

2
sin 2θ ṫ θ̇ φ̇2}

)]}

(74)

θ̈ + 2

r
θ̇ ṙ − 1

2
sin 2θ φ̇2

= − z

1 + z
Ã4

{
1

a

1

r

(
1

4
f 1/2 sin 2θ ṫ φ̇2 + 2ṫ ṙ θ̇

)

+ θ̇

[
1

a

(
− f −3/2 + 1

2
f −1/2

)
ṫ ṙ

1 − f

r

+ 1

2a3

(
− {

f 1/2 ṫ3ṙ + f −3/2 ṫ ṙ3}1 − f

r

+ 2 f 1/2r
{
ṫ ṙ θ̇2 + sin2 θ ṫ ṙ φ̇2 + r

2
sin 2θ ṫ θ̇ φ̇2}

)]}

(75)

φ̈ + 2

r
φ̇ṙ + 2 cot θ θ̇ φ̇
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= − z

1 + z
Ã4

{
1

a

(
1

r
ṫ ṙ φ̇ + cot θ ṫ θ̇ φ̇

)

+ φ̇

[
1

a

(
− f −3/2 + 1

2
f −1/2

)
ṫ ṙ

1 − f

r

+ 1

2a3

(
− {

f 1/2 ṫ3ṙ + f −3/2 ṫ ṙ3}1 − f

r

+ 2 f 1/2r
{
ṫ ṙ θ̇2 + sin2 θ ṫ ṙ φ̇2 + r

2
sin 2θ ṫ θ̇ φ̇2}

)]}

(76)

with f = 1 − RS
r , RS the Schwarzschild radius.

4.1.1 Application

As an application for our model we present a numerical solu-
tion (using the differential equation solver of Mathematica)
of the timelike path equations (73–76) for an appropriate
choice of parameters and initial values. For this applica-
tion we consider that θ = π

2 while t, r and φ are the vari-
ables. Below we present two figures which clarify the dif-
ference between Schwarzschild–Finsler–Randers (S–F–R)
paths (red line) and general relativity (GR) geodesics (blue
line). Notice, that the full analysis of timelike paths as well
as the applications to Astrophysics will be studied in a forth-
coming paper.

From the figures we observe that in the case of S–F–R
model the timelike path reaches a higher maximum distance
which is somewhat larger than the path provided by General
Relativity. We notice that the time it takes for the S–F–R
path to reach the Schwarzschild radius is more than in GR
(Fig. 1). From these observations we see that in our model

Fig. 1 This is an r, t graph of the timelike paths that we find using our
theoretical model Schwarzschild–Finsler–Randers (S–F–R) in compar-
ison to the geodesics of general relativity (GR)

the maximum radial distance of the orbit is greater than that
of GR and also the rate at which the particle falls is slower
(Fig. 2). As expected, this deviation from the GR geodesic is
produced from the right hand side of (73–76), where the extra
terms in the S-F-R model act as a force that opposes gravity.
Since the extra terms of the rhs of (73–76) are taken to be
small the corresponding deviation from the GR geodesic is
relatively small.

4.2 Spacelike paths

For completeness, we will find the spacelike paths from (62)
following the same procedure as above. From (50) we get

wνλ = gλρ Aνu
ρ + gνρ Aλu

ρ + (gνλ − gνσ gλτu
σuτ )Aρu

ρ

(77)

where, as before, we have lowered downwαβ to the horizontal
space using the generalized Kronecker symbols and we have
set uν = yν/a where a = √

gμν yμyν . Following the same
steps as for the timelike section of gμν and taking into account
that gμνuμuν = 1, (62) gives

ẍμ + γ
μ
κλ ẋ

κ ẋλ

= − z

1 + z

{
− agμν (∂ν Aκ − ∂κ Aν) ẋ

κ

+ 1

a

[
Aν

(
∂κgνλ − 1

2
∂νgκλ

)
+ ∂κ Aλ

]
ẋμ ẋκ ẋλ

+ 1

a

(
− 1

4
gμν Aκ∂νgσλ + gμν Aκ∂λgσν

)
ẋσ ẋκ ẋλ

− 5

2a3 Aλ∂κgστ ẋ
σ ẋτ ẋμ ẋκ ẋλ

}
(78)

Fig. 2 This is an r, φ polar graph of the timelike paths that we find using
our theoretical Schwarzschild–Finsler–Randers (S–F–R; red curve)
model in comparison to the geodesics of general relativity (GR; blue
line)
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Substituting to (78) the solution (51) we get the explicit form
of the spacelike paths components for r > RS :

ẗ + 1 − f

r f
ṙ ṫ

= − z

1 + z
Ã4

{(
− 1

2
a f −3/2ṙ + 1

a
f −1/2ṙ ṫ2

)
1 − f

r

+ ṫ

[
1

a

(
− f −3/2 + 1

2
f −1/2

)
ṫ ṙ

1 − f

r

− 5

2a3

(
− {

f 1/2 ṫ3ṙ + f −3/2 ṫ ṙ3}1 − f

r

+ 2 f 1/2r
{
ṫ ṙ θ̇2 + sin2 θ ṫ ṙ φ̇2 + r

2
sin 2θ ṫ θ̇ φ̇2}

)]}

(79)

r̈ + f (1 − f )

2r
ṫ2 − 1 − f

2r f
ṙ2 − r f

(
θ̇2 + sin2 θφ̇2)

= − z

1 + z
Ã4

{(
− 1

2
a f 1/2 ṫ + 1

4a
f 3/2 ṫ3

− 3

4a
f −1/2ṙ2 ṫ

)
1 − f

r

− 1

2a
f 3/2r

(
ṫ θ̇2 + sin2 θ ṫ φ̇2)

+ ṙ

[
1

a

(
− f −3/2 + 1

2
f −1/2

)
ṫ ṙ

1 − f

r

− 5

2a3

(
− {

f 1/2 ṫ3ṙ + f −3/2 ṫ ṙ3}1 − f

r

+ 2 f 1/2r
{
ṫ ṙ θ̇2 + sin2 θ ṫ ṙ φ̇2 + r

2
sin 2θ ṫ θ̇ φ̇2}

)]}

(80)

θ̈ + 2

r
θ̇ ṙ − 1

2
sin 2θ φ̇2

= − z

1 + z
Ã4

{
1

a

1

r

(
− 1

4
f 1/2 sin 2θ ṫ φ̇2 + 2ṫ ṙ θ̇

)

+ θ̇

[
1

a

(
− f −3/2 + 1

2
f −1/2

)
ṫ ṙ

1 − f

r

− 5

2a3

(
− {

f 1/2 ṫ3ṙ + f −3/2 ṫ ṙ3}1 − f

r

+ 2 f 1/2r
{
ṫ ṙ θ̇2 + sin2 θ ṫ ṙ φ̇2 + r

2
sin 2θ ṫ θ̇ φ̇2}

)]}

(81)

φ̈ + 2

r
φ̇ṙ + 2 cot θ θ̇ φ̇

= − z

1 + z
Ã4

{
1

a

(
1

r
ṫ ṙ φ̇ + cot θ ṫ θ̇ φ̇

)

+ φ̇

[
1

a

(
− f −3/2 + 1

2
f −1/2

)
ṫ ṙ

1 − f

r

− 5

2a3

(
− {

f 1/2 ṫ3ṙ + f −3/2 ṫ ṙ3}1 − f

r

+ 2 f 1/2r
{
ṫ ṙ θ̇2 + sin2 θ ṫ ṙ φ̇2 + r

2
sin 2θ ṫ θ̇ φ̇2}

)]}

(82)

5 Conclusion

In this paper we derived for the first time the gravi-
tational field as a solution of the spherically symmet-
ric Schwarzschild–Randers and Schwarzschild–De Sitter–
Randers metric. In this framework we used generalized Ein-
stein field equations on the tangent bundle of a spacetime
with zero horizontal energy–momentum tensor in which we
get more degrees of freedom. In addition, we specified an
appropriate timelike covector which plays a significant role
in this theory differentiating our model from the traditional
Schwarzschild one, giving an intrinsic anisotropic charac-
ter to the ordinary Schwarzschild metric as well as for the
particle paths. Moreover, we studied the correlation of the
Schwarzschild–De Sitter model with the Randers one as
becomes apparent from (55). We also studied the forms
of paths in our spacetime and we obtained more general-
ized forms than the ordinary geodesic paths of the classical
Schwarzschild spacetime. In this context, we provided some
numerical solutions of the timelike paths of our model and
we found small but not negligible deviations from general
relativity. This difference can been seen as a result of the
local anisotropy which creates an effective force that affects
the corresponding geodesics.

It is obvious that when the covector Aγ of our theory van-
ishes then we recover the ordinary form of a Schwarzschild
metric and Schwarzschild–De Sitter metric respectively and
their derived geodesics.

Such an approximation can be considered compati-
ble with some current observational data and parame-
ters with anisotropic character in cosmological models
of Schwarzschild–Randers and Schwarzschild–De Sitter–
Randers spacetimes. These features mean that Finsler–
Randers gravity can be interesting at the astrophysical level.
This study will be the goal of our next work.
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AppendixA:Basic structures on theLorentz tangentbun-
dle

The eight-dimensional Lorentz tangent bundleT M is equipped
with local coordinates {U A} = {xμ, yα} where xμ are the
local coordinates on the base manifold M around π(σ),
σ ∈ T M , and yα are the coordinates on the fiber. The range
of values for the indices is κ, λ, μ, ν, . . . = 0, . . . , 3 and
α, β, . . . , θ = 4, . . . , 7.

The adapted basis on the total space T T M is defined as
{EA} = {δμ, ∂̇α} where

δμ = δ

δxμ
= ∂

∂xμ
− Nα

μ(x, y)
∂

∂yα
(A.1)

and

∂̇α = ∂

∂yα
(A.2)

where Nα
μ are the components of a nonlinear connection. The

curvature of the nonlinear connection is defined as

�α
νκ = δNα

ν

δxκ
− δNα

κ

δxν
(A.3)

The nonlinear connection induces a split of the total space
T T M into a horizontal distribution THT M and a vertical
distribution TV T M . The above-mentioned split is expressed
with the Whitney sum:

T T M = THT M ⊕ TV T M. (A.4)

The horizontal distribution or h-space is spanned by δμ, while
the vertical distribution or v-space is spanned by ∂̇α . Under
a local coordinate transformation on the base manifold, the
adapted basis vectors transform as:

δμ′ = ∂xμ

∂xμ′ δμ, ∂̇α′ = ∂xα

∂xα′ ∂̇α. (A.5)

with xα = δ̃α
μx

μ.2 The adapted dual basis of the adjoint total
space T ∗T M is {E A} = {dxμ, δyα} with the definition

δyα = dyα + Nα
ν dxν . (A.6)

The transformation rule for {dxμ, δyα} is:

dxμ′ = ∂xμ′

∂xμ
dxμ, δyα′ = ∂xα′

∂xα
δyα (A.7)

The bundle T M
In this work, we consider a distinguished connection (d-

connection) D on T M . This is a linear connection with coef-
ficients {Γ A

BC } = {Lμ
νκ , Lα

βκ ,Cμ
νγ ,Cα

βγ } which preserves by
parallelism the horizontal and vertical distributions:

Dδκ δν = Lμ
νκ(x, y)δμ , D∂̇γ

δν = Cμ
νγ (x, y)δμ (A.8)

Dδκ ∂̇β = Lα
βκ(x, y)∂̇α, D∂̇γ

∂̇β = Cα
βγ (x, y)∂̇α (A.9)

From these, the definitions for partial covariant differentia-
tion follow as usual, e.g. for X ∈ T T M we have the defini-
tions for covariant h-derivative

X A|ν ≡ Dν X A ≡ δνX
A + L A

BνX
B (A.10)

and covariant v-derivative

X A|β ≡ Dβ X A ≡ ∂̇βX
A + CA

BβX
B (A.11)

A d-connection can be uniquely defined given that the
following conditions are satisfied:

– The d-connection is metric compatible
– Coefficients Lμ

νκ, Lα
βκ ,Cμ

νγ ,Cα
βγ depend solely on the

quantities gμν , vαβ and Nα
μ

– Coefficients Lμ
κν and Cα

βγ are symmetric on the lower

indices, i.e. Lμ
[κν] = Cα[βγ ] = 0

We use the symbolD instead of D for a connection satisfying
the above conditions, and call it a canonical and distinguished
d-connection. Metric compatibility translates into the condi-
tions:

Dκ gμν = 0, Dκ vαβ = 0, Dγ gμν = 0, Dγ vαβ = 0.

(A.12)

The coefficients of canonical and distinguished d-connection
are

Lμ
νκ = 1

2
gμρ(δkgρν + δνgρκ − δρgνκ) (A.13)

Lα
βκ = ∂̇βN

α
κ + 1

2
vαγ (δκvβγ − vδγ ∂̇βN

δ
κ − vβδ ∂̇γ N

δ
κ )

(A.14)

2 The generalized Kronecker symbols are defined as: δ̃
μ
α = δ̃α

μ = 1 for
a = μ + 4 and equal to zero otherwise.
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Cμ
νγ = 1

2
gμρ∂̇γ gρν (A.15)

Cα
βγ = 1

2
vαδ(∂̇γ vδβ + ∂̇βvδγ − ∂̇δvβγ ). (A.16)

Curvature and torsion in T M can be defined as multi-
linear maps:

R(X,Y )Z = [DX ,DY ]Z − D[X,Y ]Z (A.17)

and

T (X,Y ) = DXY − DY X − [X,Y ], (A.18)

where X,Y, Z ∈ T T M . We use the definitions

R(δλ, δκ)δν = Rμ
νκλδμ (A.19)

R(∂̇δ, ∂̇γ )∂̇β = Sα
βγ δ∂̇α (A.20)

T (δκ , δν) = T μ
νκδμ + T α

νκ ∂̇α (A.21)

T (∂̇γ , ∂̇β) = T μ
βγ δμ + T α

βγ ∂̇α (A.22)

The h-curvature tensor of the d-connection in the adapted
basis and the corresponding h-Ricci tensor have, respectively,
the components

Rμ
νκλ = δλL

μ
νκ − δκL

μ
νλ + Lρ

νκ L
μ
ρλ − Lρ

νλL
μ
ρκ + Cμ

να�α
κλ

(A.23)

Rμν = Rκ
μνκ = δκ L

κ
μν − δνL

κ
μκ + Lρ

μνL
κ
ρκ − Lρ

μκ L
κ
ρν

+ Cκ
μα�α

νκ (A.24)

The v-curvature tensor of the d-connection in the adapted
basis and the corresponding v-Ricci tensor have, respectively,
the components

Sα
βγ δ = ∂̇δC

α
βγ − ∂̇γC

α
βδ + Cε

βγC
α
εδ − Cε

βδC
α
εγ (A.25)

Sαβ = Sγ
αβγ = ∂̇γC

γ
αβ − ∂̇βC

γ
αγ + Cε

αβC
γ
εγ − Cε

αγC
γ
εβ .

(A.26)

The generalized Ricci scalar curvature in the adapted basis
is defined as

R = gμνRμν + vαβ Sαβ = R + S. (A.27)

where

R = gμνRμν, S = vαβ Sαβ (A.28)

In the main text, we use the more convenient definitions

Rμν = Rμν − Cκ
μα�α

νκ = δκ L
κ
μν − δνL

κ
μκ + Lρ

μνL
κ
ρκ

− Lρ
μκL

κ
ρν (A.29)

R = gμνRμν (A.30)

Appendix B: Calculation of Aγ

Appendix B.1: Solution for the Schwarzschild–Randers
spacetime

In order to calculate Aγ we will give values to μ, ν, γ of
(48) and solve the resulting equations. For μ = 0, ν = 0 and
γ = 4 we get:

∂2
0 A4 + 1

2
f ∂1(− f )

(
∂1A4 + 1

2 f
A4∂1(− f )

)
= 0, (B.31)

where we have set f = 1 − Rs
r . After some calculations

and by separation of variables A4 = R4(r)T4(t) we get two
equations:

∂0T4(t) = −c2
(4)T4(t) (B.32)

∂1R4(r) = 1 − f

2r f
R4(r) − c2

(4)

2r

f (1 − f )
(B.33)

where c2
(4) is the separation constant. For μ = 0, ν = 1 and

γ = 4 we get

∂0∂1A4 + 1

f
∂1(− f )∂0A4 = 0. (B.34)

After rearranging the terms and again separating variables,
for ∂0T4 �= 0 we have

∂1R4(r) = ∂1 f

f
R4(r) (B.35)

So we get R4(r) = k4 f (r) with k4 being a constant resulting
from the integration. By substituting this to (B.33) we find
that the separation constant c2

(4) must be zero. That means that
in order to satisfy (B.32) and (B.33), T4(t) must be constant
and R4(r) = R̃4 f 1/2(r) with R̃4 a constant. By calculating
the remaining equations for μ = 2, ν = 2, γ = 4 and μ =
3, ν = 3, γ = 4 we find that A4 has no dependence on θ or
φ. Therefore, we end up with

A4 = Ã4| f |1/2(r) (B.36)

with Ã4 being a constant. For μ = 0, ν = 0, γ = 5 we get

∂2
0 A5 − f (1 − f )

2r

(
∂1A5 − 1

2
A5 f ∂1( f

−1)

)
= 0.

(B.37)

After calculations and by separating variables like before we
end up with equations

∂2
0T5(t) = −c2

(5)T5(t) (B.38)

∂1R5(r) = −1 − f

2r f
R5(r) − c2

(5)

2r

f (1 − f )
(B.39)

with c2
(5) being the separation constant. For μ = 0, ν =

1, γ = 5 we get
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∂0∂1A5 − 1

2
f ∂( f −1)∂0A5 − 1

2
(− f −1)∂1(− f )∂0A5 = 0

(B.40)

After calculations we end up with c(5) = 0 and by substitu-
tion to (B.38) and (B.39) we find

R5(r) = k5| f |−1/2 (B.41)

with k5 being a constant. Also, like before, if we calculate
the μ = 2, ν = 2, γ = 5 and μ = 3, ν = 3, γ = 5 we get
no dependence on θ and φ. Therefore, we find

A5 = Ã5| f |−1/2(r) (B.42)

with Ã5 a constant of integration. If we put this solution in
the μ = 1, ν = 1 equation, we get Ã5 = 0. For μ = 0, ν =
0, γ = 6 we separate variables like before A6 = R6(r)T6(t)
and we get two equations:

∂1R6(r) = R6(r)

r
− c2

(6)

2r

f (1 − f )
(B.43)

∂2
0T6(t) = −c2

(6)T6(t) (B.44)

with c2
(6) the separation constant. For μ = 0, ν = 1, γ = 6

like before we find that c(6) = 0 and by substitution to (B.43)
we find that R6(r) = R̃6r with R̃6 a constant of integration.
We set R̃6 to zero to keep our solution finite at infinity, so we
end up with A6 = 0. For A7 we set μ = 0, ν = 0, γ = 7 and
we find the same equations as for A6. That leads to A7 = 0
as well.

To sum up, we have found the following solution for Aγ

from Eq. (48):

Aγ (x) =
[
Ã4

∣∣∣∣1 − RS

r

∣∣∣∣
1/2

, 0, 0, 0

]
(B.45)

with Ã4 a constant.

Solution for the Schwarzschild–De Sitter–Randers
spacetime

We will modify the solution (51) and see if it satisfies (48)
for the metric (52). An obvious ansatz is to replace the term
1 − RS

r in (51) with 1 − RS
r − �

3 r
2. Doing this we get

Aγ (x) =
[
Ã4

∣∣∣∣1 − RS

r
− �

3
r2

∣∣∣∣
1/2

, 0, 0, 0

]
(B.46)

which is verified to be a solution of (48) for the metric (52).
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