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Abstract Observation of the interference between the
atmospheric and solar oscillation waves with the correct mag-
nitude would provide another manifestation of the three-
generation structure of leptons. As a prerequisite for such
analyses we develop a method for decomposing the oscil-
lation S matrix into the atmospheric and solar amplitudes.
Though the similar method was recently proposed success-
fully in vacuum, once an extension into the matter envi-
ronment is attempted, it poses highly nontrivial problems.
Even for an infinitesimal matter potential, inherent mixture
of the atmospheric and solar oscillation waves occurs, render-
ing a simple extension of the vacuum definition untenable.
We utilize general kinematic structure as well as analyses
of the five perturbative frameworks, in which the nature of
matter-dressed atmospheric and solar oscillations are known,
to understand the origin of the trouble, how to deal with
the difficulty, and to grasp the principle of decomposition.
Then, we derive the amplitude decomposition formulas in
these frameworks, and discuss properties of the decomposed
probabilities. We mostly discuss the νμ → νe channel, but a
comparison with the νμ → ντ channel reveals an interesting
difference.
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C.2 Ŝ matrix in the hat basis vs. S matrix in the flavor
basis . . . . . . . . . . . . . . . . . . . . . . . 19
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1 Introduction

The three-generation structure of the fundamental fermions,
leptons and quarks, is one of the most salient features in our
world. Most notably, it has a dramatic consequence that CP
symmetry must be broken [1], barring exceptional values of
the CP phase. CP violation was indeed observed experimen-
tally [2], and its origin á la Kobayashi-Maskawa mechanism
was confirmed [3,4]. It is strongly suspected that the similar
structure is endowed also in the lepton sector, and by now
there exists an evidence for CP violation at a confidence level
(CL) close to 3σ [5].

In a previous paper [6], we have argued that as one of
the other consequences of the three-flavor structure, a highly
nontrivial one, we must be able to observe quantum interfer-
ence between the atmospheric and the solar oscillation ampli-
tudes. We think it a very interesting point, bridging between
the remarkable structure of the fundamental fermions and
the quantum mechanical nature of the phenomenon of neu-
trino oscillation, which is subsumed into the most successful
quantum field theory, the neutrino-mass-embedded Standard
Model (νSM).

To illuminate the point, we took a concrete setting of the
medium-baseline reactor neutrino experiment JUNO [7] to
simulate the data set and demonstrated, with careful imple-
mentation of the systematic errors, that it will be able to
detect the interference effect between the atmospheric and
solar amplitudes at a CL higher than 4σ [6]. Since ν̄e (or νe)
disappearance channel is free from the CP phase δ in vacuum
as well as in matter [8,9], the nature of interference which
will be observed by JUNO is completely free from effects of
the phase δ, in sharp contrast to the situation expected in the
accelerator neutrino appearance measurements.

Despite its fundamental importance, to our knowledge,
this topic did not appear to receive a sufficient attention in
our community to a level it deserves. See, however, Refs.
[10–15] for the relatively few foregoing works. It is certainly
possible that the shortage of the list simply reflects our igno-
rance. But it is difficult to make a complete list of the fore-
going works that addressed the interference effect due to a

too broad spectrum which spans from its implicit treatment
to the discussion of the isolated effect of interference.1

We have prescribed in Ref. [6] the way of how the oscil-
lation S matrix can be decomposed into the atmospheric and
the solar amplitudes in vacuum, the indispensable first step
to discuss the interference effect. Hereafter, we refer this pro-
cedure as the “amplitude decomposition”, the terminology
which will also be used for the case in matter. The defini-
tion of the decomposed amplitudes includes the complete-
ness condition Sαβ = δαβ + Satm

αβ + Ssol
αβ , with α, β being

the flavor indices. This is nothing but a manifestation of the
three generation structure of neutrinos, namely, presence of
only the two independent modes of oscillation with the two
different frequencies. Notice that though it is often stated that
the three-flavor structure of neutrinos is well known, in fact,
it is not known at allwhether it is sufficient or not. Therefore,
observing the interference term with the correct magnitude
dictated by the νSM provides a new form of unitarity test.

In this paper, we discuss the amplitude decomposition in
matter. In most of the neutrino experiments, done with use of
the accelerator, atmospheric, solar, or even the reactor neu-
trinos, neutrinos pass through matter, thereby receiving the
matter effect [21–23]. Though the effect may be small for the
low-energy reactor neutrinos, it is comparable to the vacuum
oscillation effect, for example, in the ongoing and upcom-
ing long-baseline (LBL) accelerator neutrino experiments,
T2K [5], MINOS/MINOS+ [24], NOνA [25], T2HK [26],
and DUNE [27]. To detect the interference effects between
the atmospheric and solar oscillation waves in a quantitative
manner, and to understand physics involved in it, we have to
isolate the interference term in the probability first. Hence,
the amplitude decomposition is an indispensable machinery
in our approach.

Upon turning on the matter potential, however, albeit
with an infinitesimal magnitude, we immediately encounter
a difficulty. What happens is that the matter effect mixes
the 
m2

31- and 
m2
21-driven waves, and this genuine three-

flavor effect makes a simple extension of the vacuum defi-
nition of the amplitude decomposition untenable. Since the
energy eigenvalues are unaffected with the infinitesimal mat-
ter potential, it represents the inherent difficulty of amplitude
decomposition in matter. Thus, we face, from the beginning,
with the conceptual difficulty in extending our vacuum defi-
nition of the amplitude decomposition into that in matter.

1 Every analysis of neutrino data with accurate integration of neu-
trino propagation equation automatically contains the interference effect
between the atmospheric and solar oscillation waves. Likewise, discus-
sion of sub-leading 
m2

21 effect in regions with the dominant 
m2
31

effect [16–18], or vise versa [19,20], inevitably contain the interfer-
ence effect. On the other hand, we are talking about how to extract the
interference term in the probability and the physical properties of the
isolated interference term in this and the previous papers.
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Since the “atmospheric” and the “solar” waves are gener-
ally modified by the effects of the matter potential, identifica-
tion and separation of these two modes are highly nontrivial
problem in matter. In this paper, therefore, we first try to find
obstacles to perform the amplitude decomposition in matter,
understand the problems, and solve them if possible. We then
analyze several perturbative frameworks in which nature of
the matter-modified atmospheric and solar oscillations are
reasonably understood to learn how we reach the prescrip-
tion for the amplitude decomposition. In Sect. 3, we explain
more about how we approach these conceptually involved
and technically non-tractable problem of amplitude decom-
position in matter.

In this paper, we will have to take a several different routes
to proceed toward the end with many corners to turn. The
organization of this paper is better explained in some of the
corners at which we make a turn. Presentation in this paper
will be very pedagogical, as it may be appropriate for the
subject for which no systematic treatment is available to our
knowledge. We leave most of the technical discussions to
appendices. An essence of this paper, or at least what we try
to achieve in this paper, can be grasped in reading Sect. 3 of
only one page.

2 Amplitude decomposition in vacuum

We start by discussing decomposition of the S matrix into the
atmospheric and the solar amplitudes in vacuum, mostly rec-
ollecting what we have done in [6]. For simplicity, we intro-
duce the compact notations for the oscillation phase variables


m2
j i ≡ m2

j − m2
i , 
 j i ≡ 
m2

j i

2E
(i, j = 1, 2, 3), (2.1)

where mi denotes the mass of the i-th eigenstate neutrino
and E is the neutrino energy. The notations will be used
throughout this paper.

2.1 Amplitude decomposition: Heuristic method

The neutrino oscillation S matrix element which describes
the neutrino oscillation νβ → να (α �= β, or α = β) in
vacuum,

Sαβ = Uα1U
∗
β1e

−i
m2

1
2E x +Uα2U

∗
β2e

−i
m2

2
2E x +Uα3U

∗
β3e

−i
m2

3
2E x ,

(2.2)

can be written, after redefining the phase by removing
e−i(m2

1/2E)x as

Sαβ = Uα1U
∗
β1 +Uα2U

∗
β2e

−i
21x +Uα3U
∗
β3e

−i
31x , (2.3)

where U ≡ UMNS denotes the lepton flavor mixing matrix
[28]. We use, apart from Sect. 10, the Particle Data Group

(PDG) convention of UMNS [29], see Eq. (4.2). By using
unitarity of the U matrix,

∑
i UαiU∗

βi = δαβ , Sαβ can be
written as [6,12,30]

Sαβ = δαβ +Uα2U
∗
β2

(
e−i
21x − 1

)

+Uα3U
∗
β3

(
e−i
31x − 1

)
(2.4)

where δαβ denotes the Kronecker delta function. Equa-
tion (2.4) defines the atmospheric and the solar amplitudes

Satm
αβ ≡ Uα3U

∗
β3

(
e−i
31x − 1

)
,

Ssol
αβ ≡ Uα2U

∗
β2

(
e−i
21x − 1

)
. (2.5)

Though the above procedure might look ad hoc, one can
define the atmospheric and the solar amplitudes in a more
systematic way.

2.2 Definition of the decomposed amplitudes in vacuum

Let us give the general definition 1 of amplitude decompo-
sition in vacuum and require the completeness condition 2.
In fact, we even try to apply the same definition in an envi-
ronment in matter, when we talk about the decomposition in
the narrow sense, where the atmospheric and solar wave are
defined to be 
m2

31- and 
m2
21-driven oscillations, respec-

tively.

1. For a given S matrix element Sαβ , the atmospheric and
the solar amplitudes are defined, respectively, as2

Satm
αβ = lim


21→0
Sαβ − δαβ,

Ssol
αβ = lim


31→0
Sαβ − δαβ. (2.6)

A consistency check on the obtained amplitudes is that
they must satisfy

lim

31→0

Satm
αβ = lim


21→0
Ssol
αβ = 0. (2.7)

2. We demand the completeness condition

Sαβ = δαβ + Satm
αβ + Ssol

αβ . (2.8)

We have shown in vacuum that the procedure reproduces the
decomposition in (2.5) [6].

The general definition 1 of the atmospheric and the solar
amplitudes and the completeness condition 2 are natural to
require. The atmospheric amplitude, by definition, describes

2 The limit used in (2.6) is to define the amplitude decomposition,
not the statement that 
m2

21 is approximately small. In vacuum the
definition applies even in the case |
m2

31| < 
m2
21.
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neutrino oscillation due to non-vanishing 
m2
31, and the solar

amplitude the one caused by 
m2
21. The definition 1 just

reflects this feature together with the consistency condition
that Satm

αβ (Ssol
αβ ) must vanish if 
m2

31 = 0 (
m2
21 = 0).

The condition 2 requires that decomposition of the oscilla-
tion amplitude into the atmospheric and the solar amplitudes
must be complete. It reflects the fact that only the two inde-
pendent 
m2 are available, the atmospheric 
m2

31 and the
solar 
m2

21, and hence only the two independent amplitudes
exist, a manifestation of the three generation mixing.

2.3 Interference terms in the probability: Comparison
between the νμ − νe channel and the ones in the
νμ − ντ sector

We have discussed in Ref. [6] the amplitude decomposi-
tion in vacuum, and exhibited the explicit forms of the non-
interference and interference terms in the probability in the
νe related sector. Here we present the similar results in the
νμ − ντ sector, and compare them to the one in the νμ − νe
channel. Our focus is mainly on the appearance channels. It
will reveal a new feature of the ingredient in the interference
term. For convenience of our discussion, we partly recapitu-
late the features of the probability in the νμ − νe channel.

In the νμ → νe channel the decomposed atmospheric and
solar amplitudes read

Satm
eμ = s23e

−iδc13s13

(
e−i
31x − 1

)
,

Ssol
eμ = c13s12

(
c23c12 − s23s12s13e

−iδ
) (

e−i
21x − 1
)

.

(2.9)

The amplitude decomposition (2.5) leads to the decomposed
probability

P(νβ → να) = P(νβ → να)non-int-fer

+P(νβ → να)int-fer. (2.10)

With (2.9), the non-interference and interference parts of the
probability in the νμ → νe channel are given by [6]

P(νμ → νe)
non-int-fer ≡ |Satm

eμ |2 + |Ssol
eμ |2

= s2
23 sin2 2θ13 sin2 
31x

2

+
[

c2
23c

2
13 sin2 2θ12 + s2

23s
4
12 sin2 2θ13

−8s2
12 Jr cos δ

]

sin2 
21x

2
,

P(νμ → νe)
int-fer ≡ 2Re

[(
Satm
eμ

)∗
Ssol
eμ

]

= 8

[
(
Jr cos δ − s2

23c
2
13s

2
13s

2
12

)
cos


32x

2

−Jr sin δ sin

32x

2

]

sin

21x

2
sin


31x

2
.

(2.11)

In the νμ → ντ channel, the decomposed amplitudes and the
probabilities can similarly be given by

Satm
τμ = c23s23c

2
13

(
e−i
31x − 1

)
,

Ssol
τμ = −

[
c23s23

(
c2

12 − s2
13s

2
12

)
+ s13c12s12 (cos 2θ23 cos δ

+i sin δ)
] (

e−i
21x − 1
)

,

(2.12)

and

P(νμ → ντ )non-int-fer ≡ |Satm
τμ |2 + |Ssol

τμ|2

= c4
13 sin2 2θ23 sin2 
31x

2

+
[(

c2
12 − s2

13s
2
12

)2 + s2
13 sin2 2θ12

−
{

cos 2θ23

(
c2

12 − s2
13s

2
12

)
− 4Jrs cos δ

}2
]

sin2 
21x

2
,

P(νμ → ντ )int-fer ≡ 2Re
[(

Satm
τμ

)∗
Ssol
τμ

]

= 8
[
−
{
c2

13c
2
23s

2
23

(
c2

12 − s2
13s

2
12

)
+ cos 2θ23 Jr cos δ

}

× cos

32x

2
+ Jr sin δ sin


32x

2

]

sin

31x

2
sin


21x

2
.

(2.13)

In Eqs. (2.11) and (2.13) we have introduced the simplified
notations

Jr ≡ c23s23c12s12c
2
13s13,

Jrs ≡ c23s23c12s12s13. (2.14)

where the former denotes the reduced Jarlskog factor [31]. In
the νμ → νμ disappearance channel, the similar amplitude
decomposition leads to

P(νμ → νμ)non-int-fer ≡ 1 + |Satm
μμ |2 + |Ssol

μμ|2
+2Re

[
Satm
μμ + Ssol

μμ

]

= 1 − 4s2
23c

2
13

(
1 − s2

23c
2
13

)
sin2 
31x

2
−4

(
c2

23c
2
12 + s2

23s
2
13s

2
12 − 2Jrs cos δ

)

× [
c2

23s
2
12 + s2

23(1 − s2
13s

2
12) + 2Jrs cos δ

]
sin2 
21x

2
,

P(νμ → νμ)int-fer ≡ 2Re
[(
Satm
μμ

)∗
Ssol
μμ

]

= 8s2
23c

2
13

[
c2

23c
2
12 + s2

23s
2
13s

2
12 − 2Jrs cos δ

]

× cos

32x

2
sin


31x

2
sin


21x

2
. (2.15)

In the νμ → νe channel, the dominant component of the
interference term is the δ dependent term, as the δ indepen-
dent terms have an extra s13 suppression [6]. Therefore, one
may say that observing the interference term is nearly equiv-
alent of observing the CP phase effect. In the νμ → ντ and
νμ → νμ channels, however, it is not true. There exist the δ
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independent pieces in the interference term which have no s13

suppression. Therefore, the nature of the interference term,
in particular the CP phase dominance or not, depends very
much on which channels we discuss, the νμ → νe channel
or the ones in the νμ − ντ sector, νμ → ντ and νμ → νμ.
We will see in Sect. 9.3 that this feature prevails in matter.

In the context of discussion above, νe and ν̄e disappearance
channels are special with no chance of the probability being
δ dependent even in matter with varying density [8,9]. For
this reason the reactor neutrino analysis provides the cleanest
place for discussion of nature of the interference term, as
stressed in Ref. [6].

2.4 How to observe the interference term?

When the oscillation probability is written as a sum of the
interference and the non-interference terms, P(νβ → να) =
P(νβ → να)non-int-fer + P(νβ → να)int-fer, one can design a
simple χ2 test to know at what significance level one observes
existence of the interference effect [6]. To quantify the sta-
tistical significance, we define the test probability by intro-
ducing the q parameter

P(νβ → να) = P(νβ → να)non-int-fer + qP(νβ → να)int-fer.

(2.16)

We calculate χ2(q) by fitting the data with the ansatz (2.16)
with marginalization over the standard oscillation parame-
ters including δ. The χ2(q) has one degree of freedom, and
is expected to have a minimum at q = 1. Depending upon
how deep is the minimum, we can make statement on at what
CL one observes the quantum interference between the atmo-
spheric and the solar amplitudes. This procedure is employed
in the analysis of JUNO-like setting but, of course, without
marginalization over δ [6]. Since the structure of the prob-
ability written by the decomposed components with the q
extension is universal, we expect that the analysis procedure
with Eq. (2.16) applies to all the flavor channels.

3 Amplitude decomposition in matter: Problems and
our approach

Since extension of the amplitude decomposition to an envi-
ronment in matter will reveal a highly nontrivial feature
we first explain, in words, what are the problems and our
approach to resolve them. The readers may find in this sec-
tion a rough sketch of the design plan for this paper.

Let λi (i = 1, 2, 3) be the eigenvalues of 2EH and V
the unitary matrix which diagonalizes the Hamiltonian H . In
matter, λi and the mixing matrix V , both of which depend
on the matter potential, replace m2

i andUMNS matrix, respec-
tively, in vacuum. Then, one can define the amplitude decom-

position in matter by elevating the eigenvalues and the mix-
ing matrix into those in matter, m2

i → λi and U → V , in
Eq. (2.5). See Sect. 7 for more details. The procedure will
allow us to define the amplitude decomposition in matter
which is exactly parallel to Eq. (2.5) in vacuum. The exact
expressions of λi and V are known under the uniform matter
density approximation [32], and hence this method may be
called as the Zaglauer–Schwarzer (ZS) decomposition.

However, what is nontrivial is the interpretation of the ZS
decomposition. In vacuum, the atmospheric and the solar
waves are defined as the 
m2

31-driven and 
m2
21-driven

oscillations, respectively [6]. In taking the ZS decomposition,
it is natural to assume that the “atmospheric” and the “solar”
waves in matter are defined by the frequencies determined by
λ3 −λ2 in the normal (λ3 −λ1 in the inverted) mass ordering
and λ2 −λ1, respectively. It may work in region where mod-
ification of the eigenvalues by the matter effect is modest.
But, it is known that the eigenvalues λi become dynamical
at high energies or high matter densities, and the difference
λ2 − λ1 for the “solar” oscillation can be much larger than
the “atmospheric” energy splitting in certain region of kine-
matical phase space.3 Is it still possible to interpret λ2 − λ1

wave as the “solar” oscillation in this region? Which property
does really define the wave is either the “solar” wave, or the
“atmospheric” wave?

Since we do not know the general, precise answer to
these questions we take another approach in this paper. We
restrict ourselves into the region where we know how the
atmospheric and the solar waves are modified by the matter
effect. In regions of the atmospheric-scale and the solar-scale
enhanced oscillations the appropriate perturbative frame-
works are formulated which can serve for this purpose. In
a sense, we take a “bottom-up” approach by analyzing these
theories to learn what is the right way of decomposing the
oscillation S matrix into the “atmospheric” and the “solar”
amplitudes in matter.

In fact, the matter-effect modification of the eigenvalues
is not the whole issue. Even with infinitesimal matter poten-
tial there is a mode of oscillation whose nature can only be
described as inherent mixture of the atmospheric and the
solar waves. In this case the eigenvalues are approximately
the same as in vacuum. Yet, the presence of such mixed
wave prevents us from using the general definition 1 and 2 of
the atmospheric and solar amplitudes given in Sect. 2.2. See
Sect. 5 for discussion of this point. Therefore, it appears to us
that the conceptual issues are immanent in the un-understood
aspects of the amplitude decomposition in matter.

3 It is high-energy or high-density region |YeρE | � 20 g cm−3 in the
anti-neutrino (neutrino) channel in the normal (inverted) mass ordering,
where ρ denotes the matter density, Ye is the number of electron per
nucleon.
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Finally, we note, in spite of the above comments, that the
ZS decomposition will play an important role in the ampli-
tude decomposition in matter.

4 The three-flavor neutrino evolution in matter

First, we define the system of three-flavor neutrino evolu-
tion in matter. Though standard and well known, we do it to
define notations. The evolution of the three-flavor neutrinos
in matter can be described by the Schrödinger equation in
the flavor basis, i d

dx ν = Hν, with Hamiltonian

H = 1

2E

⎧
⎨

⎩
U

⎡

⎣
0 0 0
0 
m2

21 0
0 0 
m2

31

⎤

⎦U † +
⎡

⎣
a(x) 0 0

0 0 0
0 0 0

⎤

⎦

⎫
⎬

⎭
,

(4.1)

where E is neutrino energy and 
m2
j i ≡ m2

j − m2
i . In (4.1),

U ≡ UMNS denotes the standard 3 × 3 lepton flavor mixing
matrix [28] which relates the flavor neutrino states to the
vacuum mass eigenstates as να = Uαiνi , where α runs over
e, μ, τ , and the mass eigenstate index i runs over 1, 2, and
3. We use, except for in Sect. 10, the lepton flavor mixing
matrix in the PDG convention [29]

UPDG =
⎡

⎣
1 0 0
0 c23 s23

0 −s23 c23

⎤

⎦

⎡

⎣
c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

⎤

⎦

⎡

⎣
c12 s12 0

−s12 c12 0
0 0 1

⎤

⎦

≡ U23U13U12

=
⎡

⎣
c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎤

⎦ .

(4.2)

The functions a(x) in (4.1) denote the Wolfenstein matter
potential [21] due to charged current (CC) reactions

a = 2
√

2GFNeE ≈ 1.52 × 10−4
(

Yeρ

g cm−3

)(
E

GeV

)

eV2.

(4.3)

Here, GF is the Fermi constant, Ne is the electron number
density in matter. ρ and Ye denote, respectively, the matter
density and number of electron per nucleon in matter. For
simplicity and clarity we will work with the uniform matter
density approximation throughout this paper. But, it is not
difficult to extend our treatment to varying matter density
case if adiabaticity holds.

5 Amplitude decomposition with infinitesimal matter
potential

Since we know how to decompose the S matrix into the atmo-
spheric and solar amplitudes in vacuum, a natural first step

is to introduce the matter potential with a tiny magnitude.
Then, the system can be analyzed perturbatively. The frame-
work, so called the matter perturbation theory,4 is known
since the early era, see e.g., [33,34]. As its formulation is well
known we just sketch out the formalism in “Appendix A”. We
briefly mention here that we use the vacuum mass-eigenstate
basis with Hamiltonian Ȟ = (U23U13U12)

† HU23U13U12 to
define the perturbation theory, and treat the first and the sec-
ond terms in Eq. (4.1) as the unperturbed and perturbed parts
of the Hamiltonian, respectively. The zeroth-order eigenval-
ues of the Hamiltonian are denoted as hi (i = 1, 2, 3) and
they are given by

h1 = 0, h2 = 
21, h3 = 
31. (5.1)

For convenience, we introduce another simplified notation


a ≡ a

2E
, (5.2)

in addition to 
 j i ≡ 
m2
j i/2E in Eq. (2.1).

5.1 S matrix in the flavor basis: νμ → νe channel

In “Appendix A”, we compute all the Š matrix elements in
the vacuum mass eigenstate basis to first order in the mat-
ter perturbation theory. Then, the flavor basis S matrix can
be obtained as S = U ŠU †. In this paper we focus on the
νμ → νe channel in most cases to examine how the decom-
position of the S matrix elements into the atmospheric and
solar amplitudes can be (or cannot be) done in matter. It is
because our concern is primarily on the conceptual issue on
how the decomposition can be performed correctly. Since the
zeroth-order S matrix is identical with the one in vacuum, we
discuss the first-order term.

Using the eigenvalues given in (5.1), the relevant matrix
elements can be calculated in first order in the matter pertur-
bation theory, see Eqs. (A.5) and (A.6). By using them, we
obtain the flavor basis S matrix element S(1)

eμ as

S(1)
eμ = c12s12c

3
13

(
cos 2θ12c23 − sin 2θ12s13s23e

−iδ
)

× 
a


21

{
e−i
21x − 1

}

+c12c13s13

(
−s12s13c23 + cos 2θ13c12s23e

−iδ
)

× 
a


31

{
e−i
31x − 1

}

+s12c13s13

(
c12s13c23 + cos 2θ13s12s23e

−iδ
)

× 
a


31 − 
21

{
e−i
31x − e−i
21x

}

4 In this paper, we mean by the “matter perturbation theory” a perturba-
tive framework with the unique expansion parameter a/
m2

31 without
introducing any further approximations.
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+(−i
ax)

[

c3
12c

3
13

(
−s12c23 − c12s13s23e

−iδ
)

+s3
12c

3
13

(
c12c23 − s12s13s23e

−iδ
)
e−i
21x

+c13s
3
13s23e

−iδe−i
31x
]

. (5.3)

Now, with S(1)
eμ in (5.3) at hand, one can apply the definition

1 and 2 of the atmospheric and solar amplitudes, Eqs. (2.6)
and (2.8), given in the previous Sect. 2. One immediately
notices that it fails. One obtains Satm

αβ and Ssol
αβ by taking the

limits 
21 → 0 and 
31 → 0, respectively, as

(
Satm
eμ

)(1) = c13s13s23e
−iδ

[{
− cos 2θ13 + s2

13

(
e−i
31x − 1

)}

× (−i
ax) + cos 2θ13

a


31

(
e−i
31x − 1

)]

,

(
Ssol
eμ

)(1) = s12c13

(
c12c23 − s12s13s23e

−iδ
)

×
[

−
{
(1 − 2s2

12c
2
13) − s2

12c
2
13

(
e−i
21x − 1

)}
(−i
ax)

+
(

1 − 2s2
12c

2
13

) 
a


21

(
e−i
21x − 1

)
]
]

, (5.4)

which satisfy the consistency conditions lim
31→0 Satm
αβ =

lim
21→0 Ssol
αβ = 0. But, the second condition, the complete-

ness condition, cannot be met.
The cause of the problem is obvious, the third term in

(5.3). Before inserting the PDG expression of the U matrix
elements it took the form
(
Ue3U

∗
μ2e

iδ +Ue2U
∗
μ3e

−iδ
)
s12c13s13

× 
a

h3 − h2

(
e−ih3x − e−ih2x

)
. (5.5)

A diagrammatical representation of this term would consist
of the two amplitudes which describe perturbative transition
via H (1)

23 or H (1)
32 :

νμ −U∗
μ2 − ν2 → H (1)

23 − ν3 → Ue3 − νe,

νμ −U∗
μ3 − ν3 → H (1)

32 − ν2 → Ue2 − νe. (5.6)

They are the genuine mixed effect of both the 
31- and 
21-
driven waves, and therefore they cannot be decomposed to
the pure atmospheric and the pure solar amplitudes in the
manner that was possible in vacuum.

Notice that 1
(
31−
21)

= 1

32

so that the structure of the
first three lines in Eq. (5.3) is natural with the three possible
forms of the energy denominators. Therefore, it appears that
the problem is caused by the rigid definition of amplitude
decomposition, not by S(1)

eμ itself. Despite we see no green
light for our narrow definition of amplitude decomposition,
Eqs. (2.6) and (2.8), to survive in matter, we ask the question
for a complete understanding: Is there any case in which our
vacuum definition is valid in matter? In the next section we
find the answer is “Yes”.

6 Amplitude decomposition in the helio-matter
perturbation theory

In looking for the principle of decomposing the neutrino
oscillation S matrix to the atmospheric and the solar ampli-
tudes in neutrino oscillation in matter, we examine one
of the simplest perturbative frameworks discussed by Ara-
fune, Koike, and Sato (AKS) [35], which may be called
as the “helio-matter perturbation theory”. We assume that
we are around the atmospheric-scale enhanced oscillation
and regard 
21/
31 = 
m2

21/
m2
31 as well as 
a/
31 =

a/
m2
31 the small expansion parameters. In “Appendix B”,

we give a brief description of its formulation using the same
vacuum mass-eigenstate basis as in “Appendix A”. For clarity
of terminology, not to confuse it with the helio perturbation
theory to be discussed in Sect. 9, we will call the framework
the AKS perturbation theory in this paper.

6.1 S matrix and the amplitude decomposition: νμ → νe
channel

The flavor basis S matrix elements can be calculated by using
Eq. (B.5) with the vacuum mass-eigenstate basis elements in
Eq. (B.2). For the purpose of our discussion, we compute here

the first order corrections. There are two terms,
(
S(1)

matter

)

eμ

and
(
S(1)

helio

)

eμ
. A straightforward calculation leads to

(
S(1)

matter

)

eμ
= U12U

∗
21c12s12c

2
13(−i
ax)

+U11U
∗
22c12s12c

2
13(−i
ax)

+U11U
∗
21c

2
12c

2
13(−i
ax) +U12U

∗
22s

2
12c

2
13(−i
ax)

+U13U
∗
23s

2
13(−i
ax)e

−i
31x

−U13U
∗
21c12c13s13e

iδ
a
1 − e−i
31x


31

−U11U
∗
23c12c13s13e

−iδ
a
1 − e−i
31x


31

−U13U
∗
22s12c13s13e

iδ
a
1 − e−i
31x


31

−U12U
∗
23s12c13s13e

−iδ
a
1 − e−i
31x


31
. (6.1)

But, a simplification occurs and
(
S(1)

matter

)

eμ
has a simpler

expression5

(
S(1)

matter

)

eμ
= −c13s13s23e

−iδ(−i
ax)
[
c2

13 − s2
13e

−i
31x
]

− cos 2θ13c13s13s23e
−iδ 
a


31

(
1 − e−i
31x

)
. (6.2)

5 We note that while showing disappearance of θ12 dependence explic-
itly in this way is pedagogical, the simplest way of recognizing this
feature is to use the basis Ĥ = U†

13U
†
23HU23U13, which will be used

in “Appendix C”. See Eq. (C.1). It is the most convenient basis for the
AKS perturbation theory.
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Notice that all the θ12 dependence disappeared in going from

(6.1) to (6.2). Furthermore,
(
S(1)

matter

)

eμ
consists only of 
31

with desirable property that it vanishes as 
31 → 0. There-

fore, almost certainly
(
S(1)

matter

)

eμ
contributes purely to the

atmospheric amplitude. The zeroth order element S(0)
eμ =

U13U∗
23

(
e−i
31x − 1

) = c13s13s23e−iδ
(
e−i
31x − 1

)
is also

the atmospheric amplitude. On the other hand, the helio cor-
rection
(
S(1)

helio

)

eμ
= (−i
21x)U12U

∗
22

= (−i
21x)s12c13

(
c12c23 − s12s23s13e

−iδ
)

,

(6.3)

which depends only on 
21 and vanishes in the 
21 → 0
limit, must be the solar amplitude.

Therefore, the oscillation amplitude Seμ to first order in
the AKS expansion can be decomposed into the atmospheric
and the solar amplitudes as Seμ = Satm

eμ + Ssol
eμ where

Satm
eμ = −e−iδs23c13s13

[(
1 − e−i
31x

)
+ (−i
ax)

×
[
c2

13 − s2
13e

−i
31x
]

+ cos 2θ13

a


31

(
1 − e−i
31x

)]

,

Ssol
eμ = (−i
21x)s12c13

(
c12c23 − s12s23s13e

−iδ
)

. (6.4)

It can be easily checked that they satisfy the definition of
amplitude decomposition of narrow sense given in Sect. 2,
lim
21→0

(
Satm
eμ + Ssol

eμ

) = Satm
eμ and lim
31→0

(
Satm
eμ + Ssol

eμ

)

= Ssol
eμ , with the consistency condition lim
31→0 Satm

eμ = 0,
and the one for Ssolar

eμ . Notice that the completeness condi-
tion must be satisfied to first order because no terms has been
dropped during the process to reach (6.4). They have a vac-
uum limit which agrees with the one in Sect. 2. Thus, the
vacuum definition of amplitude decomposition works to first
order in the AKS helio-matter perturbation theory.

In fact, the expression of Ssol
eμ in (6.4) is akin to the one in

vacuum, see Eq. (2.9). Since 
21x 	 1 in region of appli-
cability of the AKS framework the factor (−i
21x) can be
understood as

(
e−i
21x − 1

)
in an excellent approximation.

Therefore, the matter-effect modification in the decomposed
amplitudes exists essentially only in the atmospheric ampli-
tude Satm

eμ .

6.2 The oscillation probability P(νμ → νe): AKS

The oscillation probability P(νμ → νe) is given to first order
in the AKS expansion as

P(νμ → νe) = |Satm
eμ + Ssol

eμ |2 = |Satm
eμ |2

+2Re
[(
Satm
eμ

)∗
Ssol
eμ

]
. (6.5)

The atmospheric term (the first term in (6.5)) is given, ignor-
ing the second order (
a/
31)

2 terms, by

P(νμ → νe)
non-int-fer = |Satm

eμ |2

= s2
23c

2
13s

2
13

[

4

(

1 + 2 cos 2θ13

a


31

)

sin2 
31x

2

−2 cos 2θ13(
ax) sin 
31x

]

. (6.6)

The interference term, the term of our interest, is given by

P(νμ → νe)
int-fer = 2Re

[(
Satm
eμ

)∗
Ssol
eμ

]

= 2Jr (
21x)

[

cos δ sin 
31x − 2 sin δ sin2 
31x

2

]

−2s2
23c

2
13s

2
13s

2
12(
21x) sin 
31x, (6.7)

where the reduced Jarlskog factor Jr = c23s23c12s12c2
13s13

is defined in (2.14).

6.3 AKS decomposition: unique successful case?

Thus, we have found a concrete example in which the vac-
uum definition of the amplitude decomposition, Eqs. (2.6)
and (2.8), works in matter. It may be applicable at low
energy of ∼ several 100 MeV and medium baseline of a
few ×100 km, under the given hierarchy of the two 
m2,
ε ≡ 
m2

21/
m2
31 	 1. We note that the region nicely

matches the setting of the T2K [5], T2HK [26], and ESSνSB
[36] experiments, which may be called as the “cleanest
region” for the amplitude decomposition in matter because
the decomposed waves retain the original frequencies asso-
ciated with the 
m2

31 and 
m2
21 as in vacuum.6

Now, one may ask: Why is the AKS framework successful
while the matter perturbation not, despite that the both expand
to first order? The answer is that the troublesome aspect of the
“third term” in Eq. (5.3) goes away because we can approxi-
mate the energy denominator as 1

(
31−
21)
� 1


31
, because it

is inside the matter-suppressed first order term. In consistent
with this observation, we have checked that the validity of the
vacuum definition does not survive when the second-order
AKS corrections are added.

This understanding suggests that the validity of the vac-
uum prescription of the amplitude decomposition in mat-
ter necessitates the both expansion parameters 
m2

21/
m2
31

and a/
m2
31 be small. The smallness of the matter effect is

required because otherwise the eigenvalues become dynam-
ical. Then, it is likely that the first order AKS perturbation
theory is the unique case which retains the vacuum definition
of the amplitude decomposition. The treatment of the helio
perturbation theory with all order effect of matter given in

6 It is nice to see that the region, which was proposed for clean mea-
surement of CP phase δ with minimal matter effect by the low-energy
mu-neutrino superbeam [37], also reveals the favorable feature for the
amplitude decomposition with the vacuum frequencies.
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Sect. 9 will confirm our expectation. Therefore, in matter
environment in general, we need to depart from the vacuum
definition of the amplitude decomposition.

7 Principle of decomposition of the S matrix in matter

To make progress, let us summarize the lessons we have
learned so far, in particular, from the failure of our definition
of amplitude decomposition, Eqs. (2.6) and (2.8) in matter.
In general, the following two issues are involved.

• The eigenvalues of the Hamiltonian hi (i=1,2,3) of the
three mass eigenstates are in general different from the
vacuum values m2

i /2E .
• The genuine three-generation structure of the neutrino

oscillation produces mixture of the 
m2
31- and 
m2

21-
driven waves.

Under a matter potential whose magnitude are comparable
with the vacuum effect, a ∼ 
m2

31, the eigenvalues of the
three mass eigenstates can be significantly different from the
vacuum values. In this case, the physical meaning of the lim-
iting procedure defined with the vacuum eigenvalues, 
m2

31
and 
m2

21, becomes obscure. The justification of the pre-
scription that the 
m2

21 → 0 (
m2
31 → 0) limit defines the

atmospheric (solar) amplitude may lose the original meaning.
However, we must note that modification of the eigen-

values is not the whole issue. In the matter perturbation
theory, the eigenvalues are the same as in vacuum, see
Eq. (5.1). The failure of our definition is due to the pres-
ence of mixed atmospheric- and solar-scale oscillation mode,
which is inherent to the three-generation structure of the lep-
ton world.

7.1 What are the two independent dynamical modes of
oscillations

Now, we address the principle of amplitude decomposition
in matter. Our failure in imposing the vacuum definition of
amplitude decomposition (see Sects. 5 and the following
ones) teaches us that the atmospheric and the solar oscil-
lations in the narrow sense are not always the appropriate
two independent dynamical degrees of freedom in describ-
ing the three-flavor neutrino transformation in matter. The
important fact is that it is true even if the matter potential
a is much smaller than the vacuum effect ∼ 
m2

31, which
testifies that nature of the difficulty is a conceptual one, not
technical one, as emphasized above. What we should do is,
therefore,

• To identify the appropriate dynamical degrees of free-
dom, which we call “A” and “S” in more generic environ-

ments. In the vicinity of region of validity of our perturba-
tive formulas, A and S may be the matter-dressed atmo-
spheric and the matter-dressed solar oscillations, respec-
tively.

• To formulate a systematic way of computing SA and SS

for amplitude decomposition, for which the complete-
ness condition Sαβ = δαβ + SA

αβ + SSαβ is automatically
satisfied.

It is a highly nontrivial task, and the method for carrying it
out systematically for a generic matter density is not known
to the present author.

7.2 Zaglauer–Schwarzer decomposition

In fact, the recognition that the atmospheric and the solar
waves do not necessarily provide the appropriate two inde-
pendent dynamical degrees of freedom in the three-flavor
oscillation in matter is not new. In an effort to find the exact
solution of the three-flavor neutrino evolution in uniform-
density matter, Zaglauer and Schwarzer identified them albeit
in an abstract fashion [32]. It is shown that under the uniform
matter density approximation the oscillation S matrix can be
written exactly in the same form as in vacuum

Sαβ = Vα1V
∗
β1e

−i
λ1
2E x + Vα2V

∗
β2e

−i
λ2
2E x + Vα3V

∗
β3e

−i
λ3
2E x .

(7.1)

It can be obtained by the replacementsm2
i → λi (i = 1, 2, 3)

andUαi → Vαi in Eq. (2.2). Here, λi denotes the eigenvalues
of 2EH , where H denotes the Hamiltonian in the flavor basis
(4.1) but with slightly different phase convention,7 and V is
the unitary matrix which diagonalizes the Hamiltonian. The
explicit expressions of λi and V are obtained in Refs. [33]
and [32], respectively.

With Eq. (7.1), the same treatment of amplitude decom-
position in vacuum as described in Sect. 2 goes through in
matter. Using two different ways of taking the trace of the
Hamiltonian one can derive the sum rule (see e.g., Ref. [38])

λ1 + λ2 + λ3 = m2
1 + m2

2 + m2
3 + a (7.2)

which tells us that only two out of the three eigenvalues λi
are independent. It means that only two amplitudes are inde-
pendent. One can similarly define the amplitudes SA

αβ and

SSαβ as

SA
αβ ≡ Vα3V

∗
β3

[
e−i

(λ3−λ1)

2E x − 1
]
,

SSαβ ≡ Vα2V
∗
β2

[
e−i

(λ2−λ1)

2E x − 1
]
, (7.3)

7 We consider the slightly different Hamiltonian from (4.1) whose vac-
uum part takes the form Udiag(m2

1/2E,m2
2/2E,m2

3/2E)U†.
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by which the S matrix can be written, after a phase redefini-
tion, as

Sαβ = δαβ + SA
αβ + SSαβ. (7.4)

Then, setting and addressing the problem of amplitude inter-
ference can be done in a way exactly in parallel with the way
we did in vacuum.

Since the total Hamiltonian of the system is diagonalized
by the V matrix with the eigenvalues λi , one can argue that
the decomposition (7.3) is the correct general solution to
the amplitude decomposition in an arbitrary constant matter
potential. The only problem for us is the lack of clear physical
interpretation of the “A” and “S” variables over the entire
kinematical phase space. We will revisit this point in Sect. 10.

7.3 How do we treat the ZS-type decomposition formula?

The key issue with the ZS-type construction for us is, there-
fore, how and in which circumstances one can interpret the
decomposed amplitudes as the matter-dressed atmospheric
and the solar amplitudes. Since we are taking the bottom-
up approach, in the rest of this paper, we use the amplitude
decomposition formula Eq. (7.3) as a guide to proceed. That
is, we impose the kinematical structure of the atmospheric
and solar amplitudes in Eq. (7.3) when we carry out the ampli-
tude decomposition. It is how we have a successful decom-
position at around the solar-scale enhanced oscillations in the
next section. In Sect. 10, we fully utilize the ZS-type decom-
position to construct the amplitude decomposition in more
generic environment.

In this context we would like to recapitulate our remark
at the end of Sect. 6.1 that the factor (−i
21x) in the solar
amplitude in the first-order AKS perturbation theory can be
understood as

(
e−i
21x − 1

)
in an excellent approximation.

Therefore, the ZS structure, in fact, had already been antici-
pated by the AKS amplitude decomposition.

What happens if we treat the case of infinitesimal matter
potential discussed in Sect. 5? The problematic term, the third
term in Eq. (5.3), can be decomposed into the atmospheric
and the solar amplitudes in the way the ZS decomposition
dictates. Notice that the diagrammatic understanding of this
term shown in Eq. (5.6) involves transitions in the 2 − 3
subspace, and therefore the dynamics involved is the atmo-
spheric transition in nature. But, it contains the solar oscil-
lation component due to involvement of the

(
e−i
21x − 1

)

wave.

8 Amplitude decomposition in the solar-resonance
perturbation theory

We believe it worthwhile to explore now the region of the
solar-scale enhanced oscillations in the context of ampli-

tude decomposition in matter [39]. For this purpose we use
the “solar-resonance perturbation theory” formulated in Ref.
[40]. It is a perturbative framework valid in region around
the solar-scale oscillations where 
21x ∼ O(1) and

r sol
a ≡ a


m2
21

= 
a


21
∼ O(1). (8.1)

The framework has an effective expansion parameter

Aexp ≡ c13s13

∣
∣
∣
∣

a


m2
31

∣
∣
∣
∣ = 2.78 × 10−3

(

m2

31

2.4 × 10−3 eV2

)−1

×
(

ρ

3.0 g/cm3

)(
E

200 MeV

)

, (8.2)

which guarantees smallness of the perturbative corrections,
as confirmed in Ref. [40]. Since the formulation of the solar-
resonance perturbation theory is done in a step-by-step man-
ner in Ref. [40] we can just utilize here the formulas derived
in that reference.

8.1 Amplitude decomposition in the solar oscillation region

Since we are interested in the conceptual issue in this paper,
the leading-order expression is sufficient. For more detailed
properties of the decomposition see Ref. [39]. The zeroth
order flavor basis S matrix element S(0)

eμ is given by [40]

S(0)
eμ = c23c13cϕsϕ

(
e−ih2x − e−ih1x

)

−s23e
−iδc13s13

(
c2
ϕe

−ih1x + s2
ϕe

−ih2x − e−ih3x
)

.

(8.3)

The eigenvalues of the Hamiltonian are obtained as

h1 = 
21

2

[(
1 + c2

13r
sol
a

)
−
√
(
cos 2θ12 − c2

13r
sol
a

)2 + sin2 2θ12

]

,

h2 = 
21

2

[(
1 + c2

13r
sol
a

)
+
√
(
cos 2θ12 − c2

13r
sol
a

)2 + sin2 2θ12

]

,

h3 = 
31 + s2
13
a, (8.4)

where r sol
a is defined in (8.1). The angle ϕ is nothing but θ12

in matter.
Now, let us decompose the S(0)

eμ in Eq. (8.3) into the atmo-
spheric and the solar amplitudes. The dominant term is the
solar-scale oscillation and the atmospheric oscillation is a
perturbation. But, unlike the case of the AKS expansion, we
have h3 � h1 ∼ h2, which implies that the characteristic
frequency of the perturbation is much larger, not smaller, than
that of the dominant term. Then, we need a new way of isolat-
ing the solar amplitude. It is natural to take the limit h3x →
∞, or 
31x → ∞, which sends the atmospheric degrees of
freedom high enough in energy, letting it decouple from the
system. Since we work in the region h1x ∼ 
21x ∼ O(1),
the limit implies 
31/
21 ∼ 
31/a → ∞, or a/
31 → 0,
keeping r sol

a finite. Assuming the finite energy (and spatial)
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resolution e−ih3x ∼ 0 in this limit: Fast oscillations are aver-
aged out. In this case the solar amplitude is given by Eq. (8.3),
apart from omitting the last e−ih3x term.

However, the thereby obtained result of Ssol
eμ is unsatisfac-

tory for a number of reasons. It does not vanish at x = 0,
which means that Ssol

eμ obtained in this way cannot be regarded
as the physical oscillation amplitude. Furthermore, we find
that taking the vacuum limit does not reproduce the result
given in Sect. 2.

Now, we appeal to the ZS-type construction of amplitude
decomposition. It dictates that we must decompose the S
matrix in terms of two amplitudes,
[
e−i(h3−h1)x − 1

]
, and

[
e−i(h2−h1)x − 1

]
. (8.5)

If we follow this prescription the decomposed amplitudes
with the re-phasing removing e−ih1x read [39]

(
Satm
eμ

)(0) = s23e
−iδc13s13

(
e−i(h3−h1)x − 1

)
,

(
Ssol
eμ

)(0) = c13sϕ
(
c23cϕ − s23sϕs13e

−iδ
)

×
(
e−i(h2−h1)x − 1

)
. (8.6)

It conserves the spirit of our above discussion, but the “kine-
matical” structure that must be possessed by the decomposed
amplitudes are also maintained. It nicely reproduces the vac-
uum result given in Sect. 2.

Thus, apparently the ZS-type decomposition of the S
matrix into the atmospheric and solar amplitudes works.
Remember that we remain in the kinematic region where
we know how the atmospheric and the solar oscillations are
modified by the matter effect, and therefore we can rely on
the ZS-type decomposition with no reservation.

8.2 Non-interference and interference terms in the
zeroth-order probability

The non-interference and interference terms in the zeroth-
order oscillation probability read

P(νμ → νe)
non-int-fer =

∣
∣
∣
∣

(
Satm
eμ

)(0)
∣
∣
∣
∣

2
+
∣
∣
∣
∣

(
Ssol
eμ

)(0)
∣
∣
∣
∣

2

=
[
c2

13c
2
23 sin2 2ϕ + s2

23 sin2 2θ13s
4
ϕ − 8s2

ϕ Jmr cos δ
]

× sin2 (h2 − h1)x

2

+4s2
23c

2
13s

2
13 sin2 (h3 − h1)x

2
,

P(νμ → νe)
int-fer = 2Re

[{(
Satm
eμ

)(0)
}∗ (

Ssol
eμ

)(0)
]

=
(

4Jmr cos δ − s2
23 sin2 2θ13s

2
ϕ

) [

− sin2 (h3 − h2)x

2

+ sin2 (h3 − h1)x

2
+ sin2 (h2 − h1)x

2

]

−8Jmr sin δ sin
(h3 − h1)x

2
sin

(h2 − h1)x

2

× sin
(h3 − h2)x

2
, (8.7)

where we have defined the “matter-dressed Jarlskog” factor

Jmr ≡ c23s23c
2
13s13cϕsϕ. (8.8)

It appears that the δ-dependent terms are dominant in the
solar oscillation region as well.

8.3 ϕ symmetry as a quantum mechanics protecting
symmetry

We have noticed that the oscillation probability possesses
the ϕ symmetry, an invariance under the transformation
ϕ → ϕ + π

2 [40]. See also Ref. [41]. The nature of the ϕ

symmetry is identified as the “dynamical” symmetry, not the
symmetry of the Hamiltonian [40]. Or, in other word, it is a
reparametrization invariance of the variable that is born out
of the construction of perturbation theory.

Notice that each one of the decomposed probabilities
in Eq. (8.7) violates the ϕ symmetry, which existed in the
total probability, P(νμ → νe) = P(νμ → νe)

non-int-fer +
P(νμ → νe)

int-fer, the quantum mechanical observable.
Therefore, if we enforce the ϕ symmetry, quantum mechan-
ics, i.e., q = 1 is the unique choice that is allowed.

Namely, the ϕ symmetry “protects” the size of the inter-
ference term to be the one dictated by quantum mechanics.

In Sect. 2.4, we have described the way of analyzing data
to test at what significance the case of no interference is
disfavored by creating the test probability P(νβ → να :
q) = P(νβ → να)non-int-fer + qP(νβ → να)int-fer. Thereby
defined test probability violates the ϕ symmetry for q �= 1.
Nonetheless, we still believe that the analysis procedure is
tenable because the ϕ symmetry is the dynamical symmetry,
not the symmetry of the Hamiltonian.8

9 Amplitude decomposition in the helio perturbation
theory

Up to now we have had the two cases of successful ampli-
tude decomposition based on the perturbative frameworks,
the AKS and the solar-resonance perturbation theory. While
the latter covers the region of the solar-scale enhanced
oscillation, the former serves for the short- or medium-
baseline accelerator neutrino experiments [5,26,36]. Yet, the

8 The term “protects” may be too strong if the assumed minimum at
q = 1 is shallow. On the contrary, if the minimum is very deep, we would
observe a steep parabola of χ2(q) centered around q = 1. In this case,
the analysis procedure described in Sect. 2.4 becomes superfluous, as
the situation of q �= 1 is essentially prohibited by the symmetry, which
we predict not to be the case.
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amplitude decomposition formula usable in region of the
atmospheric-scale matter enhanced oscillation is still miss-
ing. In fact, there exist the ongoing and the upcoming LBL
experiments which utilize the longer baselines, and hence
have stronger matter effects due to the higher beam energies.
They include MINOS/MINOS+ [24], NOνA [25], DUNE
[27], and T2KK9 [43].

In this section, we discuss amplitude decomposition in the
framework appropriate for application to these LBL experi-
mental settings. The helio-to-terrestrial ratio

ε ≡ 
m2
21


m2
31

, (9.1)

which was introduced in Sect. 6, now plays the role of the
unique expansion parameter, and hence it may be called
as the “helio perturbation theory”. It allows us to treat the
sizable matter effect as strong as the vacuum effect in a
non-perturbative fashion to all orders. This is another exam-
ple that the features of matter-dressed atmospheric and the
solar oscillations are well understood. The framework first
appeared in the early work [44], which is followed by the sys-
tematic exploration in Refs. [45–47] and is refined in [48].
In this paper, we restrict ourselves to first order in the helio
correction, which may be sufficient for the ongoing and the
next generation LBL experiments quoted above.

To make the route to the physics discussion shorter, we
defer our brief recollection of the formulation of the helio
perturbation theory into “Appendix C”.

9.1 Amplitude decomposition in the νμ → νe channel

In the helio perturbation theory, the zeroth- and the first-order
amplitudes in the νμ → νe channel are given by

S(0)
eμ = s23cφsφe

−iδ
(
e−ih3x − e−ih1x

)
,

S(1)
eμ = s2

12s23e
−iδcφsφ(−i
21x)

[

s2
13

(
e−ih3x − e−ih1x

)

+ cos 2θ13

(
s2
φe

−ih3x − c2
φe

−ih1x
)

−cφsφ sin 2θ13

(
e−ih3x + e−ih1x

)]

+c23c12s12sφ sin(φ − θ13)

(

21

h3 − h2

)

×
(
e−ih3x − e−ih2x

)

+c23c12s12cφ cos(φ − θ13)

(

21

h2 − h1

)

×
(
e−ih2x − e−ih1x

)

9 A possible acronym used in Ref. [42], but now for the updated name
for the setting, “Tokai-to-Kamioka observatory-Korea neutrino obser-
vatory”.

+s2
12s23e

−iδ [−c13s13 + cφsφ cos 2(φ − θ13)
]

×
(


21

h3 − h1

)(
e−ih3x − e−ih1x

)
. (9.2)

In Eq. (9.2), φ denotes θ13 in matter and is defined in
Eq. (C.6). hi (i = 1, 2, 3) are the eigenvalues of the zeroth-
order Hamiltonian Eq. (C.2). The formulation and some com-
putational details are given in “Appendix C”.

To implement the ZS structure we factor out e−ih1x from
the oscillation S matrix as S = e−ih1x S̃ and rename S̃ as the
new S matrix. Then, the decomposition to the atmospheric
and the solar amplitudes can be performed to give the fol-

lowing expressions: In zeroth-order
(
Ssol
eμ

)(0) = 0 and

(
Satm
eμ

)(0) = s23cφsφe
−iδ

(
e−i(h3−h1)x − 1

)
. (9.3)

In first order the decomposition reads:

(
Satm
eμ

)(1) =
{

s2
12s23e

−iδcφsφ sin2(φ − θ13)(−i
21x)

+c23c12s12sφ sin(φ − θ13)

(

21

h3 − h2

)

+s2
12s23e

−iδ [−c13s13 + cφsφ cos 2(φ − θ13)
]

×
(


21

h3 − h1

)}(
e−i(h3−h1)x − 1

)
,

(
Ssol
eμ

)(1) = −s2
12s23e

−iδcφsφ cos 2(φ − θ13)(−i
21x)

−c23c12s12

{

sφ sin(φ − θ13)

(

21

h3 − h2

)

−cφ cos(φ − θ13)

(

21

h2 − h1

)}(
e−i(h2−h1)x − 1

)
.

(9.4)

Notice that the (−i
21x) term is naturally in the solar
amplitude because one can interpret it as (−i
21x) ≈(
e−i
21x − 1

)
, as mentioned in Sects. 6.1 and 7 in the context

of the AKS perturbation theory.

9.2 Amplitude decomposition in the νμ → ντ channel

Similarly, the amplitude decomposition in the νμ → ντ chan-
nel in the zeroth and first order is given by

(
Satm
τμ

)(0) = c23s23c
2
φ

(
e−i(h3−h1)x − 1

)
,

(
Ssol
τμ

)(0) = −c23s23

(
e−i(h2−h1)x − 1

)
, (9.5)

and

(
Satm
τμ

)(1) =
[

c23s23s
2
12c

2
φ sin2(φ − θ13)(−i
21x)

−c23s23s
2
12cφsφ sin 2(φ − θ13)


21

(h3 − h1)

+c12s12cφ sin(φ − θ13) (cos 2θ23 cos δ

+i sin δ)

21

(h3 − h2)

] (
e−i(h3−h1)x − 1

)
,
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(
Ssol
τμ

)(1) = c23s23

[
(s2

13s
2
12 − c2

12) + s2
12cφsφ sin 2(φ − θ13)

]

×(−i
21x)

−
[

c23s23c
2
12(−i
21x) + c12s12 (cos 2θ23 cos δ

+i sin δ)

×
{

cφ sin(φ − θ13)

21

(h3 − h2)

+sφ cos(φ − θ13)

21

(h2 − h1)

}](
e−i(h2−h1)x − 1

)
.

(9.6)

We have checked that the amplitude decomposition in the
νμ → νe and νμ → ντ channels, Eqs. (9.3)–(9.6), have the
correct vacuum limit.

9.3 Non-interference and interference terms in the
probability to first order

Here we present the decomposed probabilities P(νμ →
να)non-int-fer and P(νμ → να)int-fer (α = e, τ ) and discuss the
νμ → νe and νμ → ντ channels in parallel for comparison.

In the νμ → νe channel they are given to first order as

P(νμ → νe)
non-int-fer

=
[

s2
23 sin2 2φ + 8 J̃ smr cos δ

(

21

h3 − h2

)

+2s2
23s

2
12 sin 2φ {− sin 2θ13 + sin 2φ cos 2(φ − θ13)}

×
(


21

h3 − h1

)]

sin2 (h3 − h1)x

2
, (9.7)

P(νμ → νe)
int-fer

= −2s2
23s

2
12c

2
φs

2
φ cos 2 (φ − θ13) (
21x) sin(h3 − h1)x

−8

{

J̃ smr

(

21

h3 − h2

)

− J̃ cmr

(

21

h2 − h1

)}

× cos

{

δ + (h3 − h2)x

2

}

sin
(h2 − h1)x

2
sin

(h3 − h1)x

2
.

(9.8)

and in the νμ → ντ channel

P(νμ → ντ )
non-int-fer

= 4c2
23s

2
23

[

c4
φ sin2 (h3 − h1)x

2
+ sin2 (h2 − h1)x

2

]

−2c2
23s

2
23

[
(s2

13s
2
12 − c2

12) + s2
12cφsφ sin 2(φ − θ13)

]

×(
21x) sin(h2 − h1)x

−8c2
23s

2
23s

2
12c

3
φsφ sin 2(φ − θ13)


21

(h3 − h1)

× sin2 (h3 − h1)x

2

+8 J̃ smrs cos 2θ23 cos δ

21

(h3 − h2)

×
{

c2
φ sin2 (h3 − h1)x

2
+ sin2 (h2 − h1)x

2

}

+8 J̃ cmrs cos 2θ23 cos δ

21

(h2 − h1)
sin2 (h2 − h1)x

2
,

(9.9)

P(νμ → ντ )
int-fer

= 2c2
23s

2
23c

2
φ

[
(s2

13s
2
12 − c2

12) + s2
12cφsφ sin 2(φ − θ13)

]

×(
21x) sin(h3 − h1)x

−8

[

c2
23s

2
23

{

c2
φ − s2

12cφsφ sin 2(φ − θ13)

21

(h3 − h1)

}

+ cos 2θ23 cos δ

{(
1 + c2

φ

)
J̃ smrs


21

(h3 − h2)

+c2
φ J̃

c
mrs


21

(h2 − h1)

}]

× sin
(h2 − h1)x

2
sin

(h3 − h1)x

2
cos

(h3 − h2)x

2

+8

[

−c2
23s

2
23c

2
φ

{
c2

12 − s2
12 sin2(φ − θ13)

}
(
21x)

+ sin δ

{

− J̃ smr

21

(h3 − h2)
+ J̃ cmr


21

(h2 − h1)

}]

× sin
(h3 − h1)x

2
sin

(h2 − h1)x

2
sin

(h3 − h2)x

2
.

(9.10)

In the above equations we have introduced, in addition to the
one in Eq. (8.8), the following four Jarlskog factors in matter:

J̃ smr ≡ c23s23c12s12cφs
2
φ sin(φ − θ13)

= Jr
−1 + ra +

√
(cos 2θ13 − ra)2 + sin2 2θ13

2
[
(cos 2θ13 − ra)2 + sin2 2θ13

] ,

J̃ cmr ≡ c23s23c12s12c
2
φsφ cos(φ − θ13)

= Jr
1 − ra +

√
(cos 2θ13 − ra)2 + sin2 2θ13

2
[
(cos 2θ13 − ra)2 + sin2 2θ13

] , (9.11)

J̃ smrs ≡ c23s23c12s12cφ sin(φ − θ13)

= Jrs
1 + ra −√

1 + r2
a − 2ra cos 2θ13

2
√

1 + r2
a − 2ra cos 2θ13

,

J̃ cmrs ≡ c23s23c12s12sφ cos(φ − θ13)

= Jrs
1 + ra +√

1 + r2
a − 2ra cos 2θ13

2
√

1 + r2
a − 2ra cos 2θ13

. (9.12)

where ra = 
a/
31 = a/
m2
31, as defined in Eq. (C.3).

The “matter-Jarlskog” factors in Eqs. (9.11) and (9.12) are
the matter-dressed versions of Jr = c23s23c12s12c2

13s13 and
the “c2

13-missed” one Jrs = c23s23c12s12s13, respectively,
which are defined in Eq. (2.14). As is well known, the sin δ

terms must be proportional to Jr , as dictated by the Naumov
identity [49]. Jrs appears in the probabilities in vacuum in
the νμ − ντ sector, as seen in Sect. 2. In fact, one can show
generally that the cos δ terms must be proportional to Jrs [50]

123



1207 Page 14 of 23 Eur. Phys. J. C (2020) 80 :1207

in all the oscillation channels.10 The explicit forms given in
the right-hand sides of Eqs. (9.11) and (9.12) guarantee that
these general features hold.

Again, φ → φ + π
2 symmetry [40,51], which exists in the

total probability, is broken when the probability is decom-
posed into the non-interference and interference parts. That
is, the φ symmetry is also the “protecting symmetry” for
quantum mechanical interference. Since a little complicated
reduction is needed to show the φ invariance of the total prob-
ability P(νμ → ντ ) = P(νμ → ντ )

non-int-fer + P(νμ →
ντ )

int-fer, we present its explicit form in “Appendix F”.
As in vacuum the dominant effects in P(νμ → νe)

int-fer

is from the δ dependent terms as the first term in Eq. (9.8)
is suppressed by s2

φ � s2
13. Similarly, the dominant term in

P(νμ → ντ )
int-fer is the δ-independent term. The feature

is the same in P(νμ → νμ)int-fer, though not shown in this
paper. These features are akin to those possessed by the inter-
ference terms in vacuum, as seen in Sect. 2.

10 Amplitude decomposition in more generic
environment: From ZS to DMP construction

We have stressed in Sect. 7 that identifying the relevant
dynamical variables in a given kinematical space and clarify-
ing their physical meaning are highly nontrivial issues. To our
knowledge, the general and physically appealing answer to
this question does not appear to be known. Independently of
the ZS approach introduced in Sect. 7, there exists an attempt
by Akhmedov, Maltoni, and Smirnov (AMS) to identify the
physically motivated A and S variables [11]. They calculated
the decomposed amplitudes SA

αβ and SSαβ as a function of the
matter-dressed atmospheric and solar variables under the uni-
form matter-density approximation, and discussed physics of
the interference in the context of atmospheric neutrino exper-
iments.

In this paper we have taken a “bottom-up” approach to
the amplitude decomposition. After examining various per-
turbative schemes whose regions of validity span the solar-
or the atmospheric-scale enhancements, we have naturally
arrived at our own proposal for the solution to the problem
of amplitude decomposition in more generic environment.
Here, “generic environment” means either the region of ener-
gies and matter densities in which the A and S variables can
be interpreted as those of the matter-dressed atmospheric and
solar oscillation modes, or the ones outside of it.

By following the Jacobi method first introduced to
describe neutrino oscillations in Ref. [52], Denton et al. [41]
formulated a framework in which the eigenvalues and the V
matrix elements can be expressed by the two matter-dressed

10 In the νμ → νe channel, it is empirically known that the Jrs depen-
dence of the cos δ terms is elevated to the Jr dependence.

mixing angles θ13 and θ12, and the matter-undressed θ23 and
δ. We call the amplitude decomposition scheme based on the
Denton et al. framework as the DMP decomposition. Fol-
lowing Ref. [41], in this section we take the ATM convention
of the mixing matrix UMNS in which e±iδ is attached to s23.

10.1 Amplitude decomposition based on the DMP
framework

We define the DMP amplitude decomposition by doing
replacements in the eigenvalues and the V matrix in the ZS
amplitudes in (7.3):11

λi → λDMP
i , V → VDMP. (10.1)

We note that the V matrix method [34], which has been
adopted in Refs. [41,48], makes the DMP formulation of the
amplitude decomposition particularly simple. In fact, all the
necessary ingredients are already computed in Ref. [41] to
second order in perturbation. The leading and the first-order
expressions of the V matrix, V = V (0)

DMP + V (1)
DMP, are given

by

V (0)
DMP =

⎡

⎣
cψcφ sψcφ sφ

−c23sψ − s23cψ sφeiδ c23cψ − s23sψ sφeiδ s23cφeiδ

s23sψe−iδ − c23cψ sφ −s23cψe−iδ − c23sψ sφ c23cφ

⎤

⎦ ,

V (1)
DMP = V (0)

DMPW1, (10.2)

where φ and ψ are the matter-dressed mixing angles θ13 and
θ12, respectively, and W1 is defined by

W1 = ε′c12s12 sin(φ − θ13)

×

⎡

⎢
⎢
⎣

0 0 −sψ

m2

ren
λ3−λ1

0 0 cψ

m2

ren
λ3−λ2

sψ

m2

ren
λ3−λ1

−cψ

m2

ren
λ3−λ2

0

⎤

⎥
⎥
⎦ . (10.3)

In (10.3), ε′ is defined as ε′ ≡ 
m2
21/
m2

ren where the renor-
malized atmospheric 
m2 is defined as 
m2

ren ≡ 
m2
31 −

s2
12
m2

21 [48]. λi (i = 1, 2, 3) denote the eigenvalues of 2E
times the zeroth-order Hamiltonian, and the explicit forms
of them as well as those of φ and ψ are given in Ref. [41].

The necessary ingredients for constructing the DMP
decomposition are completely specified by the informa-
tion above to first order in perturbation. While we do not
present the explicit forms of the decomposed probabilities,
P(νβ → να)non-int-fer and P(νβ → να)int-fer, they can be
obtained by the replacements θ13 → φ and θ12 → ψ in the
vacuum expressions in the leading order. The prescription
for computing the first-order corrections is also given above.

Finally, we make some remarks on the following two rel-
evant issues:

• Ambiguity in the “atmospheric” oscillation frequency,

11 See, however, a comment on the different phase convention below.
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• Physical interpretation of the “A” and “S” variables and
the region of validity of the DMP decomposition.

In vacuum, there is a problem of how to define the effec-
tive atmospheric 
m2. It could be 
m2

31, or 
m2
32, or an

interpolated value in between. In the analysis to identify the
interference effect in JUNO reactor neutrino experiment, we
have examined the both cases of 
m2

31 and 
m2
32 for the

atmospheric 
m2 and obtained the same result [6].12

In matter the situation is different. The natural choice for
the atmospheric frequency is determined by the system itself.
We use the state label with the eigenvalues λ1 < λ2 < λ3 in
the normal mass ordering (NMO), and λ3 < λ1 < λ2 in the
inverted mass ordering (IMO). (See e.g., Fig. 1 in Ref. [41].)
Since the atmospheric resonance is in the 2-3 level crossing
in the NMO, it is natural to design the amplitude decompo-

sition with rephasing factor e−i
λ2
2E x so that the decomposed

amplitude read

Satm
αβ ≡ Vα3V

∗
β3

[
e−i

(λ3−λ2)

2E x − 1
]
,

Ssol
αβ ≡ Vα1V

∗
β1

[
ei

(λ2−λ1)

2E x − 1
]
. (10.4)

In the IMO, however, the resonance is in the 1-3 level cross-

ing, and therefore it is natural to use e−i
λ1
2E x rephasing as in

Eq. (7.3). Thus, there is a physics motivated way of determin-
ing the atmospheric oscillation frequency in matter. We note
that, of course, the both ways of decomposition, Eqs. (7.3)
and (10.4), lead to the same probability, as they differ only
in the overall phase. But, due to the difference in the decom-
posed amplitudes, the decomposed probabilities are different
between the decompositions (7.3) and (10.4).

The region of validity and the physical interpretation of
the DMP decomposition are the remaining important prob-
lem. Ideally, we could precisely define the kinematical phase
space boundary within which the “A” and “S” variables can
be interpreted as the matter-dressed atmospheric and solar
oscillation variables. However, it does not appear to be pos-
sible at this moment to our understanding.13

At least, we have to check that our decomposition for-
mula is consistent with the ones derived in the regions of
atmospheric-scale and the solar-scale enhanced oscillations.
Since the DMP framework generalizes the one of Ref. [48]
by doing another 1–2 space rotation it is very likely that it
is smoothly connected to the helio perturbation theory dis-
cussed in Sect. 9. What is more nontrivial is the smooth con-
nection to the solar oscillation region. However, our prelim-
inary study shows that the decomposed amplitudes in the

12 In fact, it was confirmed during the work described in Ref. [6] that
the values of χ2(q = 0) are stable over varying choices in the region
0 ≤ r ≤ 1 of the atmospheric 
m2(r) = (1 − r)
m2

31 + r
m2
32.

13 Even the definitions, what are the matter-effect modified “atmo-
spheric” and “solar” oscillation variables, are not obvious to the author.

solar-resonance perturbation theory can be recovered by tak-
ing the appropriate limit in the DMP decomposition formu-
las. Therefore, it is very likely that the DMP decomposition
successfully interpolates the two regions of the atmospheric-
and solar-scale enhanced oscillations. In this case, the decom-
position formulas, Eqs. (10.4) and/or (7.3), may apply to
the whole region sandwiched by the above two regions of
enhancement.

The formulas of the decomposed amplitudes and the prob-
abilities derived in these two Sects. 9 and 10 may be utilized
in analyses of the ongoing and the upcoming LBL exper-
iments [5,24–27,43]. In DUNE [27], the DMP decomposi-
tion might be more profitable because of its wide band beam,
and it must be the choice to analyze the atmospheric neu-
trino observation [26,27,43,53–55]. In JUNO [7], since it
measures both the solar- and the atmospheric-scale oscilla-
tions, the DMP decomposition is the unique choice among
the frameworks discussed in this paper. Though the matter
effect in JUNO is small, ∼1% level, it must be taken into
account when the accuracy of measurement goes down to a
percent level. We must emphasize, however, that to place the
real significance to the above phenomenological prospects,
we need to go through the analyses to prove the expectations
mentioned in the last paragraph above.

11 Concluding remarks

In this paper, we have addressed the question of how the
amplitude decomposition can be defined in matter, the pre-
scription of how to decompose the oscillation S matrix into
the “atmospheric” and “solar” amplitudes. In general, there
are two qualitatively new features in neutrino oscillation in
matter. Namely, the eigenvalues are modified by the matter
effect, and the mixed mode of the 
m2

31-driven and 
m2
21-

driven oscillations is generated even under a tiny matter
potential. Therefore, generally, there is no well defined way
in matter of decomposing the S matrix into the atmospheric
and solar waves in the same way as done in vacuum.

To know whether it is impossible or there is a way of cir-
cumventing the difficulty, we first tried an extension of our
vacuum definition of amplitude decomposition into that in
matter. We have found a successful case, the first-order AKS
perturbation theory, which utilizes the hierarchy of the two

m2, ε ≡ 
m2

21/
m2
31 	 1, and the weak matter effect.

The region of validity may correspond to low energy of ∼
several 100 MeV and medium baselines of a few ×100 km,
which would be realized by T2K, T2HK, and ESSνSB set-
tings. It offers probably the cleanest place for the amplitude
decomposition in matter due to the unmodified vacuum fre-
quencies of the two modes.

Though finding the above specific example in which the
vacuum definition works in matter is intriguing, it appears
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that the first-order AKS framework is the unique case, and
generically a departure from the vacuum definition is neces-
sary. It is because the energy eigenvalues and the effective
mixing angles are modified in matter, behave dynamically,
sometimes displaying a dramatic behavior. In this way the
characterization, or what is implied by the “atmospheric” or
the “solar” oscillations, can be obscured.

To proceed toward treatment of amplitude decomposition
in more generic kinematical phase space, we combined the
two strategies:

• A formal definition of amplitude decomposition in mat-
ter, the Zaglauer–Schwarzer decomposition,

• Analyzing the perturbative schemes in which the nature
of the matter-modified atmospheric and solar oscillations
are well understood.

One could hope that difficulties in understanding the phys-
ical properties of the decomposed two dynamical modes in
the ZS definition are somehow cured at least partly in this
way. We have analyzed so called the solar-resonance per-
turbation theory and the helio perturbation theory, which are
discussed in Sects. 8 and 9, respectively. They are chosen due
to their regions of validity, around the solar-scale and the
atmospheric-scale enhanced oscillations, respectively. The
necessity of implementing the general structure á la Zaglauer
and Schwarzer became clear during the treatment of the solar-
resonance perturbation theory. Integrating the lessons learned
in these exercises, we were able to give the amplitude decom-
position formulas in these perturbative frameworks.

In most part of this paper we have restricted ourselves
into the νμ → νe channel. It is because we concentrated
on the conceptual issues, and our primary focus is on the
question of what is the correct way of performing the ampli-
tude decomposition, an indispensable tool in our approach.
Of course, we must derive a complete set of the formulas
for the decomposed probabilities of all the relevant oscilla-
tion channels toward the data analyses to extract and discuss
the interference effects. This task will be carried out after we
elevate the plausibility argument for the desired properties of
the DMP framework given in Sect. 10.1 to the solid results
by explicit calculations.

During the course of investigation in Sects. 8 and 9,
we have found a new picture of the ϕ- and φ-symmetries
in the solar-resonance and the helio perturbation theories,
respectively, as the “protecting symmetries” for the quantum
mechanical interference. In spite of the existence of the sym-
metries, however, we have argued that the analysis procedure
we propose with χ2(q) is tenable.

The interference term in the probability reveals an inter-
esting feature that its property, i.e., nature of the term, is
oscillation-channel dependent. In the νμ → νe channel the
terms with CP phase δ are dominant. But, in the νμ → ντ

(or νμ → νμ) channel, the δ-independent terms constitute
the major component. The feature is true both in vacuum and
in matter. Since experimental analyses with the LBL accel-
erator experiments may be more feasible with the νμ → νe
channel, measurement accuracy has to be sufficiently high
if we want to show that the interference is not just due to
CP phase effect but there is a δ-independent contribution. In
this context, the importance of the high-statistics LBL exper-
iments, T2HK and DUNE, must be stressed for their greater
capabilities for precision measurement. Yet, the analyses of
T2K and NOνA data must be pursuit first to observe the
interference term and to test the framework itself.

Finally, we have also reported our investigation of the
amplitude decomposition in wider kinematical phase space
using the DMP framework. We have established the DMP
decomposition formulas by relying on the formulas given
in the original reference. With incorporating the ZS struc-
ture, the decomposed amplitudes allows more physically
appealing interpretation with the matter-dressed two mix-
ing angles of θ13 and θ12. It is likely that the DMP frame-
work interpolates the regions of validity of both of the solar-
and atmospheric-resonance perturbation theories. If this is
established the DMP framework can provide the appropriate
method for the amplitude decomposition in matter, possibly
in the whole kinematical region relevant for the atmospheric
neutrino observation and the LBL experiments.

It is interesting to discuss physical picture outside the
region of the matter-dressed atmospheric and solar variables
in the context of amplitude decomposition. Identifying the
nature of the two dynamical modes of oscillation would be
easier at high energies, or high matter densities, because of
dominance of one frequency. It may allow unified amplitude-
decomposition and interference analyses of low to super-high
energy atmospheric neutrino observation by IceCube [56]
and the lower energy apparatus.
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A Matter perturbation theory of the three-flavor
neutrino oscillation

To formulate the matter perturbation theory we transform
from the flavor basis to the vacuum mass eigenstate basis,
the check basis

ν̌α = U †
αβνβ = (U23U13U12)

†
αβ νβ, (A.1)

with the Hamiltonian

Ȟ = (U23U13U12)
† HU23U13U12 =

⎡

⎣
0 0 0
0 
21 0
0 0 
31

⎤

⎦

+U†
12U

†
13

⎡

⎣

a 0 0
0 0 0
0 0 0

⎤

⎦U13U12

=
⎡

⎣
0 0 0
0 
21 0
0 0 
31

⎤

⎦

+
⎡

⎣
c2

12c
2
13
a c12s12c2

13
a c12c13s13e−iδ
a

c12s12c2
13
a s2

12c
2
13
a s12c13s13e−iδ
a

c12c13s13eiδ
a s12c13s13eiδ
a s2
13
a

⎤

⎦ ,

(A.2)

where 
a ≡ a
2E as defined in Eq. (5.2). We denote the first

and second terms in (A.2) the unperturbed and perturbed
Hamiltonians in the check basis, respectively.

A conventional perturbative treatment entails the expres-
sions of the Š matrix to first order as

Š(x) = e−i Ȟ0x
[

1 + (−i)
∫ x

0
dx ′H1(x

′)
]

, (A.3)

where

H1 ≡ ei Ȟ0x Ȟ1e
−i Ȟ0x . (A.4)

The explicit expressions of zeroth and first order Š matrix
elements in the check basis, Š(x) = Š(0)(x) + Š(1)(x), can
be written as

Š(0)(x) =
⎡

⎣
e−ih1x 0 0

0 e−ih2x 0
0 0 e−ih3x

⎤

⎦ ,

Š(1)(x) =
⎡

⎢
⎣

c2
12c

2
13(−i
ax)e−ih1x c12s12c2

13

a

h2−h1

{
e−ih2x − e−ih1x

}
c12c13s13e−iδ 
a

h3−h1

{
e−ih3x − e−ih1x

}

c12s12c2
13


a
h2−h1

{
e−ih2x − e−ih1x

}
s2

12c
2
13(−i
ax)e−ih2x s12c13s13e−iδ 
a

h3−h2

{
e−ih3x − e−ih2x

}

c12c13s13eiδ

a

h3−h1

{
e−ih3x − e−ih1x

}
s12c13s13eiδ


a
h3−h2

{
e−ih3x − e−ih2x

}
s2

13(−i
ax)e−ih3x

⎤

⎥
⎦ , (A.5)

where hi (i = 1, 2, 3) denote the eigenvalues of Ȟ0 and in
our case they are the ones as in vacuum: h1 = 0, h2 = 
21,
and h3 = 
31.

Then, the flavor basis S matrix can be obtained as

S = U ŠU † = U23U13U12 Š (U23U13U12)
† . (A.6)

Using the flavor basis S matrix element the oscillation prob-
ability P(νβ → να) is given by

P(νβ → να) = |Sαβ |2. (A.7)

B Formulation of the AKS perturbation theory

In the AKS perturbation theory, in which we use the check
basis as in “Appendix A”, we use a different decomposition
of the vacuum mass eigenstate basis Hamiltonian into the
unperturbed and perturbed parts as

Ȟ = Ȟ0 + Ȟ1, Ȟ0 =

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 
31

⎤

⎥
⎥
⎦ ,

Ȟ1 =

⎡

⎢
⎢
⎣

0 0 0

0 
21 0

0 0 0

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

c2
12c

2
13
a c12s12c2

13
a c12c13s13e−iδ
a

c12s12c2
13
a s2

12c
2
13
a s12c13s13e−iδ
a

c12c13s13eiδ
a s12c13s13eiδ
a s2
13
a

⎤

⎥
⎥
⎥
⎥
⎦

.

(B.1)

That is, not only the matter potential but also the 
21 terms
are assumed to be small, anticipating use of the formu-
las in regions of atmospheric-scale enhanced oscillation,

m2

31L/4E ∼ O(1), at short or medium baseline L � a
few ×100 km. It corresponds, for example, to the T2K [5],
T2HK [26], and ESSνSB [36] experiments. Since the zeroth
order Hamiltonian Ȟ0 is diagonal one can do perturbative
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calculation in this basis.14 Following the description of how
perturbative expansion is organized in the previous section,
we just present the results of the Š matrix elements. The
zeroth order Š(0) matrix is the same as in (A.5), but now
h1 = 0, h2 = 0, h3 = 
31. The first order Š(1) matrix is
given by

Š(1) =
⎡

⎣
0 0 0
0 (−i
21x) 0
0 0 0

⎤

⎦

+

⎡

⎢
⎢
⎣

c2
12c

2
13(−i
ax) c12s12c2

13(−i
ax) −c12c13s13e−iδ
a
1−e−i
31x


31

c12s12c2
13(−i
ax) s2

12c
2
13(−i
ax) −s12c13s13e−iδ
a

1−e−i
31x


31

−c12c13s13eiδ
a
1−e−i
31x


31
−s12c13s13eiδ
a

1−e−i
31x


31
s2

13(−i
ax)e−i
31x

⎤

⎥
⎥
⎦ . (B.2)

Then, the flavor basis S matrix can readily be calculated
by using the formula in (A.6), S = U ŠU †. The zeroth order
S matrix has the familiar vacuum form

S(0)(x) = U

⎡

⎣
1 0 0
0 1 0
0 0 e−i x
31

⎤

⎦U †

=
⎡

⎣
1 + |U13|2

(
e−i x
31 − 1

)
U13U∗

23

(
e−i x
31 − 1

)
U13U33

(
e−i x
31 − 1

)

U23U∗
13

(
e−i x
31 − 1

)
1 + |U23|2

(
e−i x
31 − 1

)
U23U33

(
e−i x
31 − 1

)

U33U∗
13

(
e−i x
31 − 1

)
U33U∗

23

(
e−i x
31 − 1

)
1 +U 2

33

(
e−i x
31 − 1

)

⎤

⎦ . (B.3)

We denote the two parts of the first order S(1) matrix as
S(1) = S(1)

helio + S(1)
matter, which come from the two different

components of Ȟ1 in (B.1). S(1)
helio reads

S(1)
helio = (−i
21x)

⎡

⎣
|U12|2 U12U∗

22 U12U∗
32

U22U∗
12 U 2

22 U22U∗
32

U32U∗
12 U32U22 |U32|2

⎤

⎦ , (B.4)

while the expression of the elements of S(1)
matter is a little more

cumbersome. But, they can be calculated in a straightforward
manner by using the formula

S(1)
matter = U Š(1)U †, (B.5)

whose e − μ element is given in Eq. (6.1).

C Formulation of the helio perturbation theory

Here, we review the formulation of the helio perturbation
theory to recollect the necessary formulas for discussion of
the amplitude decomposition in Sect. 9.

14 In Ref. [35] the authors takes a different way by saying that they do
perturbative calculation in the flavor basis, but in net what they do is
the same as we explain here.

C.1 Tilde basis and diagonalization of the zeroth-order
Hamiltonian

To formulate the helio perturbation theory with the unique
expansion parameter ε as defined in (9.1), we use the tilde
basis ν̃α = (U †

23)αβνβ and H̃ = U †
23HU23. Starting from the

one in the vacuum mass eigenstate basis (A.2), the Hamilto-
nian in the tilde basis is obtained as

H̃ = U13U12 ȞU †
12U

†
13. (C.1)

The tilde basis Hamiltonian is decomposed into unperturbed
and perturbed part as

H̃ = H̃0 + H̃1,

H̃0 = 
31

⎡

⎣
s2

13 + ra 0 c13s13e−iδ

0 0 0
c13s13eiδ 0 c2

13

⎤

⎦ ,

H̃1 = 
21

⎡

⎣
c2

13s
2
12 c13c12s12 −c13s13s2

12e
−iδ

c13c12s12 c2
12 −s13c12s12e−iδ

−c13s13s2
12e

iδ −s13c12s12eiδ s2
13s

2
12

⎤

⎦

≡ 
21F. (C.2)

where we have defined the F matrix and introduced ra , the
matter to vacuum ratio,

ra ≡ a


m2
31

= 
a


31
. (C.3)

As in (C.2), the F matrix is simply 
21 scaled H̃1. The gen-
eral expression of H̃1 with the Fi j (i, j = 1, 2, 3) elements
will help us to understand the general features of the theory.
See “Appendix C.4”.

The zeroth-order tilde-basis Hamiltonian H̃0 can be easily
diagonalized by unitary transformation Uφ parametrized as
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Uφ =
⎡

⎣
cφ 0 sφe−iδ

0 1 0
−sφeiδ 0 cφ

⎤

⎦ (C.4)

such that

Ĥ0 = U †
φ H̃0Uφ =

⎡

⎣
h1 0 0
0 h2 0
0 0 h3

⎤

⎦ . (C.5)

The diagonalization determines φ, the angle θ13 in matter, as

cos 2φ = cos 2θ13 − ra
√

(cos 2θ13 − ra)2 + sin2 2θ13

,

sin 2φ = sin 2θ13
√

(cos 2θ13 − ra)2 + sin2 2θ13

. (C.6)

We hereafter denote the basis (C.5), the H̃0 diagonalized
basis, as the hat basis with notation Ĥ0. The eigenvalues hi
are given by

h1 = sin2(φ − θ13)
31 + c2
φ
a

= 
31

2

[

1 + ra ∓
√

1 + r2
a − 2ra cos 2θ13

]

,

h2 = 0,

h3 = cos2(φ − θ13)
31 + s2
φ
a

= 
31

2

[

1 + ra ±
√

1 + r2
a − 2ra cos 2θ13

]

, (C.7)

where the upper and lower signs correspond to the normal
and inverted mass orderings [48].15 The two expressions of
h1 and h3 are both valid.

15 Notice that our state labels are defined by the zeroth-order Hamilto-
nian in Eq. (C.2). In the case of normal mass ordering, the ordering of
the eigenvalues are such that h2 < h1 	 h3 (h1 	 h2 < h3) in the
a → +∞ (a → −∞) limit, and h2 = h1 < h3 in vacuum. Therefore,
the atmospheric resonance exists between the eigenstates 3 and 1, and
our state labeling is different from the conventional one in which the
resonance is between eigenstates 3 and 2. It stems from the fact that the
solar level crossing is not treated properly, the inherent problem in the
formulation of the helio perturbation theory so far presented [44–48],
as discussed in Ref. [48].

C.2 Ŝ matrix in the hat basis vs. S matrix in the flavor basis

The relationship between the various basis:

H̃ = U †
23HU23, Ĥ = U †

φ H̃Uφ,

H̃ = Uφ ĤU †
φ,

H = U23 H̃U †
23 = U23Uφ ĤU †

φU
†
23. (C.8)

The last relation applies to the S matrix as well

S = U23 S̃U
†
23 = U23Uφ ŜU

†
φU

†
23. (C.9)

C.3 The zeroth order Ŝ and S matrices

Let us calculate first the flavor basis S matrix in the zeroth
order. The hat basis S matrix in the zeroth order is given by

Ŝ(0) =
⎡

⎣
e−ih1x 0 0

0 e−ih2x 0
0 0 e−ih3x

⎤

⎦ . (C.10)

Then by performing the Uφ and U23Uφ rotations we obtain

S̃(0) = Uφ ŜU
†
φ =

⎡

⎣
s2
φe

−ih3x + c2
φe

−ih1x 0 cφsφe−iδ
(
e−ih3x − e−ih1x

)

0 e−ih2x 0
cφsφeiδ

(
e−ih3x − e−ih1x

)
0 c2

φe
−ih3x + s2

φe
−ih1x

⎤

⎦ , (C.11)

S(0) = U23 S̃
(0)U †

23

=

⎡

⎢
⎢
⎣

s2
φe

−ih3x + c2
φe

−ih1x s23cφsφe−iδ
(
e−ih3x − e−ih1x

)
c23cφsφe−iδ

(
e−ih3x − e−ih1x

)

s23cφsφeiδ
(
e−ih3x − e−ih1x

)
s2

23

(
c2
φe

−ih3x + s2
φe

−ih1x
)

+ c2
23e

−ih2x c23s23

(
c2
φe

−ih3x + s2
φe

−ih1x − e−ih2x
)

c23cφsφeiδ
(
e−ih3x − e−ih1x

)
c23s23

(
c2
φe

−ih3x + s2
φe

−ih1x − e−ih2x
)
c2

23

(
c2
φe

−ih3x + s2
φe

−ih1x
)

+ s2
23e

−ih2x

⎤

⎥
⎥
⎦ .

(C.12)

C.4 The first order correction

The first order correction can be calculated by using the for-
mulas (A.3) and (A.4), but in the hat basis. Let us calculate
H1 first:

H1 = ei Ĥ0x Ĥ1e
−i Ĥ0x = ei Ĥ0xU †

φ H̃1Uφe
−i Ĥ0x

= U †
φ

(
Uφe

i Ĥ0xU †
φ

)
H̃1

(
Uφe

−i Ĥ0xU †
φ

)
Uφ

= 
21U
†
φ�Uφ, (C.13)

where the factors inside parentheses can be obtained as
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Uφe
±i Ĥ0xU †

φ =
⎡

⎣
s2
φe

±ih3x + c2
φe

±ih1x 0 cφsφe−iδ
(
e±ih3x − e±ih1x

)

0 e±ih2x 0
cφsφeiδ

(
e±ih3x − e±ih1x

)
0 c2

φe
±ih3x + s2

φe
±ih1x

⎤

⎦ (C.14)

where it should be noticed that Uφe−i Ĥ0xU †
φ = S̃(0). In

(C.13), the � matrix is defined as

� ≡
(
Uφe

i Ĥ0xU †
φ

)
F
(
Uφe

−i Ĥ0xU †
φ

)
, (C.15)

where the F matrix is defined in (C.2). The computed results
of the � matrix elements are given in “Appendix D”. Then,
the first order Ŝ matrix, and S̃ matrix are given, respectively
as

Ŝ(1) = 
21U
†
φ

(
Uφe

−i Ĥ0xU †
φ

) [

(−i)
∫ x

0
dx ′�(x ′)

]

Uφ,

S̃(1) = Uφ Ŝ
(1)U †

φ

= 
21

(
Uφe

−i Ĥ0xU †
φ

) [

(−i)
∫ x

0
dx ′�(x ′)

]

. (C.16)

Now, the knowledgeable readers might have noticed that
our computation of the first order corrections is exactly par-
allel to that of the “helio-UV perturbation theory” formu-
lated and discussed in Ref. [51]. This is true despite that the
physical meaning of the correction terms is very different,
the “helio correction” in our case and the unitarity violating
effect in Ref. [51]. The correspondence is that our 
21 is

b (neutral current version of 
a), and our F matrix is the
H matrix in Ref. [51]. Minor differences are in the choice
of convention of the flavor mixing matrix, the one in PDG
convention (4.2) in the present paper, in contrast to the ATM
convention in Ref. [51]. This correspondence can be used as
a consistency check of the calculation.

C.5 Flavor basis S matrix and the oscillation probability

The flavor basis S matrix is given by S = U23 S̃U
†
23 as in

(C.9). The relations of S̃ and S matrix elements are explicitly
written in Eq. (E.10) in “Appendix E”. Then, the oscillation
probability P(νβ → να) is given by Eq. (A.7).

D F and � matrix elements summary

Here is the summary of the F matrix elements defined in
(C.2), and the computed result of � matrix elements defined
in (C.15) as a function of the F matrix elements. The PDG
convention of the flavor mixing matrix is used.

F11 = c2
13s

2
12,

F12 = c13c12s12 = F21,

F13 = −c13s13s
2
12e

−iδ = (F31)
∗ ,

F22 = c2
12,

F23 = −s13c12s12e
−iδ = (F32)

∗ ,

F33 = s2
13s

2
12. (D.1)

�11 = F11 + cφsφ [sin 2φ(F33 − F11)

− cos 2φ
(
eiδF13 + e−iδF31

)]

−e−i(h3−h1)x cφsφ
[
cφsφ(F33 − F11)

−
(
c2
φe

iδF13 − s2
φe

−iδF31

)]

−ei(h3−h1)x cφsφ
[
cφsφ(F33 − F11)

+
(
s2
φe

iδF13 − c2
φe

−iδF31

)]
,

�12 =
(
s2
φF12 + cφsφe

−iδF32

)
ei(h3−h2)x

+
(
c2
φF12 − cφsφe

−iδF32

)
e−i(h2−h1)x ,

�13 = e−iδ
{

cφsφ [cos 2φ(F33 − F11)

+ sin 2φ
(
eiδF13 + e−iδF31

)]

+e−i(h3−h1)x c2
φ

[−cφsφ(F33 − F11)

+c2
φe

iδF13 − s2
φe

−iδF31

]

+ei(h3−h1)x s2
φ

[
cφsφ(F33 − F11) + s2

φe
iδF13 − c2

φe
−iδF31

]}

.

(D.2)

�21 = e−i(h3−h2)x
(
s2
φF21 + cφsφe

iδF23

)

+ei(h2−h1)x
(
c2
φF21 − cφsφe

iδF23

)
,

�22 = F22,

�23 = e−i(h3−h2)x
(
cφsφe

−iδF21 + c2
φF23

)

−ei(h2−h1)x
(
cφsφe

−iδF21 − s2
φF23

)
. (D.3)

�31 = eiδ
{

cφsφ [cos 2φ(F33 − F11)

+ sin 2φ
(
eiδF13 + e−iδF31

)]

+e−i(h3−h1)x s2
φ

[
cφsφ(F33 − F11)

−
(
c2
φe

iδF13 − s2
φe

−iδF31

)]

−ei(h3−h1)x c2
φ

[
cφsφ(F33 − F11)

+
(
s2
φe

iδF13 − c2
φe

−iδF31

)]}

,

�32 = ei(h3−h2)x
(
cφsφe

iδF12 + c2
φF32

)

−e−i(h2−h1)x
(
cφsφe

iδF12 − s2
φF32

)
,

�33 = F33 − cφsφ [sin 2φ(F33 − F11)

− cos 2φ
(
eiδF13 + e−iδF31

)]

123
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+e−i(h3−h1)x cφsφ
[
cφsφ(F33 − F11)

−
(
c2
φe

iδF13 − s2
φe

−iδF31

)]

+ei(h3−h1)x cφsφ
[
cφsφ(F33 − F11)

+
(
s2
φe

iδF13 − c2
φe

−iδF31

)]
. (D.4)

E S̃(1) matrix elements summary and S̃-S matrix
relation

We present computed results of the first order S̃(1) matrix
elements.

S̃(1)
11 = F11

(
s2
φe

−ih3x + c2
φe

−ih1x
)

(−i
21x)

+cφsφ
{
(F33 − F11)cφsφ

(
e−ih3x + e−ih1x

)

+
(
eiδF13 + e−iδF31

) (
s2
φe

−ih3x − c2
φe

−ih1x
)}

(−i
21x)

−cφsφ {sin 2φ(F33 − F11)

− cos 2φ
(
eiδF13 + e−iδF31

)}( 
21

h3 − h1

)

×
(
e−ih3x − e−ih1x

)
. (E.1)

S̃(1)
22 = F22(−i
21x)e

−ih2x . (E.2)

S̃(1)
33 = F33

(
c2
φe

−ih3x + s2
φe

−ih1x
)

(−i
21x)

+cφsφ
{
−cφsφ

(
e−ih3x + e−ih1x

)
(F33 − F11)

+
(
c2
φe

−ih3x − s2
φe

−ih1x
) (

eiδF13 + e−iδF31

)}
(−i
21x)

+cφsφ {sin 2φ(F33 − F11)

− cos 2φ
(
eiδF13 + e−iδF31

)}

× 
21

(h3 − h1)

(
e−ih3x − e−ih1x

)
. (E.3)

S̃(1)
12 =

(
s2
φF12 + cφsφe

−iδF32

)( 
21

h3 − h2

)(
e−ih3x − e−ih2x

)

+
(
c2
φF12 − cφsφe

−iδF32

)( 
21

h2 − h1

)(
e−ih2x − e−ih1x

)
.

(E.4)

S̃(1)
21 =

(
s2
φF21 + cφsφe

iδF23

)( 
21

h3 − h2

)(
e−ih3x − e−ih2x

)

+
(
c2
φF21 − cφsφe

iδF23

)( 
21

h2 − h1

)(
e−ih2x − e−ih1x

)
.

(E.5)

S̃(1)
23 =

(
cφsφe

−iδF21 + c2
φF23

) 
21

(h3 − h2)

(
e−ih3x − e−ih2x

)

−
(
cφsφe

−iδF21 − s2
φF23

) 
21

(h2 − h1)

(
e−ih2x − e−ih1x

)
.

(E.6)

S̃(1)
32 =

(
cφsφe

iδF12 + c2
φF32

) 
21

(h3 − h2)

(
e−ih3x − e−ih2x

)

−
(
cφsφe

iδF12 − s2
φF32

) 
21

(h2 − h1)

(
e−ih2x − e−ih1x

)
.

(E.7)

S̃(1)
13 = e−iδ

[

F33cφsφ
(
e−ih3x − e−ih1x

)
(−i
21x)

−cφsφ
{
(F33 − F11)

(
s2
φe

−ih3x − c2
φe

−ih1x
)

−cφsφ
(
eiδF13 + e−iδF31

) (
e−ih3x + e−ih1x

)}
(−i
21x)

+
{
eiδF13 − cφsφ [cos 2φ(F33 − F11)

+ sin 2φ
(
eiδF13 + e−iδF31

)]}( 
21

h3 − h1

)

×
(
e−ih3x − e−ih1x

)]

. (E.8)

S̃(1)
31 = eiδ

[

F11cφsφ
(
e−ih3x − e−ih1x

)
(−i
21x)

+cφsφ
{
(F33 − F11)

(
c2
φe

−ih3x − s2
φe

−ih1x
)

+cφsφ
(
eiδF13 + e−iδF31

) (
e−ih3x + e−ih1x

)}
(−i
21x)

+
{
e−iδF31 − cφsφ [cos 2φ(F33 − F11)

+ sin 2φ
(
eiδF13 + e−iδF31

)]}( 
21

h3 − h1

)

×
(
e−ih3x − e−ih1x

)]

. (E.9)

Then, by using S = U23 S̃U
†
23 in Eq. (C.9), and for the

given S̃ matrix elements, the flavor basis S matrix elements
can be written as

See = S̃11,

Seμ = c23 S̃12 + s23 S̃13,

Seτ = c23 S̃13 − s23 S̃12,

Sμe = c23 S̃21 + s23 S̃31 = Seμ(−δ),

Sμμ = c2
23 S̃22 + s2

23 S̃33 + c23s23(S̃23 + S̃32),

Sμτ = c2
23 S̃23 − s2

23 S̃32 + c23s23(S̃33 − S̃22),

Sτe = c23 S̃31 − s23 S̃21 = Seτ (−δ),

Sτμ = c2
23 S̃32 − s2

23 S̃23 + c23s23(S̃33 − S̃22) = Sμτ (−δ),

Sττ = s2
23 S̃22 + c2

23 S̃33 − c23s23(S̃23 + S̃32). (E.10)

F The oscillation probability in the νμ → ντ channel

Here, we present the explicit expression of P(νμ → ντ ) =
P(νμ → ντ )

non-int-fer + P(νμ → ντ )
int-fer, in which the φ

symmetry is manifest.

P(νμ → ντ ) = 4c2
23s

2
23

[

−c2
φs

2
φ sin2 (h3 − h1)x

2

+c2
φ sin2 (h3 − h2)x

2
+ s2

φ sin2 (h2 − h1)x

2

]

+2c2
23s

2
23

[

c2
φs

2
φs

2
12 cos 2(φ − θ13) sin(h3 − h1)x

−c2
φ

[
c2

12 − s2
12 sin2(φ − θ13)

]
sin(h3 − h2)x

+s2
φ

[
c2

12 − s2
12 cos2(φ − θ13)

]
sin(h2 − h1)x

]

(
21x)

−4c2
23s

2
23s

2
12cφsφ sin 2(φ − θ13)


21

(h3 − h1)
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×
[

cos 2φ sin2 (h3 − h1)x

2
+ sin2 (h3 − h2)x

2

− sin2 (h2 − h1)x

2

]

+4 J̃ cmrs cos 2θ23 cos δ

21

(h2 − h1)

{

c2
φ sin2 (h3 − h2)x

2

+(1 + s2
φ) sin2 (h2 − h1)x

2
− c2

φ sin2 (h3 − h1)x

2

}

+4 J̃ smrs cos 2θ23 cos δ

21

(h3 − h2)

{

(1 + c2
φ) sin2 (h3 − h2)x

2

+s2
φ sin2 (h2 − h1)x

2
− s2

φ sin2 (h3 − h1)x

2

}

+8 sin δ

[

J̃ cmr

21

(h2 − h1)
− J̃ smr


21

(h3 − h2)

]

× sin
(h3 − h1)x

2
sin

(h2 − h1)x

2
sin

(h3 − h2)x

2
, (F.1)

where J̃ smr etc. are defined in Eqs. (9.11) and (9.12). We note
that the following identities are useful.

[sin(h3 − h2)x − sin(h3 − h1)x + sin(h2 − h1)x]

= 4 sin
(h3 − h1)x

2
sin

(h2 − h1)x

2
sin

(h3 − h2)x

2
,

− sin2 (h3 − h2)x

2
+ sin2 (h3 − h1)x

2
+ sin2 (h2 − h1)x

2

= 2 sin
(h2 − h1)x

2
sin

(h3 − h1)x

2
cos

(h3 − h2)x

2
.

(F.2)
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