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Abstract In this work we extend the first law of thermo-
dynamics to spherically symmetric black hole solutions in
the context of scale-dependent gravity. After deriving gen-
eralized expressions for both the entropy and energy due to
the spatial variation of the gravitational constant we analize,
by pointing out some relations between scale-dependent and
f (R) theories, whether or not the former can be described
using equilibrium thermodynamics.

1 Introduction

Since the pioneering works of Bekenstein [1] and Bardeen
et al. [2,3], the connection between gravity and thermo-
dynamics has been continuously growing, being one of the
most deep ideas which could put us in the right way towards
a microscopical theory of gravity. In particular, by deriv-
ing the Einstein equations from both equilibrium thermody-
namics and the entropy-area proporcionality for all Rindler
horizons, Jacobson [4] pushed forward the idea of treating
gravity as en emergent phenomenon whose dynamics could
emerge from that of the underlying microscopic degrees of
freedom, similarly to the emergence of thermodynamics from
statistical mechanics (in particular, this idea has been real-
ized in the context of black holes within loop quantum gravity
[5] and the space-time atom [6] perspective [7]). Later, the
works of Padmanabhan paved the way for a thermodynamic
route to field equations not only in Einstein [8] but also in
Lanczos–Lovelock theories [9], showing that the correspond-
ing field equations for a spherically symmetric spacetime can
be expressed as TdS = dE + PdV . Recently, extensions of
Padmanabhan’s ideas in f (R) [10,11], f (R, Rαβ Rαβ,�)

[12] and quasi-topological [13] gravities have been per-
formed. Interestingly, Elings, Guedens and Jacobson have
shown [14] that, in order to derive the f (R) field equations,
a treatment with nonequilibrium thermodynamics is needed,
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in which an additional entropy production term emerges.
Even more, although Cai and Cao have extended this result
to scalar–tensor gravity [15], Wu, Yang and Zhang proved
[16] that the field equation of Brans–Dicke gravity, scalar–
tensor and f (R) gravity can be derived assuming local ther-
modynamic equilibrium, provided a careful analysis of the
energy which feels the heat flow across the horizon is per-
formed. Later on, the extension of these results to the case of
Gauss–Bonnet, f (G) and non-local gravity were performed
by Odintsov et al. in [17]. Interestingly, within these extended
theories, it is well known that an effective Newton constant
appears. Very recently, and in this context, Volovik [18] has
assumed a spatially varying Newton constant to be a ther-
modynamical variable, exploring its consequences for black
hole quantization and black hole-white hole quantum tunnel-
ing.

Following these ideas, in this work we investigate the role
played by a spatially-varying Newton and cosmological con-
stants under the scale-dependent approach [19] in the ther-
modynamics of spherically symmetric black holes in order
to test whether or not the theory can be derived from equi-
librium thermodynamics.

This work is organized as follows: Sect. 2 summarizes the
main features of scale-dependent gravity which are used in
Sect. 3 in order to derive an extended thermodynamical prin-
ciple in spherically symmetric black holes. The implications
of this principle for black hole entropy and energy are dis-
cussed in Sect. 4. Finally, after a comparison of the results
here reported with that of f (R) theories concerning entropy
production are left to Sect. 5, we conclude with some remarks
in Sect. 6.

2 Scale-dependent gravity

Here we will give a very brief and concise summary of the
scale-dependent setting in gravity. For details, the reader is
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referred to Refs. [19,20]. In essence, the idea is to promote the
couplings which appears in the gravitational action to scale-
dependent quantities. Specifically, we start from the scale-
dependent version of the Einstein–Hilbert action, which is
given by

S[gμν, k̃] =
∫

dnx
√−g

[
1

2κk̃

(
R − 2�k̃

)]
, (1)

where k̃ is a scale-dependent field related to a renormaliza-
tion scale, κk̃ ≡ 8πGk̃ is the Einstein coupling, and Gk̃ and
�k̃ refer to the scale-dependent gravitational and cosmologi-
cal couplings, respectively. As usual, the modified Einstein’s
equations are obtained by taking variations with respect to
the metric field gμν , which lead to

Gμν + gμν�k̃ = −	tμν, (2)

where the so-called non-matter energy–momentum tensor,
	tμν , is defined as

	tμν = Gk̃

(
gμν� − ∇μ∇ν

)
G−1

k̃
. (3)

In addition, by taking the variation of the effective action
with respect to the scale field, k̃(x), one imposes

d

dk̃
S[gμν, k̃] = 0, (4)

which can be seen as an a posteriori condition towards back-
ground independence.

In essence, both Eqs. (2) and (4) close the system. The
problem is that the β-functions, which describe the renor-
malization group running of both Gk̃ and �k̃ are, in general,
unknown (in fact they depend of how a specific problem is
solved). Therefore, in order to avoid this issue, we consider
that both couplings, Gk̃ and �k̃ , inherit the dependence on
the space-time coordinates from the space-time dependence
of the scale field, k̃(x). In this sense, the couplings are written
as G(x) and �(x). This idea, together with an appropriate
choice for the line element, allows, in principle, to solve the
problem in situations with a high degree of symmetry.

With these ideas in mind, scale-dependent gravity can be
considered, in some sense, as a special kind of scalar–tensor
theory, although the improved action is not supposed to be
varied neither with respect to G(x) nor to �(x) [19]. The
total action we consider is

ST =
∫

d4x
√−g

(
R

16πG(x)
− �(x)

8πG(x)

)
+ Smat, (5)

where Smat encodes the matter sector of the theory.
Then, after variating Eq. (5) with respect to the metric, we

arrive to

Gαβ + G
(
gαβ� − ∇α∇β

)
G−1 + �gαβ = 8πGTαβ (6)

or

Sαβ ≡ Gαβ + 	tαβ + �gαβ − 8πGTαβ = 0, (7)

where, as stated before, G and � have to be understood as
G(x) and �(x).

At this point, a couple of important points are in order.
First, let us note that, after variations of the scale field, Eq.
(4) turns out to be
(
R∇μ

(
1

Gk̃

)
− 2∇μ

(
�k̃

Gk̃

))
∂μk̃ = 0. (8)

And second, this equation, together with Eq. (2), are con-
sistent with diffeomorphism invariance, as expressed by the
conserved covariance of the Einstein tensor, as explicitly
shown in [20].

In addition, let us note that the Einstein tensor is covari-
anty conserved and, therefore, ∇μ

(
gμν�(r) + 	tμν(r) −

8πG(r)Tμν

)
vanishes on shell, as can be explicitly shown.

Therefore, consistency is guaranteed also at this level.

3 Generalized Einstein equations as a thermodynamic
identity

In principle, in view of Eq. (7), one is tempted to assign
some kind of energy densities and pressures associated with
the non-matter energy-momentum tensor, by interpreting it
as some kind of curvature fluid, as is usually established in
f (R) theories [21]. In this section, following closely Pad-
manabhans’s ideas [8], we will show that the interpretation
of the 	tαβ terms is very different to that of the usual matter
sector, Tαβ , and that it gives place to an extended thermody-
namics of spherically symmetric black holes.

Let us consider a line element written in Schwarzschild
coordinates as

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2, (9)

where d�2 is the line element four the round two-sphere.1

Even more, within this symmetry, � and G turn into func-
tions of only the radial coordinate. Therefore, the generalized
radial equation can be written as

1

r2

(
1 − f − r2�

) − f ′

r
= −G T r

r − G ′

G

(
f ′

2
+ 2 f

r

)
,

(10)

where the prime denotes derivative with respect to the radial
coordinate, r .

1 As shown in [8], one can extend much of this analysis to a more
general case where gtt = − f (r) and grr = g(r) with f �= g in a fairly
straightforward manner.
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Let us particularize to the case of an event horizon located
at r+ = a. Then, f (a) = 0. In this case we get

f ′(a) =
(

1

a
− a

(
�(a) − T r

r (a)G(a)
))(

1 − a

2

G ′(a)

G(a)

)−1

≡ B

(11)

or

1

2
Ba − 1

2
= 1

2
T r

r (a)G(a)a2 − �(a)

2
a2 + 1

4
B
G ′(a)

G(a)
a2. (12)

Multiplying by da and dividing by G(a) in both sides, we
arrive to

B

4π
d

(
πa2

G(a)

)
− da

2G(a)
=

(
T r

r (a) − �(a)

8πG(a)

)
4πa2da (13)

This expression, Eq. (13), is our main result. Interestingly, it
can be written as

dE = TdS − [
P + P

(
�,G

)]
dV, (14)

where

dE = da

2G(a)
(15)

is the energy change within scale-dependent gravity during
a infinitesimal horizon displacement, da,

V = 4πa3

3
(16)

is the areal volume,

T = f ′(a)

4π
(17)

is the usual Hawking temperature (which can be obtained
from the periodicity consideration of the Euclidean time by
Wick rotating the time coordinate t → iτ . The metric will
be regular at the horizon if τ is taken to be an angular vari-
able with a period β = 4π/ f ′(a), which is just the inverse
Hawking temperature T = 1/β of the black hole. Therefore,
the Hawking temperature only depends of the specific gravi-
tational theory we are dealing with through the specific form
of f (r)),

S = A

4G(a)
(18)

is the generalized Bekenstein–Hawking entropy (where A is
the area of the event horizon),

P = T r
r (a) (19)

is a pressure term due to the matter sector (evaluated at the
horizon) and

P
(
�,G

) = − �(a)

8πG(a)
(20)

is the pressure due to the position-dependent constants eval-
uated at the horizon, �(a) and G(a). Note that the usual

general relativistic definitions and relations of Ref. [8] are
obtained in the limit {G(r),�(r)} → {�,G}.

Here we note that the expression for the scale-dependent
black hole entropy, which we remind the reader is given by

S = A

4 G(a)
, (21)

formally coincides with that of Brans–Dicke theory [22]. In
this sense, there is no ambiguity when computing black hole
entropies in the approach here employed, as we will point
out in the following section.

4 Implications for black hole entropy and energy

As have been noticed several times during the last years (see,
for example, [23]), the improved gravitational equations in a
spherically symmetric (1 + 3)-dimensional spacetime have
to be suplemented with an additional constraint in order for
the system to be closed. This is due mainly to the necessity
of including the cosmological constant in order not to obtain
trivial (i.e., pure general relativistic) solutions. In this case,
we have four unknowns: two metric potentials plus G(r) and
�(r) but only three equations: St t , Srr and Sθθ (or Sφφ).
The required aditional information is usually introduced by
means of an appropriate ansantz which reduces from two to
one metric potentials by the usual relation gtt grr = −1 [23].

Specifically, let us consider a particular solution to Eq. (7)
with an ansantz given by Eq. (9). As pointed out by Jacobson
[24], for any spherically symmetric and static geometry with
gtt = − f (r) and grr = g(r) we have that

Rαβn
αnβ =

(
f g

)′

rg
, (22)

where n is any radial null vector.
Therefore, if the matter sector satisfies

Tαβn
αnβ = 0, (23)

then, Eq. (7) together with Eq. (9) imply

	tμνn
αnβ = 0. (24)

which, for the case we are interested in, reduces to

2
(
G ′)2 = GG ′′, (25)

which is solved by

G(r) = G0

1 + r
lS

, (26)

where the two constants of integration have been chosen in
order to recover the usual general relativistic expression when
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the running scale, lS, which signals the region where scale-
dependent effects are supposed to appear, goes to infinity and
G(r) → G0.2

Interestingly, this explicit form of the Newton coupling is
valid not only for the vacuum case (improved Schwarzschild–
(anti)–de Sitter solution [25]) but also for several electrovac-
uum solutions, including the improved Reissner–Nördstrom
one [26], politropic [27], regular [28], planar [29] and rotat-
ing black holes [30], where Eq. (23) is satisfied.

Regarding the behaviour of �(r), it is interesting to note
that the divergence of Eq. (6) implies

�′ + 1

8πG

G ′

G

(
R

2
− �

)
= p′ + (ρ + p)

f ′

2 f
, (27)

which is the generalized Tolman–Oppenheimer–Volkoff
equation when both G and � are functions of the radial
coordinate. As usual, the mixed components of the energy–
momentum tensor of the matter sector are (assuming isotropy
and spherical symmetry) diag (−ρ, p, p, p).

If the vacuum case is considered we note that, taking into
account Eqs. (26), (27) can be formally solved as

�(r) = e−r/(8πG0lS)

(
�0 − 1

16πG0lS

∫ r

1
e−y/(8πG0lS) R(y) dy

)
,

(28)

which goes to �0 in the lS → ∞ limit. Interestingly, if the
integral term could be taken to be negligible for a particular
solution, Eq. (28) shows an exponential decay of the effective
cosmological constant.

With the explicit expression for G(r) at hand, now it
is straightforward to calculate the entropy in the scale-
dependent framework, derived in Sect. 3. We get

S = A

4G(a)
= πa2

4 G0

(
1 + a

lS

)
, (29)

which is the expression usually employed in scale-dependent
improved black hole solutions [25–30].

It is worth noting that Eq. (29) can be written as

S = A

4G(a)
= 1

4 G0

(
A + 3

4

V

lS

)
= S0 + 3

16G0

V

lS
, (30)

showing the appereance of a “volumetric component” for
the entropy modulated by the running scale, in addition to
the usual area term, S0.

Concerning the energy, defined in our approach as

E =
∫

da

2 G(a)
, (31)

we get, for the clase of black holes here considered,

E = E0 + a2

4 G0 lS
, (32)

2 Equation (25) can also de obtained from 	t t t = 	t r r in order to
have consistency with the Schwarzschild ansantz given by Eq. (9).

where E0 = a/2G0 is the non-running energy which,
for example, coincides with the Misner–Sharp mass for a
Schwarzschild black hole. Even more, by the Smarr law we
have E0 = 2 T S0 and, therefore, the corrected energy sat-
isfies an extended Smarr-like law as

E = 2
(
T + TlS

)
S0, (33)

where we have defined TlS = 1
8πlS

(note its similarity with
the Hagedorn temperature of strings).

5 Comparison with other approaches

As commented in the Introduction, there have been some dis-
cussion on the possibility that both f (R) and scalar–tensor
theories were described by non-equilibrium or equilibrium
thermodynamics [10,14,15]. Specifically, in spherical sym-
metry, the radial gravitational equation in f (R) gravity can
be written, using our notation, as [10]

B

4π
d

(
πa2F(R)

G0

)
− F(R)

da

2G0

= T r
r (a)4πa2da + 1

4G0

(
f (R) − RF(R)

)
a2da,

(34)

where F(R) ≡ d f (R)
dR and R has to be understood as evaluated

at the horizon, R(a). Then, Eq. (34) can be written as

dE = T

(
dS + d S̄

)
− PdV, (35)

where, in analogy with our case, dE = F(R)da
2G0

and S =
F(R)A

4G0
are the energy change and entropy, respectively, P =

T r
r (a) is the corresponding pressure due to matter terms

(note that, in Ref. [10], the cosmological constant is not taken
into account) and B

4π
is the Hawking Temperature. The new

term, which is not present in the scale-dependent setting, is
the entropy production, given by

d S̄ = T
A

4G0

f (R) − RF(R)

B
da. (36)

Note that the third term of the rhs of Eq. (12) goes with
the temperature, which permits to include it into the TdS
term. On the contrary, the second term of the rhs of Eq. (34)
does not have it and, therefore, an entropy production has
to be included. Interestingly, the authors of Ref. [10] argued
that it is reasonable to redefine the energy associated with
the black hole horizon as d Ē = dE + f (R)−RF(R)

4G0
a2da

instead of introducing an entropy-production term, which is
in agreement with the ideas presented in [16] regarding a
redefinition of the energy which feels the heat flux in order
to mantain equilibrium thermodynamics.
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If this last point of view is adopted, we note that we have
complete analog definitions with that of f (R), i.e.:

E =
∫

F(R)

2G0
da ↔

∫
da

2G(r)
(37)

S = F(R)A

4G0
↔ A

4G(a)
. (38)

Therefore, scale-dependent and f (R)gravities are equivalent
at this level when F(R) is identified with G0

G(r) .3 At this point,
a number of points are in order. First; note that the value
of G(r) given by Eq. (26) is a consequence of the ansatz
given by Eq. (9). In fact, G(r) is independent of the metric
for this specific ansantz, as Eq. (25) shows. Therefore, G(r)
can not be considered a function of R, since R explicitly
depends on the metric choice. Second; in this sense, F(R) =
G0
G(r) = constant, and, therefore, f (R)−RF(R) = 0 without
having f (R) = R. Third; under this equivalence, now it is
easy to show that scale-dependent gravity can be understood
as a consequence of equilibrium thermodynamics, withouth
having to add neither entropy production nor modificacions
to the energy, due to the vanishing of the term f (R)−RF(R)

(the underlying theory is not general relativity but a special
case of f (R,�) theories with f (R,�) = � R = G(x)−1R,
where � is taken to be non-dynamical, i.e., there are not
kinetic terms in the action). These facts make our findings
to be in complete agreement with general claims concerning
scalar–tensor and f (R) theories [16].

6 Conclusions

In this work we have derived a thermodynamic formulation
for scale-dependent gravity in spherically symmetric black
holes. After obtaining appropriate generalizations for both
the entropy and energy of scale-dependent black holes, we
have shown that no entropy production terms are needed in
order to describe the theory, in complete agreement with both
scalar–tensor and f (R) theories.
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