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Abstract The asymptotic properties of conformally static
metrics in Einstein—@ther theory with a perfect fluid source
and a scalar field are analyzed. In case of perfect fluid,
some relativistic solutions are recovered such as: Minkowski
spacetime, the Kasner solution, a flat FLRW space and static
orbits depending on the barotropic parameter y. To ana-
lyze locally the behavior of the solutions near a sonic line
v2 = y — 1, where v is the tilt, a new “shock” variable is used.
Two new equilibrium points on this line are found. These
points do not exist in General Relativity when 1 < y < 2.
In the limiting case of General Relativity these points rep-
resent stiff solutions with extreme tilt. Lines of equilibrium
points associated with a change of causality of the homo-
thetic vector field are found in the limit of general relativ-
ity. For non-homogeneous scalar field ¢ (¢, x) with poten-
tial V(¢ (¢, x)) the symmetry of the conformally static met-
ric restrict the scalar fields to be considered to ¢ (¢, x) =
V() = A V(@) = e XU ), UW) = Upe™ 7 -
An exhaustive analysis (analytical or numerical) of the sta-
bility conditions is provided for some particular cases.

1 Introduction

According to the measurements from type Ia supernovae [1]
the Universe is experiencing an accelerated expansion due
to an unknown “Dark Energy” source, that was introduced
in the standard cosmological model to account for 68% of
the energy content of the universe [2]. Measurements of
anisotropies of the cosmic microwave background (CMB)
from experiments including the WMAP [3] and Planck [4]
satellites, have provided strong support for the standard
ACDM model of cosmology where A is a cosmological con-
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stant. However, there are some tensions with local measure-
ments of the Hubble expansion rate from supernovae Ia [5]
and other cosmological data [6], that settled this model under
question mark. A very well-known issue of ACDM model
is that the energy density comprised in a cosmological con-
stant A has to be fine-tuned by ~ 55 orders of magnitude
to account for the present acceleration [7]. Therefore, vari-
ous attempts to explain the cosmic acceleration within gen-
eral relativity (GR) were proposed as alternatives to ACDM,
as well as several alternatives that abandon GR and mod-
ify the Einstein—Hilbert action. Within the last group, a very
interesting alternative is the so-called Einstein—ather theory,
which is an effective field theory in which the Hilbert action
is modified by the introduction of a dynamical timelike unit
vector field, u“, the ether, which is covariantly coupled, at
Lagrangian level, up to the second order derivatives of the
spacetime metric gqp, excluding total derivatives. The uni-
tarity is imposed by introducing a Lagrangian multiplier in
action. This theory has some features that make it of interest
to mathematicians, physics, and to cosmologists. These are:
(a) it violates the Lorentz invariance, but preserves locality
and covariance; (b) it has some imprints on the inflation-
ary scenery; (c) it satisfies conditions for linearized stabil-
ity, positive energy, and vanishing of preferred-frame post-
Newtonian parameters; (d) for generic values of the coupling
constants, the @ther and the metric isotropizes (although for
large angles or large angle derivatives of the tilt angle there
is a runaway behavior in which the anisotropies increases
with time, and some singularities may appear); and (e) every
hypersurface-orthogonal Einstein @ther solution is a Hotava
solution, etc., see, e.g., [8-55].

Einstein—@ther theory has applications in various
anisotropic and inhomogeneous contexts. In [16] it was
implemented the 1+3 orthonormal frame formalism, adopt-
ing the comoving @ther gauge, to obtain evolution equa-
tions in normalized variables, which are suitable for numer-
ical calculations and for phase space analyzes. Spatially
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homogeneous Kantowski-Sachs models were studied. e.g.,
in [9,16,42,54,56]. In [9] the scalar field interacts to both
the ®ther field expansion and shear scalars through the poten-
tial. The stability against spatially curvature and anisotropic
perturbations was studied. The late-time attractor of the
theory is the vacuum de-Sitter expansionary phase. Static
metrics for non-tilted a perfect fluid with linear and poly-
tropic equations of state, and with a scalar field with expo-
nential or monomial potentials, were studied in [15,16,43].
Other solutions were examined elsewhere: vacuum Bianchi
Type V [50]; Friedmann—-Lemaitre—Robertson—Walker met-
ric (FLRW) [47,49]; a Locally Rotationally Symmetric
(LRS) Bianchi Type III [49]; modified scalar field cosmol-
ogy with interactions between the scalar field and the @ther
[46] based on Einstein—zather theories by [17,40]. An empha-
sis was set on the issue of the existence of solutions of the
reduced equations, the classification of the singularities, and
the stability analysis.

These theories are different from scalar—tensor theories,
and they are similar to the particle creation, bulk viscosity,
and varying vacuum theories, or varying-mass dark matter
particles theories [57-64]. In [65] the Einstein—ather theory
which incorporates a scalar field nonminimally coupled to
the @ther through an effective coupling B (¢) = 6Bg¢p* [40]
was studied. It was found there are five families of scalar
field potentials on the form V4 (¢) = VP + Vi¢", where
p, r are specific constants, which lead to Liouville—integrable
systems, and which admit conservation laws quadratic in
the momenta. Following an analogous strategy in [66] were
determined exact and analytic solutions of the gravitational
field equations in Einstein—ather scalar model field with a
Bianchi I background space with nonlinear interactions of
the scalar field with the @ther field. Conservation laws for
the field equations for specific forms of the unknown func-
tions such that the field equations are Liouville integrable
were derived. Furthermore, the evolution of the anisotropies
was studied by determining the equilibrium points and ana-
lyzing their stability.

This paper is the third of a series of works devoted to
Einstein—ather theory with perfect fluids and scalar fields.
In paper I [15], the field equations in the Einstein—ather the-
ory for static spherically symmetric spacetimes and a perfect
fluid source, and subsequently with the addition of a scalar
field (with exponential self-interacting potential) were inves-
tigated. Appropriate dynamical variables which facilitate the
study of the equilibrium points of the resulting dynamical
system were introduced. In addition, the dynamics at infinity
was discussed. The qualitative properties of the solutions are
of particular interest, as well as their asymptotic behavior
and whether they admit singularities. A number of new solu-
tions were presented. Continuing this line, in paper II [43]
the existence of analytic solutions for the field equations in
the Einstein—ather theory for a static spherically symmet-
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ric spacetime was investigated. A detailed dynamical system
analysis of the field equations was provided.

This paper is focused on the study of timelike self-similar
(TSS) spherically symmetric models with perfect fluid and/or
scalar fields, using the covariant decomposition 143 [16,67—
69]. This formalism is well-suited for performing qualitative
and numerical analysis. TSS spherically symmetric models
are characterized by a 4-dimensional symmetric homothetic
group Hy acting multiply transitively on 3-dimensional time-
like surfaces.

This paper is organized as follows. In Sect. 2 the 1 4 3
orthonormal frame formalism is summarized. In Sect. 3 the
action for the Einstein—&ther Theory is presented, following
[13,27,31]. In Sect. 4, TSS spherically symmetric models
with perfect fluid are studied using the covariant decompo-
sition 1 4 3 [16,69], following the approach given in [67].
In Sect. 5 different stability conditions of the equilibrium
solutions of dynamical systems will be established. Numer-
ical methods will be used to support and validate the ana-
lytical results. In Sect. 6 a non-homogeneous scalar field
¢ (t, x) with potencial V(¢ (¢, x)) which satisfies the sym-
metry of the conformally static metric [70] is studied. The
f-normalization procedure will be implemented in Sect. 7.
An exhaustive analysis (analytical or numerical) of the stabil-
ity conditions is provided for some particular cases. Section 8
is devoted to conclusions.

2 The 1 + 3 orthonormal frame formalism

In the 1 4+ 3 orthonormal frame formalism [16,68,69] the
metric can be expressed as:

ds®> = —=N2dt*> + (e ) 72dx? + (e2°) 72 (d®? +sin® 9d¢?),
()

where N, e;! and 52 are functions of 7 and x.
The killing vector fields are given by [71]:
0y, €OS@dy—singcot}dy,, sin@dy+cosgcotBdy. (2)

The frame vectors written in coordinate form are:

e0=N"19, e =e'd, e=edy, e3= 6333<p-

3
where 633 = e22/ sin .
Therefore, the kinematic variables are restricted by:
oup = diag(—204,04,04), wop =0,
I"tOt = (I;llv()’ 0)7 (4)
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where
iy =e;InN. (@)

The spatial commutators are given by:

0 Onys
aa:(al,az,O), l’laﬂ: 00O . (6)
ni3 00
where
2 1 2
ar =ejlney”, ap)=n;3= —582 cot . (7)

There are restrictions over the matter components:

do = (q1,0,0), 7ap =diag(—2my, w4, Ty). 8)

The frame rotation £244 is zero. The cosmological constant
is chosen to be 0 for simplicity.
The quantity n13 only appears in the equations together

with epng3 through the Gauss spatial curvature of the 2-
spheres:

K = 2(e2 — 2n13)n13, )
which is simplified to:

2K = (e22). (10)
Hence, the dependence on ¢ does not appears explicitly in
the equations. The quantity >K is used instead of e>? to write
the field equations. The spatial curvatures simplify to:
3Sup = diag(—235,,35,,38,), (11a)

with 3R y 35, defined by:
3 2 2 3 1 12
R =4eja; —6a; +2°K, S+=—§e1a1+§ K. (11b)

The components of the Weyl curvature are simplified to:

Eup =diag(—2E4, Ey, Ey), Hup =0, (12)
with E given by:

2.3 1
E+:HU+ +U++ S+——7T+. (13)

2

Using the following simplifications,

2K=K, uy=u, a =a,

the essential variables are:
N, ¢!, K, H, o+, a, MU, qi, p, w4, (14)
and the auxiliary variables are

3K, 38, . (15)

The field equations are written as:

806‘11 =(—H +20+)€11
eK = —-2(H +04)K

(16a)
(16b)

1 ) o1
eoH = —H? =202 + (e1 +ii — 2a)i — 21+ 3p)

(16¢)
1

eory = —3Hoy — (e + i+a)—3S. +n.  (16d)
eoa = (—H + 204 )a — (e; +u)(H +oy) (16e)

eou = —3H(u+ p) — (e1 + 2u — 2a)q) — 6047y
(16f)

eoq1 = (—4H +201)q1 —e1p — (u+ pi

+2(e1 +u —3a)my (16g)

The restrictions are the Gauss and Codazzi equations together
with the definition of a:

1
0=3H2+§3R—3o}r -, (17a)
0= —2e;(H +o04)+ 6aocy +q1, (17b)
0= (e —2a)K, (17¢)
where the spatial curvatures are given by:
3 2 3 1 1
R = 4eja — 6a” + 2K, S+=—§e1a+§K. (18a)

Afterwards, the lapse function N is provided specifying the
time gauge and, since there are not evolution equations for p
and 74, they should be specified by the fluid model through
equations of state for p and the transport equation for 7.

3 Einstein—zther gravity

The action for the Einstein—zather Theory is the most general
covariant functional involving partial derivatives of order at
most two (not including total derivatives) of the space-time
metric g,» and a vector field u“, called ather [13,27,31]
given by:

@ Springer
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1
S = v/d4x~/—g |:§R + L+ M (ucuc + 1) +$mi| ,
(19)

where:

Lo =Ky VauVpul, (20)
is the Einstein—ather lagrangian [31] with:

Ky =180 gca + c28985 4 ¢3898L + cauubgea.  (21)

That action contains the Einstein—Hilbert term %R, wherein:
R denotes the Ricci scalar, g, denotes the metric tensor, and
K9 ., is a tensor of four indices corresponding to the kinetic
terms of the @ther. It contains four dimensionless constants
¢i and M is the Lagrange multiplier that forces unitarity of
the @ther vector, u“u,. = —1. That is, u.. is a timelike vector
[27]. The signature of the metric g,p is (—+++). Physical
units are such that ¢ = 1,k2 = 871G = 1, where ¢ is the
speed of light.

The field equations of the Einstein—zther theory accounts
for [17,36]:

— The effects of anisotropy and inhomogeneities (e.g., cur-
vature) on the geometry of the spherically symmetric
models under consideration.

— The contribution from the energy—momentum tensor 7%
of the ®ther field, which depends on the dimensionless
parameters ¢;, i = 1, ...4.In General Relativity all ¢; =
0, hence the Einstein’s field equations are generalized.
To study the effects of matter, the values corresponding
to General Relativity, or values close to them, can be
substituted.

— When studying the phenomenology of theories within a
preferred framework, and particularly, in the isotropic
and spatially homogeneous universe, it is generally
assumed the @ther field will be aligned with the cosmic
frame (natural resting frame preferred by the CMB) and
therefore is related to the expansion rate of the universe.

— In principle, in spherically symmetric models the pre-
ferred frame determined by the @ther can be different
(thatis, tilted) to the CMB rest frame. This adds additional
terms to the energy—momentum tensor of the @ther 775,
for example, an hyperbolic angle of tilt, v, which mea-
sures the @ther boost with respect the CMB rest frame
[14,40]. In homogeneous but spatially anisotropic mod-
els, it is expected that the hyperbolic inclination angle v
will decay along with its derivative as t — +o00 [72,73].

All spherically symmetric @ther fields are hypersurface—

orthogonal. Therefore, all spherically symmetric solutions
of the @ther theory will also be solutions in the infrared
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limit of Hotava gravity. The opposite is not true in gen-
eral, but it is true for solutions with spherical symmetry with
regular center [31]. When spherical symmetry is imposed,
the @ther is hypersurface-orthogonal, and it has zero twist.
Therefore, without loss of generality it is possible to make
¢4 zero [31]. After redefining parameters to remove c4, the
parameter space is 3-dimensional. The ¢; contributes to the
effective Newtonian gravitational constant G. Then a param-
eter ¢; can be specified to make 87 G = 1. The remain-
ing two parameters characterize two non-trivial physical
quantities, for example, the Schwarzschild mass and radius
of a matter distribution. The other restrictions imposed on
the ¢; are summarized in [31] and in equations 43—46 in
[10].

The field equations obtained by variation of (19) with
respect to g2, u®, and M are respectively given by [26]:

Gap = TLOT (22a)
Muy, =V, J% + cqiig Vpu® (22b)
uu, = —1, (22¢)

where Gy, is the Einstein tensor of the metric gqp, 7,597 is

the total energy—momentum tensor, TaTbOT =T5 + Th",
where 77" is the total contribution of matter. 7;* will be
omitted for the moment (and will be added later for models
with perfect fluid and with scalar field), starting with vacuum
case (£, = 0). The quantities J%j, 1, and the @ther energy—

& M .
momentum tensor 77 are given by:

J ==K, Vo (23a)
e = u’Vpug, (23b)
TE = 2c1(VquVpite — VugVeup)
- 2[Vc(u(a Jcb)) + VC(MCJ(ab)) - VC(M(ajb)c)]
— 2cqttqup + 2Mugup + gup-Le . (23¢)

Taking the contraction of (22b) with u” and with the induced

metric h?¢ := g’ + uPu® the following equations are
obtained:

M = —ubV,Jf — cqiigit®, (24a)
0 = hPV,J¢ + cahi, Vipu®. (24b)

Equation (24a) is used as the definition of the Lagrange mul-
tiplier. The second system of equations give compatibility
conditions that the @ther vector must satisfy.
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4 Timelike self-similar spherically symmetric perfect
fluid models

In the diagonal homothetic formulation, the line element can
be written in diagonal form, where one of the coordinates
adapts to the homothetic symmetry [74]:

di? = ¥ds? = eZ'[ — b7 2(0)df? + dx?

+ by (x)(dD? + sinz(z?)dgoz)]. (25)

For the conformally static metric with line element given by
(25), the following scalars can be defined:

V3 V3
QZT(ZO[_'B)’ U=T(—a+25),
o= 357), B = 351, bl_1 = eﬁ0_2ﬂ+, 172_l = eﬂo+’3+,

(26)

where . denotes the derivative with respect to the spatial
variable x. The quantities « and 8 are respectively the expan-
sion scalar and the shear scalar of the normal congruence
to the symmetry surface of the static universe (/// , dsz),
conformally related to the physical spacetime (.7, d5?)
through the homothetic factor ¢?’. A non-tilted wther vec-
toru = e~ b1 9, is considered.

Assuming that the matter content of the physical universe
(., d5?) is a perfect fluid, that is specified by a 4-velocity
vector field v given by v = e "(—=b19, + vdy), I =
(1— vz)_%, where v is the tilt parameter, which is a funtion
of x, with —1 < v < 1. The equation of state parameter
p = ( —Du, 1 <y < 2is chosen for the perfect
fluid (unless otherwise stated). By convenience a function

. e_zt((y—l)v2+l)u .

that depends only on x: p; = ————>——— is defined,
which represents the energy density of the fluid measured
by an observer associated with the homothetic symmetry.
On the other hand, if the content of matter is that of a non-
homogeneous scalar field, ¢ (¢, x), with its self-interaction
potential V (¢ (¢, x)), these must respect the homothecy of the
conformally static symmetry associated with the line element
(25), so they have to be of the form [70]: ¢ (¢, x) = ¥ (x) —
A, V(p(t,x)) = e_Z’U(w(x)), U) = er_%, where
by convenience it is assumed A > 0, such that for v > 0,
U — 0 as A — 0, which restrict the kind of scalar field
potentials to be considered.

Using the metric (25), the lagrangian (20) becomes:

1
% = ge_Zt ((q — )0 — 9b2(c1 + 3 + C3)) QD

The Lagrange multiplier (24a) is calculated as:

M = =3¢ b3 (ci + 2 + ¢3)

1 _,, c3e G
— —e “o(o(—c1 +c3+2ca) + 2c30) —
3 73
(28)
The ®ther Eq. (24b) is reduced to:
e 'bio(2c1 +3c2 +¢3 —cq) = 0. (29)

The trace of the intrinsic Ricci 3-curvature of the spatial 3-
surfaces orthogonal to u is given by

Re—le (—3b§ +2V3(0+5) +306 + o)2> . (30)

3

Now the @ther parameters are re-defined as [35]: ¢y =
cat(cr1+e3)/3, co =ci1+c¢3, o =c1—3, ¢g = ca—cy,
corresponding to terms in the Lagrangian relative to expan-
sion, shear scalar, acceleration and twist of the @ther. To
impose the condition of the @ther (24b) is taken ¢, = 3¢y,
(2c1 + 3c2 4 ¢3 — c4) = 0. Therefore, the parameter space
is reduced to a constant, cg.

The ®ther energy—moment tensor can be expressed by:

w o —q 0 0
@b _ —u|—qpr—2r 0 0 |
Te=e"10 0o p+xr 0 | G1)
0 0 0 p+m

i=co (96} 400 — 235 —30%) , p = key (90} — 0?),
g = —2/3bjcyo, 1 = —%0902 are the effective energy
density, isotropic pressure, energy flux, and anisotropic pres-
sure of the @ther, measured by an observer associated with
the homothetic symmetry in the static universe (., ds2);
therefore, depending only on x.

The matter energy—momentum tensor is given by:

b
Tma
YUl
M ((yfl)v2)+1 0 0
YUl v 4y —1)u
o (y=Dv2+1  (y—Do2+l 0 0
=e 0 0 =D =D 0
(y—Dv2+1
0 0 0 =D =D

(y—Dv2+1

32)

Using the Einstein equations, the Jacobi identities and the
contracted Bianchi identities, a system of ordinary differ-
ential equations for the frame vectors and the comutation
functions, and an extra equation for the @ther are obtained.
The comoving gauge is chosen for @ther; leaving as a degree
of freedom a reparametrization of the spatial variables and
the temporal variable.

@ Springer
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The final equations are:
Propagation equations:

~ 2C0 +0) By’
b=V -2 - . (33
2 /3 e R
3u; (2 -3 —2)n?
5__0@to) V-t -2
V3 26, ((y — Dv? + 1)
~ b]O’
b = —, (33¢)
VG
~ by (6
by = _M, (33d)
73
CE Ul R (A Y
V= v — o
ﬁy(l—y+v2)y v Y
+/3b; ((y — DGy -2+ (y — 2)v2) } (33¢)
Equation for ;:
((y = D> +1) 2, 2 )
My = m(cz <3b1 +o )+3b2—0 ),
34
Auxiliary equation:
ﬁ _ 1223
T B -2 1) (- De+1)
x {y (a F(y = Do*20 +0) — 2 (@dy — 6)0 + ya))
+2f3b1v((7—3y)y+(y(2y —5)+4)v2—4> } (35)
Restriction:
2Cyb —Dvr+1
2bio ((y — Dv* +1) _o. (36)

Y v —
t «/§

To simplify the notation the following parameters are intro-
duced C; =1 —2c¢c5,Cr = 14 3cp, C3 = 1 4 ¢4, such that
by choosing C; = 1, C; = 1, C3 = 1, General Relativity is
recovered. The condition ¢, = 3¢y, implies C» = C3, and
the parameter C| does not appears explicitly in the equations,
only on the definition of the Lagrange multiplier.

For an ideal gas with y = 1 the matter energy—momentum
tensor is simplified to:

me —mv 00
2
mb _ 2t | —Hv o= 00
Ma=e 0o 0 00] 37
0 0 00

@ Springer

where v measures the inclination of the fluid relative to the
4-velocity of the ®ther. The equations reduce to

_ (2Cy0 +0)
6= 32— 22229 3, (382)
2 ﬁ Mt
3 (V2 + 1 20
oo Y3u(2Hl) o +a9) (38b)
2C, V3

~ blo
b =22, (38¢)
1 \/g

_ byo
=0t (38d)

V3
_ vi(o —20)—0o " 38
Mt = Mg T— ], (38e)
2

S R b))

5= b <v 1) N (38f)
with restrictions

2Cb10

MU — = 0, (393)

t \/5

—-C (3b% + 02) — 362 + 62 — 3p,0% = 0. (39b)

C> = 1 needs to be set to recover General Relativity . For
this reason is natural to consider C; = £'(1), meanwhile it

(yvz—v2+l) .
e 2 0is

imposed. Thatis,0 <y < 1,1 —y < v? <l,orl <y<
2,—1 < v < 1. Due to the usual energy condition for the
fluid, which is expressed as 1 < y < 2, the second condition
is satisfied. Together with the energy condition wu; > 0, lead
to

can be assumed Cy > 0. The restriction

¢ (31)% + 02) +3b2 < 62 (40)

By hypothesis C, > 0, 67 is the dominant quantity, and the
terms on the left hand side of the above inequality are both
non-negative. This suggests to considering 6-normalized
equations.

5 6-normalized equations

In this section four specific models will be studied by using
the following normalized variables,

V3b
0

_ 3b; 3

= 2

. A= , K

o
0
and the radial coordinate

_df _3F

I
f_dn' 2
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A parameter r is defined in analogous way to the “Hubble
gradient parameter” r, by

6 =—rb?, (42)

T Q2CE +1) Yy 20 K
' 73 Ao —very) A @

The normalized equations of interest are:
Propagation equations:

2’:—2(2—~/§r+2)
2 (<37 +(y —20% +2)

, (442)
2C; ((y — Dv? + 1)
A=A (2 +3r)., (44b)
K'=2K (-2 +3r - 1), (44c)
2
, (v -1)
= v =) 42y -2

v y(y_vz_l){yv(y vy —2)

+A[(y — DGy —2) + (v —2)v2]}. (44d)
Equation for £2;:

024+ 1)1 —Cr X% — A2 —K
P ) - 2 ). us)
y+ve—1
Auxiliary equation:
’r_ 2

$ = 2/3r g2 + (y=v2=1)(yv2—0v2+1)

X {y2+(yf 1)y(2+2)v47yv2(y2+4y —6)

+ 2Av[(y(2y —S 4t —(y — DGy — 4)”, (46)
Restriction:
Y20 —2AC> S ((y — 4 1) —0. (47)

It is easily verified that the previous equations are invariant
under the discrete transformation

(X,AK,v) - (¥, —-A, K, —v). (48)

Therefore, it is enough to analyze the region A > 0.

Assuming v?> # y — 1, and substituting the expressions
(43) and (45) the system (44) is reduced to:

, 1

T 20 (y+02-1)
x {A2C2 (—3y 102y +2yCZ —2) + 2)
+K(=3y =2(y - DX
2y 42y — 1D E —2) + 2)

+ (c222 - 1) (=3y —4(y — )2 %

+y - 2P Q20T + 1)+2) } (492)
A=A
B y+0v2—1
x {uz (22(@2 +h—y (C2 (A2 + 22) - 1))
+2(y = DZ(C X + 1) — (y — DK (vzfl) } (49b)
o 2K
B y+0v2—1
x {vz (—c —2yA 4y — (y — 2032 1)
T -1 (2c222 - 1) —(y - DK <v2 - 1) } (49¢)

/ (u2—1) (A (3y2—5y+(y—2)u2+2)+yu(y(2+2)—2))
o y(y—v2-1) '

(49d)

In particular, four specific models will be studied, these
are: models with extreme tilt (58); presureless perfect fluid
(72); the reduced system (77) in the invariant set A = v =
0; and the general system (75). The case v> = y — 1 will
be studied in Sect. 5.1. The invariant sets v = +1 will be
analyzed in Sect. 5.2. In Sect. 5.3 are calculated invariant
manifolds of Pg using analytical tools. Section 5.4 is devoted
to the study of the ideal gas (y = 1). The general case v # 0
corresponding to tilted fluid will be studied in Sect. 5.5. The
equilibrium points with v = 0, A = 0 will be studied in
Sect. 5.6. In Sect. 5.7 the sinks and sources for the model
with perfect fluid are summarized. Finally, in Sect. 5.8 results
will be summarized and the relation with previous results in
the literature will be discussed.

Noticing that the gradient of the restriction (47) is zero at
the equilibrium points: (¥, A, K, v) = (0,0, 1,0), (0,0, 1,
+1), the stability analysis of these points will be performed
conserving the four eigenvalues due to the restriction being
degenerated at these equilibrium points. The equilibrium
point N1 : (X, A, K,v) = (0,0,1,0) has eigenvalues
{—2, —1, 1, 2}, so, it is a hyperbolic saddle. The equilibrium
points N2 3 : (X, A, K, v) = (0,0, 1, £1) have eigenvalues
{O, -1, 1, % + 4}, so, they are non-hyperbolic saddles.

Additionally, system (75) admits the equilibrium points
M*: (2, A, K, v) = (0,1,0, f(y)), £, =0,

@ Springer



1192 Page 8 of 41

Eur. Phys. J. C (2020) 80:1192

Fig. 1 Real parts of the
eigenvalues of the equilibrium 20t
points M* for C, = 1

-20} f—\ ] s
—40} | | | ‘ | 1o}

1.0 12 14 16

Y

(a) M*

y=DyE(/@-D((y—Dy2+2-y)3y-2))

existing for C, = 1. The eigenvalues of M are:

1
-2, 8+ (—4 —A
{ 2=l ty) (y @+ (=4+y)y —Aly)+

4(=14+ A1),
1
2(=14+p)y
V(E1T+) (4C2+A)+y @S+ AY)+
y (=28 +6A(y) +y
29+ y(=11+42y) =2A())))) .

(=2 - AW)+y O6—y@B+y)+AWY)+

————— Q2+ AW)-y 6-y(3 A
2(_1+y)y( +AY) -y 6-yG+y)+A)+

V(~14+)(—4Q+A)+y @GS+ Ay) +
¥ (=28 + 6A(y)+

Yy 294 y(=11+2y) =24()))))) }

The eigenvalues of M~ are:

1
-2, —4(14+ A
{ 21ty AT A+

y @+ (=4+y)y+A®WY))), (=2+ A(y)—

2(=1+»)y
y(=6+yGB+y)+Aly)+
VET+H) G2+ A) +y (=4 (=5 + A@y) +

Y (=28 —6A(y) +y 9+ y(=11+2y)+2A()))))),
T3ty C-A)+y (6+yGB+y)+AWy)+
V(ET+y) @24+ A) +y (4 (=5+ Ay) +

Y (=28 — 6A(y)+

Yy 29 +y(=11+2y) +24())))) }

where A(y) = /(=1 +Y)(—4+y @+ (=4 + y)y)).

@ Springer
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(b) M-

InFig. 1 the real parts of the eigenvalues of the equilibrium
points M* for C; = 1 are depicted, showing in general that
it is a hyperbolic saddle. For y = g, the eigenvalues of M~
are {—2, 0, 0, —4}, so, it is non-hyperbolic.

5.1 Surface of non-extendibility of solutions

For y > 1, v> = y — 1 represents a surface of non-
extendibility of the solutions, and it is called sonic surface.
The curve parametrized by X,

SLy :A:—%, v:a\/ﬁ, & ==+l1,
is called sonic line. The solutions diverge in a finite time
when the solutions approach the sonic surface v> = y — 1.
The only way it can be passed through the sonic surface
is when the numerator of the Eq. (44d) also vanishes, this is
through the sonic line SL . In SL both the denominator and
the numerator of (44d) are zero. This indicates the presence of
a singularity of the system (44). As a difference with General

(50)

2
Relativity, for 1 <y <2and C; = 4(]/VT)2 the system (75)
admits the following equilibrium points:

P2 VR _ _ =)y
SLi: ¥ ="E=v=y -1 A=-E=r0=,

SLyt £ =20y = -y =T, A= ERD
which lie on the sonic line. These points do not exist in Gen-
eral Relativity when 1 < y < 2. Wheny = 2,C; = 1
these points exist, and since y = 2 the fluid behaves like
stiff matter. Additionally, if y = 2, C, = 1, these points
correspond to models with extreme tilt (v = ¢), SL; : ¥ =
1,A= -2, v=1,and SLy : ¥ = —-1,A =0,v = —1.
On the sonic surface the inequality C>(A% + ¥?) < 1 must
be satisfied, which corresponds to K > 0, which imposes
additional conditions on the parameters. To analyze locally
the behavior of the solutions near this sonic line, the new
“shock” variable £ is introduced:

de 1

dy~ (y—D—v eh

that leads to the system
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dr ¥ (1-y+v?)
dg yv

{Azysz LA <3y 120y = DG E 4+ 03 (=(y +2(y — DG X —2)) — 2)

+yv (1 —0222) } (52a)
dA A (—y +v2+1) (yv (1 — A2C2) + 22 (A(y — DG (V2 — 1) 4+ yv) + yC2 Z%v) (52)
dg yv ’
dv (V=1 (ABY> =5y + @ —2v+2) + yv(y (T +2) —2)) 520

dg ~ y

The new variable is not monotonic since (y — 1) — v?
can change the sign, so the system is not suitable to do qual-
itative/asymptotic analysis of the system since it does not
represent a dynamical system. However, the system is suit-
able for numerical integration in a neighborhood of the sonic
line SL+, and for the local stability analysis of SLy at the
perturbative level. SL4 can be parametrized by:

(W3 +1) (Zo+ (Zo +2)13)
4v8

> =X (53)

y=v%+1,A=—

’

Defining the equation of state parameter = y — 1, we

deduce that w = v(2).

Defining the following linear perturbations:

(V3 +1) (o + (Zo +2)v3)
4v8

by =X — X, (54)

Sy =v—1g, 64 =A+

’

the evolution equations of the perturbations are given by:

dsy _ [ To ((C2 + 20§ +2(C, — 203 + C; —2)
e "

21)()

N 22 ((5C2 + Du§ — (C2 +3)vg + 3C2 — 5)v3 + C2 — 1)

3
PA

dé 203

v%—f—l

Cr 353 (<3vd + 203 + 1)’ ssa)
8v8 '
2
asa_ | (0 +1) (C2 (s +1)" - 403) %0 (53 + 1) (11C20 + (C2 — 2008 + OC — 413 +3C2)
de " 4v(2) 8v3
52 (03 +1) (19C208 — 4(Ca + 4§ 4+ 2(Ca — 8)vé + 12C203 +3C2)  C253 (306 + vt — 303 — 1)
16v8 32“3 ’
(55b)
2
50 (02 — 1) (02 + 1)2 vo (v3 — 1) (48403 + 85 (V3 +1)
da”:&, (US‘F o(vi—1) (v +1) _1>+ 0 ( 0 (v5 ) (55¢)

The eigenvalues of the equilibrium point (§x, 84, 8y) =
(0,0,0) are A; = 0 and the roots A, y A3 of the polyno-
mial:
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4 2
PGY = 324 (v = 1) (Zo+ (0 +2%5) _ (vg - 1) V2 <C2 (v% + 1)2 - 41)3)

2
2v;

~ % <v§ - 1) ((502 — g — (C2 4+ 9w +BCa+ g + C2 + 1)

53 (v = 1) (—Ca (=3v8 + 203 + 1) = 1203 +2 (v + 6) 0§ - 2)

+ , 56
41)3 (56)
say, has the tangent vector at the point (§x, 84, 8,) = (0,0, 0):
2
d v+
2 T (2(Z0), 8a(Z0), 8,(Z0)) = (1, —("4—3),o>.
(—1 + v%) (1 + v(2)> % 1 0 Yo
Ay = 41% - 40 (]) 3 (1 " v%) The eigenvector associated with the zero eigenvalue:

X (21}63 + 2v65 — 2v(1)7 — 2v(1)9

2
+¢(W§QLMQQ+%)
x (23 + (=1 +4C)u0 2 + Z0)2 + 95)

+ 13 Zo(4 + (11 + 4C2) Zp) — 20
X (=24 (=84 X)Xy +4Cr(—2+ (=6 + Xp)Xp))

— 8 (68 1 Zo(152 + 5150) + 16C» (—2 T o+ 3):3))
F205 2+ Zo(12 + 2550 + 8Co (1 + 20)))))) ,

2
(—1 + v%) (1 + ug) o
2
4v0
1
e
41)(%3 (1 + v%)
2
v (i@ (-1 +8) (1+4)

x (23 + (=1 +4C2)ug° @ + Zo)2 +950) + v £

A3 =

—21)(1)3 — ZU(I)S + 2v(1)7 + 2vé9

X (4+ (11 4+ 4C2) Zp) — 20§(—2 + (=8 + Zp) Zo
+4Co (=2 4 (=6 + Z0) Z0)) — v (68 + Fo(152 + 51%0)
+16C, (—2+ %0 +32§))

F205 2 + Zp(12 + 2550 + 8Co (1 + ):0))))))

A zero eigenvalue appears because it is a curve of equilibrium
points. Also, the curve:

dp(Xp) = X — X, 84(X0)
(v +1) (Zo+ (Zo +2)13)

— A+
4v8

s

8y (Xo) = v — vo,

@ Springer

4v8
v=|-—=.,10],
(vo+1)

is parallel to the vector tangent to the curve at the point. Then
the curve is normally hyperbolic, so the stability can be stud-
ied considering only the signs of the nonzero eigenvalues.

For the stability analysis of the sonic line SL, the fol-
lowing invariant sets are identified:

(v3+1)(Zo+(Zo+2)v3)
4v3

2 2 2\2
2. Ko=0:1-C (23 4 Latl) (o (ot 20ug) ) —0,
0

1. Ag =0: =0,

both invariant sets determine curves in the space of param-
eters vg, X0, which, due to the fact that they are invariant
cannot be passed by orbits. For the discussion the following
existence conditions will be imposed:

(V3 +1) (o + (Zo +2)v3) o
4v8 B

(v + 1) (Fo+ o+ 2u)"\ _ |
16v8 -

b)

1—c2<2§+

In Fig. 2 stability regions for SL_ : vg = —/y — 1, A =
%41—)23)/2—2) are depicted in the space of parameters, for (a)
C, =05, (b)C, =1and (c) C, = 2and y € [1,2],
where vg = —+/y — 1, X denote the values of v, ¥ in a
fixed point at the sonic curve. The unshaded region repre-
sents the region where Ay < 0 or Ko < 0, which is the non-
physical region. The dotted red line corresponds to K = 0
and the thick blue line corresponds to A = 0. The region
represented in gray color corresponds to the region where
(6x,684,8,) = (0,0,0) is a hyperbolic saddle. The region
represented in black color corresponds to the region where
(6x,684,8,) = (0,0,0) is stable. Figure 2b reproduces the
stability results shown in Figure 1 of [67] (with the excep-
tion of a strip in the parameter space, represented in gray,
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0.0
-0.2
-0.4

W
-0.6

-0.8

-1.0

1.0

(@), =05

()G =2

Fig. 2 Stability regions for SL_ : v = —/y = 1, A = LYZEED=D) g5, 0, = 0.5,1,2y y € [1, 2], where vg = —/7 — 1, X denote the values

4D
of v, X' in an arbitrary fixed point on the sonic curve

where the point equilibrium (6x, §4,8y) = (0,0,0) is a

hyperbolic saddle, see upper right corner in Fig. 2b, whose

analysis was omitted in [67]). For SL the existence condi-

(V3+1)(Zo+(Zo+2)1})
4v3

outside the physical region and their analysis is omitted.

tion > 0, it is not verified, so they are

5.2 Invariant sets v = +1

In this section, the following invariant sets are studied v =
=41, which corresponds to extreme tilt. Then, from the equa-
tions (47), (45), and (43) it follow:

2, = £2AC, %, (57a)
K=1-CA%>—CX? F2A4C, %, (57b)
V3r=14 3+ C 3% — CrA% (57¢)

Afterwards, the following reduced 2-dimensional systems
are obtained:

Y =—_% (1 £2A - Cy(52 — A2)> , (58a)

A=A (1425 + (27 - AY), (58b)
where +1 denotes the sign of v.

The systems (58) are related through the simultaneous
change of A — —A, and the sign “ + ” by the sign “ — .
Therefore, without loss of generality, the positive sign ““ + " is
studied, with A > 0. Table 1 presents the qualitative analysis
of the equilibrium points of the systems (58) corresponding to
the cases of extreme tilt v = 1, —1, which are the following:

Nyj3: (X, A) = (0,0), v = £1, with eigenvalues {—1, 1}
is a hyperbolic saddle.
X P O . . .
Pra: (X,A) =( 7 0) , v = %1, with eigenvalues

{2 — %, 2} is:

(a) A hyperbolic saddle for 0 < C; < 1.
(b) Non-hyperbolic for C, = 1.
(c) A hyperbolic source for Cp > 1.

P34 (X, A) = (J%’ O), v = =1, with eigenvalues

2 i i
{2 + G 2} is a hyperbolic source for Cy > 0.
Ps: (X, A) = (0, #>, v = 1, with eigenvalues

VG
{—\/% -2, —2} is a hyperbolic sink for C; > 0.
Ps: (X, A) = (0, J%)’ v = —1, with eigenvalues
[ -2 —2is

(a) A hyperbolic saddle for 0 < C> < 1.
(b) Non-hyperbolic for C; = 1.
(c) A hyperbolic sink for C, > 1.

Py (X,A) = (—%, %) v = —1, with eigenvalues

(—VCT—1.VC, T} is

(a) A hyperbolic saddle for C; > 1.
(b) Non-hyperbolic for C, < 1.

Figure 3 shows some orbits of the system (58) with v =
1, —1, for different choices of parameters. The points
Ps, Pg, P; are included, where P; denotes the symmetric
points of the points P;. The dotted invariant line represents
H_ (resp. Hy) for C; = 1. The analytical results discussed
above are confirmed. Figure 4 shows some orbits of the sys-
tem (60) for different choices of parameters.

5.3 Invariant manifolds of Pg

Concerning the equilibrium point Pg withv = —1, the invari-
antline A — X — J% corresponds to its unstable manifold

for C» < 1. This line is stable for C» = 1, and for C, > 1
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Table 1 Qualitative analysis of the equilibrium points of the systems (58) corresponding to extreme tilt: v = 1, —1

Equil. points (X, A), (v) Eigenvalues Stability (K, $2¢)
Naj3 0,0), (£1) {—1,1} Hyperbolic saddle (1,0)
__L 2 i
Pia ( -+ 0) L (£1) {2 = 2} Hyperbolic saddle for 0 < C; < 1
Non-hyperbolic for C, = 1
Hyperbolic source for C; > 1 (0,0)
L 2 -
Py ( L 0) (£ { 242, 2} Hyperbolic source for C; > 0 (0,0)
L 2 5 _ ic si
Ps (0, m) () { Z -2 2} Hyperbolic sink for C» > 0 (0,0)
1 2 :
P (0, E) (=1 {ﬁ —2, —2} Hyperbolic saddle for 0 < C» < 1
Non-hyperbolic for C; = 1
Hyperbolic sink for C, > 1 0,0)
P, (-3.3). =D (VG =T} Hyperbolic saddle for C > 1
Non-hyperbolic C, <1 (1-c2. %)
C,=0.5v=1 Co=1,v=1 Cr=2,v=1
2" 2t

NNES )

N SNEES ek |
<_1 | \<1j?ﬂ@\\\\<1
B

-
T

o
e

-

\6'/’ 2@}

///,c |

———
&

A - axis
o

A -axis
o

A-axis
o

|
-

\

)

{
=N )N

7k |
) o)

/ i /:"/C"// \\\))
-2+ -2 -2t /
—‘2 —‘1 0 1 2 2 —‘1 0 1 2 —‘2 —‘1 0 1 2
2 - axis 2 - axis 2 - axis
@ () ®

Fig. 3 Some orbits of the systems (58) with v = 1, —1, for different parameter choices. The points Ps, Ps, P7 are included, where P; denotes the
symmetric points of the point P;. The dotted line represents H_ (resp. H_ = H; ) for C» =1
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Fig. 4 Some orbits of system (60) for different choices of the parameter C;

that line belongs to the stable 2-dimensional manifold of Pg.
Introducing the change of variables:

x=2, (59a)

1

y=A—-XY - ——,
VG2

(59b)

the following equations are obtained:

x’=X(—1+x2(1+u)2—(1+x+y+(x+y)u)2

1
2(x+y+——) ). 60a
(s 53) )
Y==yQ+y+ywd+y+yu+2x(1+mp), (60b)
where the following parameter is introduced:
p=yC—1, Co=u+17 (61)

The eigenvalues of Pg are {—%, —2}. For u > 0, ie.,
Cy > 1, the equilibrium point Pg is a hyperbolic sink in
the invariant set v = —1. For u < 0, i.e., C» < 1, the
equilibrium point Pg has an unstable manifold tangent to the
axis x. This unstable manifold of Pg can be expressed locally
by the graph:

{Ge,y) 1y =hx), |x] <6}, (62)

where A satisfies the initial value problem:

h2+ 1+ wh) (1 +2x(1+ 1) + (1 + ph)

1
+x(—1+x2(1+u)2+2(x+—+h)
1+u
—(1+x+h+,u,(x+h))2> W =0, (63)

h(©) =0, K (0)=0. (64)
The previous differential equation admits the first integral

—x(I 4+ wh? (1 +x +xp + (1 + w)h)

=Cy,
2+ A+ wh)
w 24+ u
=——— >0, = <0, —1<pu<0. (65
P T+ q T jz (65)

where C; is an integration constant. Imposing the condition
h(0) = 0, it is obtained C; = 0. Solving the resulting equa-
tion for & are obtained two solutions:

h(x) =0,
and
h(x) !
X)=—x— ——
I+u
The last solution is discarded since h'(x) = —1, which

implies that the tangential condition A’(0) = 0 is not ful-
filled. Then, the unstable solution is given locally by the triv-
ial solution:

{G,y) 1y =0,]x| <4}. (66)
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The dynamics on the invariant manifold is given by:

2 1
oo a1 -
w1

whose solution passing by x(0) = xp, is:

() = —5 _ , (68)

et (uxo +xo + 1) — (u+ Dxo

with —1 < p < 0. Finally, lim,_, o x(n) = 0. That is,
the solutions generically approaches the origin as n — —oo,
tending towards the past to Pg.

Figure 5 shows the 1-dimensional flow of (67) for —1 <
n < 0, where itis illustrated that the origin of the system (67)
is stable. Then, applying the Unstable Manifold Theorem, itis
confirmed that Pg is a hyperbolic saddle, as it was previously
commented in Table 1.

54 Idealgas y =1

For an ideal gas with y = 1 (pressureless fluid; dust) the
Eq. (38) and restrictions (39) become:

A% (V(1 —2C,2) +1)

> =
202
N (C22% = 1) 202202 + 02 +1) + K (2 +1)
2C2v2 ’
(69a)
A =—CA + AZ(C2X +2) + A, (69b)
K' =2C,K (22 _ AZ) , (69¢)
2
v —1)(Av— X
v = ( )( ), (69d)
v
where the expressions £2; and r given by:
1 —CA? - 3% - K
2, = 2 a 2 ’
v
1 - CA?+ 3%+ %
;= 2 + 3 + i (70)
V3
were used.
The restriction (47) is reduced to:
K = —CA? —2AC, v — G 5% + 1. (71)

@ Springer

This allows us to study the reduced 3-dimensional system:

Z(A(ACw +v? + 1) +)

= , (72a)
v

A =—CA + AZ(C2X +2) + A, (72b)

,_ (v? = 1) (Av — X) 720)

v

defined on the phase space:
{(2, Av) eR (A + 2 < 1,

C) <A2+2A2v+22) <1, vel[-1,00U(O, 1]}.
(73)

The equilibrium points of system (72) are the following:

N: (X, A,v) = (0,0, v) with eigenvalues {0, —1, 1}isa
non-hyperbolic saddle.
N2z (X, A,v) = (0,0, £1) with eigenvalues {—1, 1, 0}
are non-hyperbolic saddles. The points Nj, N> and
N3 are joined in a line called N.

. S S
P1,2 (25A5v)_< \/FZ’
{ 2 52

75 ﬁ,Z} are:

0, :I:l) with eigenvalues

(a) Hyperbolic sources for C, > 1.
(b) Hyperbolic saddles for C, < 1.
(c) Non-hyperbolic for C, = 1.

P34 (X, A 0) = (\/#sz, 0, :l:l) with eigenvalues

__2 2 ;
{ G 2+ 7 2} are hyperbolic saddles for C, >

0.
Ps: (5, A, v) = (0, 1) with eigenvalues

1
JC’

{E, 75 2, 2} is a hyperbolic saddle for
Cy > 0.
Pg: (X, A,v) = (O, J%’ —l) with eigenvalues
2 2 _ 92 _92ly
|~ -2 2}

(a) A hyperbolic sink for C; > 1.
(b) A hyperbolic saddle for C» < 1.
(c) Non-hyperbolic for C, = 1.

P (X,A,0) = (—%,%,—1) with eigenvalues

{O, im} is:

(a) A non-hyperbolic saddle for C; > 1.
(b) Non-hyperbolic with three zero eigenvalues for C, = 1.
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Fig. 6 Real parts of A; y = 1 Y= 1
corresponding to the . . - - - ———
equilibrium point Pg for C; > % - 1.5¢ -7 -
and y = 1, showing that in 05 "~ 1.0 =7
general it has saddle behavior ’ /,/
00 0.5',/
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(c) Non-hyperbolic with a zero eigenvalue and two purely
imaginary eigenvalues for 0 < C, < 1.

+/4C2—3 : :
P (X, A,v) = (-ﬁ, ZCCZZ , —\/4(/1273) with eigenval-

_ 1
ues {kA1, kAo, kA3}, where k = 3cTac, " and Ay, A

and A3 are the roots of the polynomial in A: P(A) =
—16(Cy — 1)2C3(4C, — )HM/2 — 4(C2 — DCI(BC —
7)(4Cr—3)3r+13. Figure 6 shows the real part A; (which
differs from the eigenvalues in an overall multiplicative
factor k) corresponding to the equilibrium point Pg for
Cyr > % and y = 1, showing that in general it has saddle
behavior.

Hiy: (X,A,v) = (X, —e(l+ Xp), &), e = %1, exists for
Cy = 1. The eigenvalues are {0, —4 X — 2}. These lines
of equilibrium points, which do not exist in Einstein—
ether theory (C2 # 1), are associated with a change of
causality of the homothetic vector field.

The stability criteria of the equilibrium points of the sys-
tem (72) for pressureless fluid (y = 1) and v # 0 are sum-
marized in Table 2.

5.5 General case v # 0

In the general case v # 0 is possible reduce the system’s
dimension when the restriction (47) in non-degenerated. The
restrictions (47) and (45) can be globally solved for £2, y K
(assuming yv # 0 and yv? — v> 4+ 1 # 0):

243 ((y — v +1)
t = )/U )

20C:8 (y +v? — 1)
_ s

(74a)

K = —C,A? — Cy X% + 1. (74b)

Then, a 3-dimensional dynamical system is obtained:

zu:2<—cM2+Q22—1

A(=3y =2(y = DG Z + v (y +2(y — DC2X —2) +2)
Yyv

+
(75a)
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Table 2 Qualitative analysis of the equilibrium points of system (72) for a pressureless fluid (y = 1) and v # 0. Line N is included

Equil. points (X, A, v) Eigenvalues Stability (K, §2¢)
N 0,0,v) {0, —1, 1} Non-hyperbolic saddle (1,0)
Na3 0,0, £1) {—1,1,0} Non-hyperbolic saddle (1,0)
__1 2 92 i
Pio ( 75 0, :I:l) {@, 2 75 2} Hyperbolic source for C» > 1
Hyperbolic saddle for C> < 1
Non-hyperbolic for C; = 1 0, 0)
1 _2 2 .
Ps4 ( S0, j:l) { 2+ 2, 2} Hyperbolic saddle for C> > 0 0,0)
1 2 2 9 i
Ps (o, . 1) { 2 -2 -2, 2} Hyperbolic saddle for C> > 0 0,0)
L _2 2 _ 5 _ ic si
Pe (0, 75 1) { NN 2} Hyperbolic sink for C, > 1
Hyperbolic saddle for C» < 1
Non-hyperbolic for C; = 1 0, 0)
P, (-3.3.-1) {0, £/C, =T} Non-hyperbolic saddle for C; > 1 -2 %)
Pg (— ZITZ v 42%2273 , — \/ﬁ) See text See text (0, 4%;3)
H_ (Zo, 14+ 2o, —-1),Ca=1 {0, —2(1+2X.)} Non-hyperbolic (0, =2X(1 + Xp))
Hy (Xo,—1—2%p,1),Cr =1 {0, —2(1 +2X.)} Non-hyperbolic (0, =2Xp(1 4+ X))

24y = DG (v = 1)
yv

A=A (C2A2 +

+ X(CrX +2)+ 1), (75b)

v/

y(y—v2-1)
(75¢)

The dynamical system (75) admits some invariant sets. These
are: v = %1, corresponding to extreme tilt, and the invariant
sets A = 0 and X' = 0. The equilibrium points of the system
(75) are the following.

Pio: (X, A0) = (—J%, 0, £1), with eigenvalues

L —2) +4

2)/(
2. —~"= [/

V€2
9

2 — =

2 .
oL . They are:

(a) Hyperbolic sources for 1 < y < 2,1 < C <
2

e
(b) Hyperbolic saddles for:

() I1<y<2,0<Cy<l,or
. 2

(11) 1 <V <2,C2> szi/m
(c) Non-hyperbolic for:

4)/2

(1) 1<y<2,C2=W,or

) 1 <y <2,C,
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(W =1)(ABY2 =5y + (¥ =202 +2) + yv(¥(Z +2) - 2))

P34 (XA 0) = (%, 0, £1), with eigenvalues

4y
J% +2,2, 27‘/;72 . They are hyperbolic sad-

dlesforl <y <2,Cr > 0.
Ps: (X, A,v) = (0, J%’ 1), with eigenvalues

_2 5 _ 6y+4(y—1>¢6—8} o
[~ —2 -2 = s

(a) A hyperbolic sink for:

: 9y2—24y+16
) 1<y=<3.C>2=d 0 or
(i) <y <2,C>0.
2
(b) A hyperbolic saddle for I < y < %‘, 0<(C < %
. 9y?—24y+16
(c) Non-hyperbolic for 1 < y < %, Cr = ﬁ_
Ps: (X, A v) = (0, J%’ —1), with eigenvalues
2 _ 9 _n =byHAy=DVCH8]| i
{@ 2a 2, (}/—2)«/?2 } It is:

(a) A hyperbolic sink for 1 <y <2,Cy > 1.
(b) A hyperbolic saddle for:

) 1<y <2,0<Cy<l,or
(4-3y)*
4y-n
(i) 1<y <3.0<C<L

(i) %<y<2,0<C2<

or

(c) Non-hyperbolic for:

() l<y=<3C=1lor
N 4 _ 9y2—24y+16
(i) 3 <y <2,C= 5,14 Or
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(i) § <y <2,C, = 1.

Py (X,A,v) = (—%, % —1), with eigenvalues

[0, —Cr = 1.VC — 1} is:

(a) A non-hyperbolic saddle for C; > 1.

(b) Non-hyperbolic with three zero eigenvalues for C» = 1.

(c) Non-hyperbolic with a zero eigenvalue and two purely
imaginary eigenvalues for 0 < C; < 1.

Pg: (X, A,v) =
For this point it is satisfied the equation ¥ = Av =
—ﬁ. Pg exists for 1 <y < 2,Cr > ”—+2 When
y = 1, the eigenvalues are {kAl,kkz,kkg} where
k = + and A1, A, and A3 are the roots of

2C3(4Co—3)3/2”
the polynomial in A: P (1) = —16(C2 — 1)2C3(4C> —
2 — 4(Cr — DCIBCr — T(ECy — 3)3 + 23

For C; = 1 +68+ 0@, A = =25 + 0 (8%),
_ (3y-8yH+4)VE | (=3y 46y —4)s 3

Ay = (_ g,,_z)(3;;\—F2) (yz_z)(3y_)2) +0 (5 ), and
By -8y+4)vé (=3y2+6y—4)s 32 )

2 = 6y-2) G RN (8%/2). This

shows a hyperbolic saddle behavior for values of the
parameters close to the values of general relativity.
For example, for a pressureless fluid (y = 1) the A;
are approximately {—28, 8§+ /8,8 — \/5} Foré <0
there are two complex imaginary eigenvalues with neg-
ative real parts and a positive real eigenvalue, while for
& > 0 there is a negative eigenvalue and the others
have different signs. In the Fig. 7 the real part of A;
(which differ from the eigenvalues associated with the
equilibrium point Pg by the overall factor k) are repre-
sented graphically for C, > V Y and y € [1,2]. The
figure illustrates that the equilibrium point is generally
a hyperbolic saddle or is non-hyperbolic.

Py: (X, A,v) = (0, Arv_, v_), where
\/w—u(y(2y262—y<202+3%2fy—1J@/y(y((y—l)crsw»m)—zt)
v =
y—2 ’
v+ VY (y—1)Cr—3)+8)—4
— Vr-1J G _
and Ay = 3, , such that C, =
AZ T The eigenvalues are u; = —2, up = —y +
«/8y+y*Cz—y2<CZ+3)—4 and
VyY=1J/C2 ’
20Dy (—y—vt +3y02 —42 +1)-2-2002 (=3y+02 +3) (y+02 1)
n3 = .

y(—y+u3+1)2

Noting that there is at least one change of sign in two
eigenvalues, thatis ujuy < 0,forl <y <2,Cr > 0,
it is concluded that it is a hyperbolic saddle.

Pro: (X, A,v) = (0, A_vy, vy), where
\/w—l)(y(2y2c2—y(202+3>+2fy—1@ YOG 38)4+8)—4)
vy = —y 5
R 16 S
Jy—1,/C
and A_ = 213)/ 2 , such that C, =

_ 2-3y
5 20 A) where 4= — Jo—7d 5.

Az T The eigenvalues are vi = —2,vp = —y —
NI e
Vy—=1vC ’
o —Z(V—Z)klfi(—3)/-%—1!_2‘_-%—3)(J/+U_2¢_—1)—2(1;—|)Y(J/+vj_+(4—3y)u_2'_—])‘
y(fy+u_2,_+l)

It is a hyperbolic sink for:

4

(a) 1<y§yo,O<C2<47;; ,or

(4-3y)?
4(y—12?°
(4-3y)*
4(y-1n2’

<(Cr <

b) 1<y <y, % or

(©) yo<y<%,0<C2<

hereyy = — % (=11 — s —2—— + V2757 — 197
WAETEYo 27 ( V21J57-197

~ 1.22033.

Is a hyperbolic saddle for:

4-3y)?

417
4-3

b) <y <4 2
4(y—1

() y0<y§3,C > (’;2 b o

(d) <y<2,0<c2<%

ay—1
(e) —(7;2 )'

(a)1<y<)/0,C2> or

< () <

4(y—1
())//2 ),or

, or

USRI

<y <2,C>

5.6 Invariantsetv = A = 0.
The focus of this section is the stability analysis of the equilib-
rium points of the system (49) in the invariantset A = v = 0.
In the following list the stability analysis is done with pre-
serving the four eigenvalues.

Ni: (X, A, K,v) = (0,0, 1, 0) has eigenvalues {—2, —1,
1, 2}, then, is a hyperbolic saddle.
. _(_ 1 .
P (X,A,K,v) = ( 75 0,0, O). The eigenvalues are

{2_ 2 5 Y o —3y+4<y—1>@+2]
VG T (y=DVCy ’ (y=DVC2 '
2
(a) It is a hyperbolic sink for y > 1, 1(62(;3—]/1))2 < G <

y 2
2

(b) It isa hyperbohc saddle for:

2
N2’

(1)1<y<2C2> or
2
() 1<y <2,0< C2 < 1((%(;/3—)/1))2

(c) Itis non-hyperbolic if:

() 1<y <2,Cy=1,o0r

2
() 1<y <2,C= lﬁ(—yl))z,or
e _ )/
(lll) 1<y<2,C2—4(VT)2
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Fig. 7 Real parts of A; corresponding to the equilibrium point Pg for C > 21'77/ and y € [1,2]

P (5.4 K v = (e,
2 _ Y _

{22z -2

asaddlefor 1 <y <2,Cp > 0.

Py (5. A K,v) = (—%,0,0,0). Q, > 0 for

0,0, O), with eigenvalues

3V+4(V—1)J€2—2} It is
(y—DJ/C2 ’

2
Cr > 1(62(;3_71))2, The eigenvalues are { — %,
Q-3y? 5
4(y—DC2 ’
yGr=2 5 _(@=3y)? o
Ay-D2C; T 7 BG-D’C 2}' Itis:
2
(a) Ahyperbolicsourceforl <y < 2,0 < Cp < 231
yp 16(}/—1)2
(b) A hyperbolic saddle for:
. 2-3y)% 3y—2
i 1<y<2, 1(6()/_7/1))2 <Cy < g((yy_m)’ or
.. y3y—2) (2-3y)?
i) 1<y <2, S—17 < C < 80172
2-3y)*

i) 1<y <2,Cr > TSR

2(y—1 2-3y)2—8(y—1*C
Puai (5,4, K, v) = (—4L3, 0, C 80106 o),

The eigenvalues are {A1, A2, A3, g} =
{ 2oy =D 1 NEA 120703
3y—2° 2

3y-2> 4—6y ’

“12C,—7(2—37)2
—% _ Yoy lzgyc_24 1e3y) }.It is:

(a) Non-hyperbolic for:

. _ 2
1) Cr = éz(yi)ﬁz, l<y<2o0r
(i) C, >0,y =1,o0r

(i) C, >0,y =2.
(b) A saddle otherwise.

Figure 8 shows the real parts of the eigenvalues A; for the
equilibrium point

— (_20=D o @3’ 8¢=1’Cy
(27 A1 Kv U) - ( 3y—2° 01 (2—3}’)2
resents static solutions for 1 <y <2y Cy > 0. The figure
shows that the equilibrium point is non-hyperbolic in the

, O). It rep-

@ Springer

0

Fig. 8 Real part of the eigenvalues X; for the equilibrium point
(5.4, K,v) = (-4 0, B0 o) for 1 <y <2
yC2=0

cases (a)-i,ii,iii previously described, or, it is a hyperbolic
saddle.

5.6.1 Reduced system

When A = v = 0, the restriction (47) is trivially satisfied.
On the other hand, from Eq. (45) it follows

(y — 1), = (1 BeX Sep K) . (76)

Imposing the energy condition £2, > 0 and choosing y €
(1, 2], the following reduced dynamical system is obtained:

= (C222—1) By +4(y — DC2 X —2)
2(y = DGy
K@y +2(y — NG X —2
Gy +2(y =1, )’ (772)
2(y = DGy
K' =2K (2c222 nya 1) , (77b)
defined in the phase space:
{(E,K)GR2:C222+K§1,K20}. (78)

The qualitative analysis of system (77) is given in Table 3.
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Table 3 Qualitative analysis of the equilibrium points of the system (77) with v = A

= 0. Line N is included

Equil. points (X, K) Eigenvalues (plane ¥'-K) Stability (plane ¥-K) 2,
Ny ©, 1) {—1,2} Saddle 0
1 2-3y (2-3y)*
Pu ( -+, 0,) {2, e +4] Saddle for 0 < € < 231
(2-3y)?
Non-hyperbolic for C; = 71 60172
2=3y)*
Local source for Cp > 160/ ~172 0
1 _3r=2
P (JG O) {2, e +4} local source for C; > 0 0
2-3y Q=39 -16(y=1)°C, (2-3y)*
P13 (— G077 O) { 80 D20 local source for 0 < C < 160 ~172
Q=3y)*=8(y—1)’C, 2-3y)? @=3y)?
W} saddle for 160, ])2 <(Cy < T
: _ =3y
Non-hyperbolic for C; = T6G 17 °F
(2-3y)?
G2 27T 8G-1?
-3y 16(=1)?Cr—(2=3y)*
Local attractor for C; > 80 D)7 166 -17°G,
— _ 2_ _1\2 / —1)2 _ _ 2
Py (— 23(;_?, 2 3y22_§;};2 D C2> { - % + B3ty ll_cgy 1273y) Local attractor for 0 < C < Zf(y 3}32 or
1 64y —1)2C2—7(2-3y)? 7(2—3y)? (2-3y)?
T3 oy—4 sa—n? < €2 <3517
2
Non-hyperbolic if C; = éz(;iyl;z
: 2=37)* 4y-HC
Saddle if C> > 80 D)7 037

5.7 Summary of sources and sinks for a perfect fluid

A summary of the equilibrium points classified as sinks or
sources of the model with perfect fluid is presented.

5.7.1 Non-extensibility surface of solutions

SL_ is stable for the regions described in Fig. 2.

5.7.2 Invariant sets v = £1
Py (X, A) = (—% ) = =+1, are hyperbolic sources
for Cp > 1.
P34 (X, A) = ( lc ,0), v = =1, are hyperbolic sources
for Cp > 0.
A _ 1 _ . . .
Ps: (X, A) = (O, @>, v = 1, is a hyperbolic sink for
Cy > 0.
. _ 1 1 .
Ps: (X, A) = (O, J@)’ v = —1, is a hyperbolic sink for
Cy > 1.

5.7.3 Ideal gas y = 1

Pra: (X, A0) = (—J% 0, il) are hyperbolic sources
for
Cy>1.

Po: (2. 4,0) = (0,
1.

L
N
5.7.4 General case v # 0

Py (X, A,v) = (— \/—

f0r1<y<21<C2<

Ps: (X, A, v)—(O

@l<y<iC>
(b) %<y<2,C2>0.

9y2—24y+16
472_

, — 1) is hyperbolic sink for C, >

——=, 0, £1), are hyperbolic sources
)/2
y2—8y+4-
1) is a hyperbolic sink for:

sy1d > O

Ps: (X, A,v) = (0, \/#sz, —1), is ahyperbolic sink for 1 <
y <2,Cr > 1.
Pro: (X, A,v) = (0, A_v4, vy), is a hyperbolic sink for:
4y —4
@ 1<y=r0<C <=5 o0r
_ _ 2
(b) 1 <y <, 43;24 <G < i‘:yiﬁ;z,or
4 4-3y)
() yo<y<3,O<C2<W,
where
2 14 3
=—5 -1l - ¥47——c—=+ V2757 - 197
Yo 2 /27/57-197 )
~ 1.22033.
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5.7.5 Invariant setv = A =0

Pll: (Z,A,K,U) = (_ L

source for y > 1, 16( e

Pi3: (2, A, K, v) :( 23y

iy 00, O)

(2-3y)?
16(y—1)2°

is a hyperbolic

source forl <y <2,0 < (C; <

Reduced system:

P (X,K) =

(2-3y)2
16(y—1)2%"

P (X, K) =

__1 ;
( Nt 0), is a local source for C, >

(f’ 0) is a local source for C> > 0.

2-3 :
P]3: (2, K) = (—m,0> 18:

(2-3y)?
16(;/—1)2 :
(2-3y)?
8(y—DZ"

(a) alocal source for 0 < Cp <

(b) alocal attractor for Cp >

2(y—1) (2-3y)*—8(y—1)?* .
Py (X, K)=|( — 3{,}:72)’ ( V22_3$’)2 ) Cz) is a local
sink for:
< 703
(@) 0<Cy < 62(7/ }I;Z,or
7(2-3y) 2-3y)?
®) Gio—n2 = 2 < 5517

5.8 Discussion

In this section, timelike self-similar spherically symmet-
ric metrics in Einstein—ather theory with perfect fluid as
matter content were studied using the homothetic diago-
nal formulation, which gives the propagation equations (33)
plus algebraic restrictions. The homothetic diagonal formal-
ism has some disadvantages. Symmetry surfaces generally
change causality. Then, in the homothetic diagonal formula-
tion spacetime must be covered with two coordinate systems
(two charts); one when homothetic Killing vector is time-
like, and another when homothetic Killing vector is space-
like. These two regions have to be matched in the region
where the Killing vector is null [67]. However, the formula-
tion has more advantages than disadvantages. The main one
is that it allows the field equations, which are a well-defined
system of first-order partial derivative equations (PDE), in
two variables (from the 1 4+ 3 formalism), to be written as
a system of ordinary differential equations using the sym-
metries that come from the Killing vectors. The resulting
equations are very similar to those of the models with homo-
geneous hypersurfaces. In turn, it is possible to write these
equations as a dynamical system, which makes it possible to

@ Springer

study the model using the techniques of the qualitative the-
ory of dynamical systems. This makes it possible to obtain a
complete description in a phase space, which leads to a better
understanding of the dynamics of the model. In this regard,
the 8-normalized equations were presented.

Four specific models were studied; these are: extreme tilt
(58); pressureless perfect fluid (72); the reduced system (77)
in the invariant set A = v = 0; and the general system (75).
Hyperbolic points were classified according to their stability
conditions using the Hartman—Grobman theorem; while non-
hyperbolic points were classified as saddles. Furthermore,
it was possible to retrieve the results obtained in [67]. The
following list shows the points obtained in [67] and their
correspondence with the points discussed in this section:

) _— . T4+2)-2
SLy: sonic lines given by A = —%,

e/ vy — 1, were analyzed in Sect. 5. 1 Unlike general rel-
002 the system (75)
admits the following equ1l1br1um pomts

B A et Y+2)-2
SLi: % (y Lo=y—T.A=- %1)3)/2)’

. 2(y—1 T42)-2
SLZ'EZ_%’UZ_*/T’Azw,

which lie on the sonic line. If y = 2, C, = 1 these points
exist, and since y = 2 the fluid behaves like stiff matter.
Additionally, if y = 2, C» = 1, these points correspond
to models with extreme tilt (v = ¢), SL1 : ¥ =1,A =
—2,v=1,and SL, : ¥ = —1,A = 0,v = —1.
SL 4 corresponds to a flat FLRW space and static orbits
depending on the parameter y.

ativity, for 1 <y <2and C; =

CO: (E,A,U) = (07 07 O)’ (K7 Qt) = (1’0)’ corre-
sponds to Nj.
CE (X, A, v) = (0,0, +1), (K, ) = (1,0), corre-

spond to N 3.

KE: (2, A,v) = (—1,0, £1),
respond to P for Co = 1.
KE: (3, A,0) = (1,0, +£1),
spond to P34 for C» = 1.

MT: (X, A,v) = (0,1,1),
sponds to Ps for C, = 1.

M~ (X,A,v)=(0,1,-1),
sponds to Pg for C; = 1.
H7:Theline A(X) =X+ 1,v(Y) = —1, (0, -2X A).
K% (X, A,v) =(—1,0,0), (K,$2,) = (0,0), corre-
sponds to Py for C; = 1.
K%: (2, A,v) = (1,0,0),
sponds to Py for Cp = 1.
T2, A0 = (—2475,0,0), (K, 2) = <7V2?§?,(Z{”,4((3yy__12)),
corresponds to Py3 for Cp = 1.

=DrE(VoD(G-D7+C—1)Gr-2)) )
2—y ’

(K, §2:) = (0, 0), cor-
(K, £2,) = (0, 0), corre-
(K, $2;) = (0, 0), corre-

(K, £2;) = (0, 0), corre-

(K, $2;) = (0,0), corre-

M= (Z, A,0) =0, 1,

(K, £2;) = (0, 0), exists for Cp = 1.
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K- axis

K- axis
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Fig. 9 Orbits of system (77) withv =0, A =0 with 1 < y < 2 for different choices of y and C»

The authors in [67] used the notation Kernel
there is no confusion sgn(v) or sgn(X') is omitted. The ker-
nel indicates the interpretation of the point: M, C represent
Minkowski spacetime; K represents a Kasner solution; T’
corresponds to static solutions; SL4 corresponds to a flat
FLRW space and static orbits depending on the parameter y;
The equilibrium point line H ™~ is associated with a change

sgn(v)
sgn(X)’

when

of causality of the homothetic vector field. The points M=
are equilibrium points of (75), only if C, = 1.

Table 3 summarizes the results of the qualitative analysis
of the equilibrium points of the system (49) withv = A = 0.
Line N isincluded. The Fig. 9 shows some orbits in the phase
space of the system (77) withv =A =0and 1 < y <2.
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6 Timelike self-similar spherically symmetric models
with scalar field

In order for a non-homogeneous scalar field ¢ (¢, x) with
potential V (¢ (¢, x)) to fulfill the static conformal symmetry
they have to have the form [70]:

o1, x) =P (x) — A,
V(g(t, x)) = e U W),

2

Up) = Upe™ 7.

where it is assumed, for convenience, A > 0, such that for
Y >0,U— 0OasA — 0.

Then, the energy—momentum tensor of the scalar field is
given by:

e d¢ 0 0
yb _ | 9 Py — 279 O 0
a=1% 0 ps+ms O ’ (79)
0 0 0 Py + Ty
where
1 2 1 2
Mo = Eeo(fb) + Eel(‘f’) + V(o)
1 o 1 4~
_ §A26_2lb12 i er—zz—% 4 Ee_2tw2’ (80a)
1 2 1 2
Py = 560(45) - gel(cb) - V()
1 o 1 N
— E)LZe—thlZ _ er—2l—2w)f ) _ ge—Zt]/IZ’ (80b)
4p = —eo(p)er(¢) = re by, (80c)
1 1~
Ty = —§e1(¢)2 = —ge_ZIWZ, (80d)

where . denotes the derivative with respect the spatial vari-
able x. The field equations are the following.
Propagation equations:

~ (2Cy0 +0)
§ = —fip? _ TQC0 +0)
? 73
\/§VH1U2
SEDVEY /2 I Sk 81
V3 G — Dol +1 (81a)
s _«/§k2b12 n «/§er_% B 020 4+ 0)
Cs C V3
3 (=3y + (v — 202 +2
V3 (<3 + (v =2 )7 @1b)

2C; ((y — v+ 1)

~ bla
b = —, 8lc
1 NG (81¢)
—~ by (O
o= 20to 81d)
V3
7o D ey - e e
vV = v — o
ﬁy(y—vz—l)y % %
+/3b1 (377 = 5y + (v =2 +2) |, 8le)
2y
—~ 26 "4 2Upe™ »
G —op2 HHY 2 7 (81f)
NG x
" 81g)
Auxiliary equation:
I:L\ _ Mt
T B -2 1) (- D2 +1)
x {y (a F (= D Q20 +0) — 2 ((4y — 6)0 + yo))
+2v3b1v <(7 3y 4 (y 2y —5) +4n? — 4) } (822)
Restriction:

3y ev—by ((y — et + 1) (NECW n 3m) —0. (83)

Equation for p,:

by? C+)L2 +b2+1C 2+1'1/2
- ZChol 4+ =
1 2t 5 2"+ 302 >

02 woow(y+oi-1) 2y
=—+Upe » —————> < 0"+ Upe .
3 + Upe v —Dil = + Upe
(84)

In general, for u; > 0,0 <y < 1,1 —y < v < 1, or
ur > 0,1 <y <2,—1 <v < 1assuming C, > 0, the
term 62 is dominant, which suggests using 6 -normalized
variables.

7 6-Normalized equations

The following 6-normalized variables are introduced:

3b 3b3 3

DB /S S S )
0 0 62 62
3w =% /30s

U=,>—, w=-——", (85)
26 0

along with the radial coordinate:

af 37

dn = 5
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The parameter r is defined, analogously to the “Hubble gra-
dient parameter” r, by

0= —r02,
where
N S S Lo L S (86)
2 - D +1 '
In these variables, the dynamical system is given by:
/ Az)‘z 3 w2 2
S = T 20T +C—2+>:(K+2u —2)
2, (=3y +2yCr 302 -2 +2
 (=3y +27C 07 + (y — 207 +2) (87a)
26, ((y — Dv2 +1)
2
;o 2 2 yvo82
A _A<2C22 +K+2(>:+u )+7(y_1)v2+1>, (87b)
K' =2K (2C 22+K+2u2+ﬂ—1 (87¢)
- 2 - D2 +1 ’
A4 20 (K
"= e G — D211
2
+2u3—ﬁTw, (87d)
ﬁu yv29
’_ 2 2_ N7 r
w_w<2C22 + K+ X+ 2u . +(y—1)v2+1 s
(87¢)

vV =

y(y—v2-1)
(87f)
; 2 2 2y 0?82
.Qt —.Qt (4C22 +2K+22+4M + m)
240 (7 =3y)y + (yQy — 5 + 4Hv?> — 4)
+ $2
((y=Dv2+1)(y —v2—1)
Y (T (—v(Z 44+ — D(E 420 +6))
+ 52
((y=Dv2+1)(y —v2-1)

(87g)
The restrictions are:
A2)2
CZ(A2+22>+ +K+u?—w?
2 +v2 -1
’(7/—) =1, (88a)
(y —Dvr+1

y Qv — A ((y — )+ 1) (2c22 + ﬁxu) —0. (88b)
These can be globally resolved for £2; and K to get:

A (yv2 v+ 1) <2C22 + \/5}\.”)
2, = - , (89a)

@ Springer

(=) (AGBY =5y + (r =202 +2) + yu(y(Z +2) - 2)

1
K = 5 (_2A2C2 —A2A% =20, 3% - 2u® 2wt + 2)

A (y +02 — 1) (yv2 v+ 1) (2C22 + ﬁku)

YU ((y — D2 + 1)
(89b)

Finally, the following reduced 5-dimensional system is
obtained:

2/=*A2A22%22+2)+C2(237A22)+g+2(u2+w27])
A(2025 +v20u) (=3y 4200 — DG Z (V2 1)+ (r — 202 + 2
st 2m) o e )
(90a)
A/=—%A3A2+A(C2 (£2-4%) 25+ +u? +1)
. A2y —1) (UZ _ i/)v(zczz + fzm) | (90b)
. (2-1)(a (3;/2fSy+<y72>u2+2)+yu<y<z+2>—2))! (900)

y (y —2 - 1)
14/:u(C2(227A2)+u2+w271)
Aly — Du (u2 - 1) (2022 + \/E)\u) Jiw?

1
+ V2420 — ~ADZu + -
2 yv

s
(90d)
V2 = Da (P =) w
yv T

1
w = —EAZAZw +

L (cz (Azy(fv)+2A(y71)Z‘ (v271)+y22v)+yv ():+u2+w2+1))
yv

(90e)

If u = w = 0 and the limit A — O is taken, system (75)
is recovered. Given the computational difficulty of obtaining
(analytically) the stability conditions for all the equilibrium
points of the system (90), in the following sections some
subcases of (90) of special interest will be studied: perfect
fluid in the form of ideal gas (94) , the invariant set X' = 0
(96), the extreme tilt case (97) and the invariant set A =
v = 0(98). An exhaustive analysis (analytical or numerical)
of the stability conditions is provided for these particular
cases. Relaxing the condition 1 < y < 2, interestingly, a
cosmological fluid in the form of an ideal gas with equation
of state p;, = (¥ — D), with y = 2/3 describes a FLRW
spacetime with non-zero curvature.

7.1 Special case §2; =v=0and y =2/3

The equations are:

(A22 — w?)

2

= +2C223+2(K+2u2—2>,

91a)
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A’:A(2C222+K+2(2+u2)), 91b)
K' =2K <2C222+K+2u2 _ 1), Olc)
2 (AZ)\2 — w?

u' = ¥+u(20222+1(—2) + 203,

91d)
2
u/=w(2c222+1<+2+2u2— f") 91e)
with restrictions
1
34 (2C22 T «/Z\u) —0, (92a)

—2C2(A2+22)—A2A2—2K—2u2+2w2+2=0.

(92b)
Afterwards, the restrictions are solved to find:
20,
— _\/_—2’ (932)
A
A2)\2 20237
_ 2 2 2 2
K——Cz(A + )— S w L
(93b)

Therefore, the following reduced 3-dimensional dynamical
system is obtained :

=G (23 - AZE) + %2 (—AZAZ +2w? — 2)

(w— AV (AL +w)  2C3X°3
4
+ s VIR (94a)
1 2AC2x?
’ 3,2 2 2 2
A= =3 AN 4+ AC (27 - 4Y) + T2
+A (22 +u?+ 1) , (94b)
, Cr (A (Z? = A%) 420,27 +2X)
w =w )\‘2
A2)?
—T+2+w2+l . (94c)

The equilibrium points of the system (94) are the follow-
ing.

Ni: (X, A, w) = (0,0,0) with eigenvalues {—1, 1, 1} isa
hyperbolic saddle.

. _ 1 /C . .
O1: (XA w) = <—§, f_zi 0), with eigenvalues
a1 (_ ECPHAC, T 1)
x

222

2 — .
(—W ) s,

k)

—,
8=

1
2

(a) a hyperbolic sink for:

M0 << ¥ 2OZFA-2 < ¢ <
% A2+16—%,or
(ii) 4<)~<«/§, %<C2<%VA2+16—)‘TZ,or
(i) 0 <1<, 2 <0 < WaF 12— 2
(b) and a hyperbolic saddle for:

) 0<2<+2 Cr>4/i7 4162 or

(i) A > V2, Cp) > %,or

(i) 2> v2, 2V/A2+ 16— %4 < Cy < & or

(iv) 4<)~§«/§, % K2+14—%<C2<A—;,0r

V) A > V2, AT F14—2 < Cy < 207 ¥ 16—
)\2
T,OI’

V) 0<r<¥, 0<Cr<%or

i) A > Y1, 0 < Cy < 2V 4 14— 4

(c) non-hyperbolic for:

i) A>0, Co="%0r
(i) A>0, Cr=2V/aZ 1 16— 2.
3 4

VG (2C2+22)

JA4CE42(Cr—1)22 )
2 2 0) with

. _ 22
QZ‘ (27A7 w)_<_cz(2cz+)\2)7
eigenvalues

1 4 _ 8 4 _H _ 4 2 _
{C_2 2C+A2° 2C2+A2+C2 2, 2C,+A2 + C 2}
It exist for A > 0, 2
Cy > }—tk\/kz +8— )‘T, and it is:

(a) a hyperbolic sink for:

) 0<% <+2,C> 5/ 4162 or
(i) A > V2, C > 2.
(b) a hyperbolic saddle for:

@) 0<2<1,5/2248-% < Cy < 222+ 16—
)\2
T,OI’

(i) 1<) <25 <Cr<iViZ+16—% o

(i) 1 <A <2, 2/ 484 <Cr< & or

(V) 2> V2,507 48— 5 < Cy < VAT + 16—
)\2

T,or

(v) A>\/§,%\/)L2+l —)Z—2<C2<%.
(c) non-hyperbolic for:

@) A>1,C =% or
i) C; =1 (—AZ — VA2 F 16k), or
(i) € =1 (x\/ﬂ Ti6— ,\2), or
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) C =4 (=22 = ViZ+81), or ) 0<r<1,0<Cr<h,or
22
) szél‘(x«/W—xz). (i) 4> 1,0 < Cy < .
(c) non-hyperbolic for:
. . 1) Cyr = 1 A=1,or
03 (Z,A,w) = ( —r 0, 0) with eigenval- (i) G2 =7, ’
s VQ(ZCMZ) (i) Co=%,0<xr<1,or
o _NGEGE) | (iii) € = 22 > 1,or
T ey I B ) Coe 5
v 2 = 22’ T < < 1.
(a) ahyperbolic source for:
) % <A<1,Cy> W g or Q78 (2, A, w) = ( T _ﬁ, \/C}L—AZ> with eigenval-
(i) A>1,C0> 302 18— 2. yes ’ o
. G 71 GN &) w3 C)
(b) a hyperbolic saddle for: C1(2C2-22)F" o (20,-32) P Coa(2C,—-22)

i) A>0,0<Cy<i/aiZ48—% or
(ii)O<k<T,C2>O or

(iv)O<A<T,C2>—
)\.<l,l

A4+ 8A2 ,or
A4 4+ 82 , or

<C2<—

2 2
(v)% A4+8)»—T<C2<Aﬁ,
or

(vi) A > 0<Cy <

)»2
T’ 422"
(c) non-hyperbolic for:
i) 0<a< T’ =1
1
(i1) ﬁ <A<1,C2:Z
(iii) %<,\<1,c2=—_ or
(iv) r=1,Co= 1, or

V) A>1,C = 4;52 2 Or

. )\42
(i) A > 1,Cr = V25 + 822 — 2.

Q4 (X, A, w) = (m 0, O) with eigenvalues

2 NS ,
{2’ AV C2(2C2+32) +2 Cor +2;. It is a
hyperbolic source for 2 > 0, C, > 0.

N = TOr
Os6: (5. Aw) = ( 2 0, £ YEELIE) i
eigenvalues {5 — 57, Clz+l_2,ﬁ+)\l2_2}.
Exists for 0 < A < T’CZ ~00A> \L@’O <G, <

22 It is:
nio: tis:

(a) ahyperbolic source for:
(i)O<A§T C2> , or

A2

.. 2
(11)\%<)L<1, )‘7<C2<m.

(b) a hyperbolic saddle for:

@ Springer

where the expressions for w; depend on A, C. They
exist for Cp > )‘—22 In Fig. 10, the real parts of the w;’s
are depicted, so, the equilibrium points are typically
saddles or non-hyperbolic with three zero eigenvalues.

7.2 Invariant set X =0

Imposing X~ = 0 the following restrictions are deduced:

2 2 _ .2 2 A242
o__ (yv v +1)(w A)»)’ (952)
=3y +yv2—20242
_1 2(_ 2 o 2 2
K_§<A ( (2C2+A)) 2u? +2w? +2
4 2 —
(v +v2 = 1) (w — AL)(AL + w) ’ o)
=3y +(y =22 +2

2A%y 2% + V2 Ahu (3)/ — (-2 — 2) —2yvw? = 0.
(95¢)

Finally a reduced dynamical system for the invariant set ¥ =
0 is obtained

2
A= %A (—2A2C2 LA 4 M +2u% + 2) , (96a)
2 _ 2 _ _ 2 —
Yo (> =1)(ABY2 =5y + (y —2v* +2) +2(y 1)}/11)’ (96b)
vy —v2-1)
u (24220 + A (AR%0 + V2o (2 +1) + 202 = 6) +2 (u? — 1))
= 2v
24u (v2 - 1)
- (96¢)

The equilibrium points of system (96) are the following.

N2zt (A, v,u) = (0, £1, 0) has eigenvalues {—1, 1, ﬁ +4}.
They are non-hyperbolic saddles for A > 0,y =
1, Cy > 0, or, generically, they are saddles because
two eigenvalues have opposite signs.
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Fig. 10 Real parts of the u;’s associated to the equilibrium points

075 (Z. A w) = (0, ——. £~

Cz—% Cz—%
are typically saddles or non-hyperbolic with three zero eigenvalues,
depending on the choice of parameters

. The equilibrium points

Mio: (A,v,u) =(0,1,£1) and

M3.4: (A, v,u) = (0, —1, +1) witheigenvalues {2, 2, 4 +4}.

v
They are:

(a) hyperbolic sources for A > 0,0 <y < 1,C, > 0, or
(b) hyperbolic saddles for A > 0,1 <y <2,C, > 0, or
(c) non-hyperbolic for A > 0,y =1, C, > 0.

Qo: (A, v,u) = (ﬁ 1,0) exists for A > 0, Cy >
Cr—5%

2 .
)‘7. The eigenvalues are

—dy— 2+$+4
2 o-% Ja-i

-2, — -2, — .Qois:

(a) ahyperbolic sink for

=17
(i) A>0,3 <y <2,2C; > A%

2
) A>01<y< %,Cz > }1((4_3”) +2A2),0r

(b) a hyperbolic saddle for

. 4 _ 1 (@4=3y)? 2
1) 1<V<§’)‘>0’C2_Z((y_—1)2+2)‘ ),or

(i) A >0,0<y <1,2C, > A%
(c) non-hyperbolic for 1 < y < %, A >0,

4-3y)2
Cr =4 (20 +222).

Qio: (A,v,u) = (ﬁ,—l,O) exists for C, > %
Cr—%%

The eigenvalues are

4y 8 4y
CQ—A; Cz—%%
2 T
-2, \/ v 2, = .Q1ois:
Cr—%5

(a) a hyperbolic sink for:

() A>0,2C,>A%+2,1<y <2,0r
i) A>0,0<y <1,

a2
% ()\2 + 2) <(Cy < ‘1_‘ (((4;/731/))2 + 2)»2>.

(b) ahyperbolic saddle for:

i) A>00<y <2,0<2C,—r%<2,0r

2
(i) > 0,0 <y < 1,cz>;{(%+z)\2),or

4 32 1 ((4=3y)’ 2
(111))\>0,§<]/<2,7<C2<Z<(V_—1)2+2)\.>,
or

(iv) »>0,0<y <3,0<2C;— 22 <2,0r
V) A>0,3y >4,
a2
22 <<t +2),
(c) non-hyperbolic for:
(i) A>00<y <2,2C,=1*+2,0r
* _ 1 (@32 2
(i1) C2_4 +217),0<y <1,A>0,o0r
1

(y—1?

2
(iii) €, = (((“y‘fly)i + ZAZ) Aoy <240

O11: (A,v,u) = (1, -1, % —JCr— 1) exists for C >

1. The eigenvalues are
{ —2, —\/—2f2mx F4C, -3 -1,
\/—2ﬁ./—cz “TA+4C, —3 — 1}. 011 is:

(a) ahyperbolic sink for:
i) 1<Cr<2,2=+2,0<y <2 0r
() C2>1,0 <A <+2,0<y <220 <r?+2,
or
(i) Co> 1,4 >+2,0<y <2,4C) +1/A2 =2 <
A2 + 3, or
(iv) A>+/2,0<y <2,2C3 <2242, 2 (¢x2 — 2+/\)+
3 < 4C,, or
W) A > V2,0 <y < 2,)»(«/)\2—24-)») +3 >
4C,4Cr + AV/A2 =2 > A2 4 3.
(b) a hyperbolic saddle for A > 0,0 < y < 2,Cy >
3 (22 +2).
(c) non-hyperbolic for:
i Cr=1,0<y <2,A>0,0r
(i) 2Cr =224+2,0<y <2,A>0.

012 (A, v = (1, =1, Z5 + Gy = 1) exists for C; =
1. The eigenvalues are { -2, —\/2\Fzmx+4c2 —3-1,

\/2f2./c2 “TA+4Cy — 3 — 1}. 011 is:

(a) ahyperbolic saddle for A > 0,0 <y <2,C> > 1.
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(b) non-hyperbolic for A > 0,0 <y <2,Cr = 1.
. ) A(r+=1*y2(20,-22))
Q13~ (A’ v, Lt) - { ()/*1)2}/(3]/*2)(202*)»2) ’

=Ty ((r=1D2(=22) =3y +2(y —1)2Cr+11) —12) +4
4= (r—2)2

—A, 0} where

and
= ‘/(y —03y2 (262 -22) (v (v (- = D42 +20r = )Gy = 6) +16) - 8),

exists for:

@ Ar>0,y=1,C2 >0,0r
(b) >0,2C;>2%0<y < 3,or
(©) k>0,2C2>k2,1<y<20r
(d) k>0,%<y<1,
y (v (=& = DA*+2(y — DC2 — 6) + 16) < 8.

. r
The eigenvalues are { -2, Gy e Y

(y=2)y (4y (y=D?+T) Gy-4Hr _ }
Y S0 (i G ) T 2= ey 2

Q13 is:

(a) ahyperbolic sink for A > 0,
y3)2— 2x2+6y2—16y+8
Cy > 5,32,
(b) ahyperbolic saddle for:

—<y<1,

i) A>0,1<y <2,2C, > A% or
(i) »>0,0 <y < 3,2C, > 2% or
2A2+8y 8

2,2 , Or

(i) >0,1<y <42 <C<

@iv) A >0, ‘—1<y<2 578,44

2,2
y A" 48y =8
C2<—2y

(c) non-hyperbolic for:

2y23249y2 4y 2224y +222+16
4y2—8y+4

@) A>0 3<y<2,C=

(ii) A>O,y=§,C2> 5
) ) A(=r+-D*2(2C2,-2%))
Qua: (A’”’“)_{ =Dy By -2 (2C2—1?)

=Ty (r(r=12(=22) =3y +2(y —1)2Cr+11) —12) +4
4= (r—2)2

,—A,O}Where

and
- \/(y —13y2 (zcz _ A2) (y (y (7(}/ — A2 420y — )0y — 6) + 16) - 8),

exists for:

@ Ar>0,C, >0,y =1,0r
(b) A>0,Cy >0,3y =2,0r
(c) A>0,2C22A2,0<y<%,0r
(d) )\>0,2C22)\2,1<y<2,0r
(e) )\>0,%<y<1,
y (v (=& = DA*+2(y — DC2 — 6) + 16) < 8.
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2y23249y2 —4y 22 =24y 202416 -

. -r
The eigenvalues are { -2, [ T R

SR €2 D?y-r) Gy—4Hr _2}
Y 20-D3( (A 427 C2=8)48)  2(y—Dy(32-2C2)

Q14 1s:

(a) ahyperbolic sink for:

. a2
i Ar>00<y< %,Cg > 4—1‘ (%}3%’))2 +2A2),or
(i) » > 0,3y =2, 2C2>A2+18 or
i) 1>0,2 <y <1,C,> (‘4 3{))2 +2)\2>
@iv) A > 0,3y ++/13 =17,

202 < 12441347, (TV13 = 31) (262 = 32) <

2<\/1_—4>,0r

(V) A > 0,3y + /13 = 7,18C> + /13 < 922 +
11,1% < 2Cy, or
2
vi) A > 0,0 < 4 (420 1 032) 205D 4 8 o

(y—1?
Cry>1, 3y+\/_3<7 or
(vil) A > 0,Cy < Z(? 3;’))2 +2k2>,3y + /13 >
7,7y + 1 < 0 where u; & —1.22033 is the real
root of P(u) = 9u> + 22M2 +20p + 8, or
(vii) A > 0,C2 < g ((?y 3;3)2 +2A2),3y < 4,22 <
2Co, y + 11 > 0where 1 &~ —1.22033 is the real
root of P (i) = 93 + 221> + 20 + 8, or

(ix) A > 0,2C> > )\2,%+2cz < §+A2,3y+

V13 > 7,y 4+ pn1 <0 where u; =~ —1.22033 is
the real root of P(i) = 9> +22u% +20u + 8, or
x) A > 0,2C, > )\2,% +2C, < §+x2,3y +

\/1—3 <.
(b) a hyperbolic saddle for:

(i),\>o,§<y<1

(y=2)(3y—2) 1(@d=3y)? 2)
o + <Cy<g ( 12 + 2A°), or

(i) A >0, 3y+«/__7 2C2>X2+«/1_3+7,0r
(i) » > 0,Cr > 71<(4 31/))2 +2)»2),y > 1,3y +
«/—3<7,0r
Gv) A > 0,Cp > L-{(fy‘f%f +2)\2),3y + V13 >
7,7 + 1 < 0 where u; &~ —1.22033 is the real
root of P (i) = 93 + 221> + 20 + 8, or
) )\>O,C2<4(’;—;1)+)‘2—2,3y<4,
1 (%:3{/))22 + 2A2) < Cy, Or
(vi),\>0y<22C2>,\2 3y = 4.5
——i—kz or
(vii) A >0,y <2,5
or
(viii) 2> 0,0 <y < %, B<o< (920 0),
or
(ix) A > 0,3y =2,0 <2C, — A% < 18.

+2C2 <

+2C2>—+?»2 Y+ =0,
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(c) non-hyperbolic for:

(1) Cy = ((4 3%’))2 +212),0 <y <l,or

(i) C» = g <(4y 3}’))2 +2A2),1 < y < x1 (where
x1 ~ 1.22033 is the real root of P(x) = 9x> —
222 4+20x — 8), or

(iii) » > 0, x1 < y < 3 where x; ~ 1.22033 is the
real root of P(x) = 9x> —22x% +20x — 8.

7.3 Invariant sets v = +1

Assuming v = ¢ = =1, the system is reduced to the follow-
ing 4-dimensional dynamical system:

23 (2C; (22— A)— A (AN +4g)+2u* +2w? —2)

=
2C,
m (A)\ + ﬁus) —2u?
— , (97a)
C
1
r_ 130 2 42
A= A% +AC2<Z‘ A)
+A(22+u2+w2+1>, (97b)
A2 2
" =c2u(>:2—A2)+u(——+w2—1>
V2 (A%22 — w?
( ) +u’, (97¢)
py
A%)2
W = w (cz (22 — AZ) 2
2
2 u
T S Fuwl41 (97d)

The equilibrium points of the systems (97) for ¢ = +1
are the following:

Ni: (X, A, u,w) = (0,0,0,0) with eigenvalues {—1,
1, 1, 1} is a hyperbolic saddle.

(X, A, u,w) = (20,0,8,/1—@23,0) with

J2-2C, 52
0,2,2(Z0 + 1), —e """ 4 55+ 2. This

015,16:

eigenvalues

line of equilibrium points contains the equilibrium
points Py, P>, Pz, P4 studied in Sect. 4. It exists for
A > 0,0 < Cy < =y X € R This line is a
normally-hyperbolic invariant set. Indeed, the para-
metric curve can be expressed as:

r(Xy) = (zo, 0,6y/1—C2 %2, 0) :

Its tangent vector evaluated at Xy:

Cr X
170,_82—0 0l.

J1-C22

is parallel to the eigenvector corresponding to the
zero eigevalue:

J1-C22
+——.0.1,0

eCr X T

r'(Zo) =

v(Xo) = |-

In this particular case, the stability can be studied
considering only the signs of the real parts of the
non-zero eigenvalues. In this way it is concluded
that:

(a) Q15 is a hyperbolic source for:
1) Cr >0, %)
(i) Cr > 1, Xy =

.
_@,A>O,1<y<2,0r
—E,A>O,l<y<2,or

(i) 0<Cr<1,—1< Xy < /CLZ,

1-C, 52
)\.>«/§ m,l<y<2,0r
(iv) c2>1,—/CL2<20< /CLZ,
1-C, 52
)\.>«/§ m,l<y<2,or
(v) C220,% > —1,
1-C, 52
)\.>«/§ m,1<y<2

(b) Q15 is a hyperbolic saddle for:
@) }‘<C2<1 Eo_—f A>0,1<y<20r
(i1) O<C2<— -2 < 2Xy<—1,
1-C, 32

A>\/§ (2+2)2,
(i) 3 <Cr<1,— /—<20<—1,

1-C, 32
A>\/§ (242-2)2’

(V) 0<Cr<l,—-1 <X < /CLZ,

1-C, 32
O <A< \/5 m,

V) Ca>1,— /& < T < /&,

1-C, 32
O <A< \/5 m,

(Vi) 0<Cr< 3, — /& < Zo< -2,
A>0,1<y <20r

l<y<20r

l<y<?20r

l<y<2o0r

l<y<2o0r

@ Springer
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(Vi) 3 <Ca<1,— /& < Zp < —1,

_ 2
0<Ai<+2 %,1<y<2,or
(vil) 0 < C2 < §, -2 < Zp < -1,

2
O<)\<\/§ :Ef—j’jz-,l<y<2.

(c) Q15 is non-hyperbolic for:

(i) C2 =3, %o = -2,
A>0,1<y<20r
(i) C2 =3, Zo=—1,
A>0,1<y <2 0r
(i) 0 < Cr < 5, Zp = —1,
A>0,1<y <2 0r
(iv) 3 <C =1, Z)=—1,
A>0,1<y<20r

) C2>1,—/CL2<20< /CLZ’
_ 2
A= /%,1<y<2,or

Vi) G =1, -2 <5 <1,

A:% EOS+2—2,1<y<2,or

(vii) Cr =, -1 < Zp <2,

A:%/208+2—2,1<y<2,0r

(vil) 0 < C; < 4, -1 < Xy < c%

2(1-C, 33)
(Zo+2)*

(ix) 0<Cy<§,-2< X< —1,

A= l<y<2o0r

_20-C3))
A= W’ 1< Yy < 2, or

x) 1<C<l,-1<X< /CLZ,

2(1-C, 52)
A:,/sz)z",l<y<2,or
xi) §<Cr<1,— /CL2<20<—1,

_200-C3)

Furthermore,

(a) Qi is a hyperbolic source for:
1) C2<0,X)>—-1,A>0,1 <y <2,0r

) 0<Cr<l1,—-1<2Xp< /CLz,

A>0,1<y <2 0r

(i) C2 > 1,— /& < Zo < /&

A>0,1<y <2
(b) Q16 is a hyperbolic saddle for:

@ Springer

Fig. 11 Real parts of the u;’s corresponding to Q17,13
1 _1 A
(X, A u,w) = <—§7 -3¢, bW 0)

() =14, -2< %<1,
A>0,1<y <2 0r

(i) 0<Cr< g, =/ < Zo< -2,

1-C, 238

(Zot2)%’

(i) 3 <Ca<1,— /& < %o < -1,
A>0,1<y <20r

(i) 0<Cr<$,-2< 3 <—1,
A>0,1<y <2 0r

WM 0<Cr<i, Zg=—
A>0,1<y <2 0r

i) 0<(Cy < %,—‘/Clz < Xy < -2,

1-Cy 32
A>«/§‘/ﬁ,l<y<2.

(c) Qi is non-hyperbolic for

0<)L<\/§ l<y<2o0r

1
JCy’

() Cr=14,%=-2,1>0,1<y <20r
) 0<Cr<1,Xp=—-1,1>0,1<y <2,0r

(i) 0 < Cr < 1, — /CL2<20<—2,

220,32
A= m, 1 < Yy < 2.

1 1 _A

Q17180 (X, A, u,w) = (—5, —£3, 3730 O) where one eigen-

value is zero and the other three eigenvalues are the
roots of the polynomial in u:

2 2 2
P(u)=u3+u2+u(2%2—cz—%+1)—2%2—
Cy+ kz—z + 1. It is either a non-hyperbolic saddle or a
center depending on the choice of parameters. Figure
11 graphically represents the real part of the u; corre-
sponding to the equilibrium point Q17 13, illustrating
that the equilibrium points have saddle behavior or they
are non-hyperbolic.
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Or9: (X, A, u,w) =

i 1 11/(1 2
elgenvalues{k—z—m,z(c—z_}_ﬁ_4),
1 1 2 1 2
7(C_z+ﬁ_4)’c_2+_2_2 :

It exists for 0 < A <

(a) is a hyperbolic source for:

@) 0<)»§\%,C2>A—22,0r

. 2 2
(i1) \%<A<1,%<C2<ﬁ.
(b) is a hyperbolic saddle for:
2
G r>1 0<C2<4A2 5> Or
2
(ii) O<A§l,O<C2<7.
(c) is non-hyperbolic for:
() ;=41 a=1o0r
(i) C2 =5 2 0<A < 1,or
§
(i) Cy = 4)\)5 5 T <A<l,or
@iv) Cy = 4A2 2’)‘ > 1.
020.21: (X, A, u, w)_< :/FCE %A O) with eigenval-
ues

{;_g NN _;<l+_¢gc%+4€2“—”2>

27532 T ) 7 ’
V/8CI4+4C222—T722

(1 — ;> } They are:

A

(a) hyperbolic saddles for:

M) 0<i<¥,

I -2 <0 < dATF 162 - &

or
(ii) 4<)\<
or
(i) 0 <1 < ZZ,
ﬁ<c2<-\/x4+14x ,or
(iV)A>\/_,C2>72
(V)O<)\,§\/_C2>— A4+16A , or
(vi))\>fl A+16a2—
<A<«/_
A4+ 1402 ——2<C2<—0r
(\/111))»>\/_1 A 1402 —
—4,0r
(0 0<2<Z0<Cr <%
0 A>Y0<C < Vi F1aZ -2

2.5 <G < WA 162 - &

< Cr< 2 , Or
(vn)

<C2 < VAt 4+ 1602

(b) non-hyperbolic for:

i) A>0,Co=%, or
(i) 4 >0,Cr = IVAFF 1622 — &

02223 (X, A, u,w) = (—% —eYC &,O) with eigen-

V237 2
values
2 2 2
LG VoG 1y G
27 X ) * ’
/8C24+4CHA2 =722

1 21402

-3 (1 — +————— (- They are:

(a) hyperbolic sinks for:
i) 0<xr<,

1 /7% 7 A2 1 /A54140442 A2
VAT + 140 F<C<gzy/y—/F— -7

or
(i) ¥ < i < 135095,

ﬁ <C < —,/—’\6+1;2’\4+2 %2, or
(iii) 0<A<£,L<c <l/Frimr -k
(b) hyperbolic saddles for:
() o <n< ¥

M IH2 -5 <0 < AT F 162 - &

I'
(i) ¥ < 2,4 < ¢ < WATF 162 -
or

(Gii) 0 < 2 < ¥,
%<C2§3T\/W , Or

(iv)O<A§ﬁ,C2>—m , or

) A>«/§,C2>)‘—22,0r

(vi) A>\/§,}‘

4+16)L2—);‘—2<C2<)‘72,0r

i) Y <A < V2, IV F T2 -2 <y < &,
or
(vii)) A > /2,
M IH2 -5 <0 < AT F 162 -
or
(ix) 0<,\<£,

0<C <5, o0r
(x) A > §,O<C254—1L x4+14x2—§.
(c) non-hyperbolic for:
) Ar>0,C=
(i) A >0,Cr =

A2
5 or

VA 1602

2
o425t (X, A, u,w) = (— A

2C3+Ca2°

eigenvalues {Clz - ﬁ,

V2 :
—85, m, O) with

8 4
2C+22 + G 2,
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4
T2 T Cz —2.25+ C; (2C +,x2) 2}’

2 _
where § = w. They exist for:
C2(2C2+22)

A>0,Cy> % A4+ 8A2 — )A—z.Theyare:

(a) hyperbolic sinks for:

(1) 0<A<+2,Cy>1,0r
2
(i) »> 2,0 > 4.
(b) hyperbolic saddles for:
) 0<i<v2 IViT¥1602 -4 < Cy < 1,or
(ii) o < A < 1, 1«/)\4-{-8)9 -
A4+ 1612 , or
(iii) 1<A<f,§<cz<i¢x4+16x2—§o,
(iv) A>~2, 5 )\4+16)\2—¥ <C < %,or
W) A>V21<C < IViFF 162 - 4

(c) non-hyperbolic for

< (C <

D) A>1,C =% or

(i) 2> 0,Cr = VAT £ 832 — & or
(i) 2 >0,Cr = LVAF £ 1622 — 2 or
(iv) 1> 0,Cr =1

) Y V2 :
Q26,27 (25 Aa u, w) - ( 2C§+02A29 887 2C2+)t2’ 0) Wlth

1 4 8 4
cigenvalues {Cz T T to -2
_—2C2+)~2 =+ C2 —2,-28 + m 2},

7 .
where § = w. They exist for:
€2 (2C,422)

)»>0,C22A—11 A4+8A2—};‘—2.Theyare:

(a) hyperbolic sinks for:

() 0<A=<+2,Co> VA +1602 — 4 or
(i) 2> v2,Cr > &

(b) hyperbolic saddles for:
() 0<xr<l,

‘]—t A4+8A2—E<C2<J—‘\/k4 1612 ,or
(ii)1<k<\/§,)‘—<C2<—\/)»4+16)» , or
(i) A > V2, 1V/AF + 1632 ——2<cz<— or
(@iv) 1<A§\/§,3—‘ A4+ 8A2 —TZ<C2<7,0r

V) A >2,

M8l - < < LT F e - &

(c) non-hyperbolic for:

@) A>1,C =% or

@ Springer

C2
" 4 6 8 10
4x1012 E@
2x1012 rE
Re(e;) 0
-2x1012

—4x1012 b
0

Fig. 12 Reals parts of ¢ corresponding to the
equilibrium  point 028 (X, A, u, w) =

(Cz—l 1 1=C 1 2C4X%42 \/(szl)(2C2+)»2*2)>
*

3 2> 52 R TR

(ii) A > 0,Cy = VA% + 1622 , or
(iii) » > 0,Cy = %«/M +8x2 — z-

QZS: (27 Av M,w)
G-l _ 1 1-C _ 1 201242 W ) Exists for

AZ 20752 20 221

A>0,C >02C+22 <20 >00C > 1
4-4Cy e1(A,C) era(r,C2) e3(A,Cr)

22 32CA12° B2CHA120 32CoA12 |-

In Fig. 12 the real parts of ¢; are shown, where it can

be seen that the point is a hyperbolic saddle or a non-
hyperbolic behavior.

2
029: (5, A,u, w) = (— ez 0

with eigenvalues {

V2Con

> 20442

\/ _ (1-4C2)2Coa2 (40~ 1)i2 —4C+44)

20,432 ) It exists for:

(a) Cp = }‘,)\ > 0, or
A2(22-2)

b) C2= =571 <X <+20r
A(A2=2
() C = —4(_&2), \/Li <Ai<l.

Figure 13 graphically represents the real part of the
eigenvalues of the equilibrium point Q9 : (X, A, u, w)

a2 V2Cyh 1 AM(2-2)
( 36,120 > 2Co ’O)’ €2 € {4’ Y
ferent choices of the parameter A. This figure illustrates

that the point has a general saddle behavior.

}, for dif-

Q30: (EvAvus w) = <07 —1— O’

V3

W2 (=2C2+22+48)2 (22Co+1))2+4(C2—1)Cr+34)? )

2220,
with ¢ = 1 exists for A > 0,Cy > %, with eigen-
values
£, Co) HO.Co) f(,C)

2000 (22-2C2)" 200 (02-2C2)7 2CA(32-2C2)°
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Re(ui)
1.0

051

4
Cr=—,A>0 Co=
4

Re(uj)

A2 (A%-2)
4-8A%

vz

1 2032 _
—<A<1 szA(A 2),1</\<\/E

Fig. 13 Real parts of the eigenvalues of the equilibrium point (X, A, u, w) = (

choices A

QOs1:

_ % } The real parts of f;’s are represented

in Fig. 14 (left panel).
(T, A, u,w) = <0,+ 0

20
/ A
Cr—5%

\/z\/_Az(—2C2+A2+8)2(2(2C2+1)Az+4(C2—1)C2+A4)2)

2220,

. . 2 L
with ¢ = —1 exists for A > 0, Cp > )‘7 with eigenval-

ues
{ £10..C2) £(..C) £3(..C2)
Ca1(2C2—22)Y?7 Can(2C2-32)*77 Coa (20, -2) Y%
84(A,C)
Ca1(2C—22)?
sented in Fig. 14 (right panel). Summarizing, accord-
ing to Fig. 14 these equilibrium points, Q3¢ and Q3y,
are either sources or they are non-hyperbolic (with four

pure imaginary eigenvalues).

}. The real parts of the g;’s are repre-

7.4 Invariantset A =v =0

At the invariant set A = v = 0, the equations are reduced to:

3y 2 2
-+t + Q2
2/=2C223+2C—+2(K+2u2—2),
2
(98a)

K' =2K (2c2):2 + K 4+2u% - 1) , (98b)
2 2

W =u (2@22 T K- 2) + 23 — ‘/;w , (98¢)
2

w = w (2C222+K+Z‘+2u2— Q) (98d)

with restriction

COX*+K+u>—(1—y)2 —w? =1. (98¢)

__ 22 g 200
2024227 77 20,4420

2(42_
0), Cy € {l G ) }, for different

For 1 < y <2, we have the auxiliary equation:
1
Q=8 ((—1 +3> T +4C 27 +2K +4u2> :
y —
(98f)
7.4.1 Reduced system

For 1 < y < 2, the restriction (98e) can be globally solved
for £2;, leading to the reduced system:

5 By =2 (C2Z* + K +u* —w? — 1)

2y — D
2
3, W 2
+20,8 +C—+Z‘<K+2u —2), (992)
2
K' =2K (20222 + K +2u® - 1) (99b)
2 2
U =u (2C222 + K +2u* - 2) — \/;w , (99¢)
2
w'=w<2C222+K+E+2u2— f”) (99d)

Foru = w = 0 and A — O the system (77) is recovered.
Therefore, the equilibrium points, and their stability condi-
tions studied in Sect. 5.6.1 are retrieved. By definition K > 0,
and w > 0 (if & > 0). Given that the system (99) is invari-
ant to the simultaneous change (u#, X) — (—u, —A), it can
be assumed A > 0. In the following discussion the analysis
is restricted to A > 0, u > 0 (the sign of u corresponds to
the sign of ¥, if & > 0). The following lists contains the
equilibrium points of the reduced system (99).

Ni: (X, K,u,w) = (0,1,0,0), £2; = 0. The eigenvalues
are {—1, —1, 1, 2}, then it is a hyperbolic saddle.

L: (X, K,u,w) = (20,0,,/1 —23@,0), 2, = 0.

This line of equilibrium points contains the equilibrium
points P1 and Py studied in Sect. 5.6.1 foru = 0. The
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V220,32
eigenvalues are {0 M +4, —% + X

+2, 2}. This line is normally-hyperbolic, i. e., given

the curve parametrization:

r(%) = (Eo, 0,,/1-C 53, 0) ,

the tangent vector at Xy:

Cr X
r'(Zo)=[1.0-—222_ o],

J1I-Cx3

is parallel to the eigenvector associated to the zero

. ,/17C2Eg
eigenvalue, say, v(Xp) = ey e 0,1,0]). In

this particular case, the stability of the curve of equi-
librium point can be studied considering only the signs
of the real part of the non-zero eigenvalues, concluding
that:

(a) L is ahyperbolic source for:

@) c2>0,20=JLC7,,\>0 l<y<2o0r

(i) C2>1, %=~ /&, 2 >0,3245 <y <20

1 1-C2 55
(i) C2 > 1,0 < o < /704 > V2 (20+2)%,

l<y<2o0r
. 1 1-C, 32
(IV) C2>0,0<2()< C_z’k>\/§ (E()T)z’
l<y<20r

1-C, 52
V) Cr>1,— /& < Do <04 > V2 55

2X0+4
S5 <7 < 2,0r

. 1-C 58
(Vi) 0<Cr<1,—-1<ZH<0,A>+2 o122’

2X0+4
35044 <V < 2,0r

.. 1-Cy 52
(vil) Cp > 1, — /CL2 <Z‘0§0,A>\/§,/ﬁ,

2X0+4
m <y < 2, or

1-C 55
(viil) 0 < C2 < 1,-1 < Zp < 0,1 > +/2 ot

2X0+4
35044 <V <2,0r

(ix) Cy > 1, \/><20<0,\>\/'1022

(Zo+2)%°

2X0+4
3284—4 <y <20r
1 1-C, 32
X C2>1,0< X< /g, 4> V2 Gory

l<y<20r

@ Springer

. 1-C, 52
xi) 0<Cr<1,-1<Xy<0,1A>+2 o
230+4
32814 <y <?2,0r
(xii) 0 < Cr < 1,0 < X < /CLZ,
_ 2
A > A2 zxfj;%,l<y<2,or
(xiil) Cp > 1, — /L<>:0§0,
) 1-65f 220+4<7/<2,0r

Zo+2)?° 3T0+4

(xiv) C» > 1,0 < X < /Clz,

1-C, 52
A > A2 (Zojz)%’l <y <2 o0r

xv) 0<(Cr<1,—-1< Xy <0,

[1-C252 235044
)\.>«/§ m,m<y<2,0r

(xvi) 0 < Cr <1,0 < X < /CLz,

1-C, 52
)\.>«/§ m,1<y<2.

(b) L is a hyperbolic saddle for:
(1)O<C2_4, —2 < Xy <-—1,
1-C, 52
A>«/§ (2j2)2,1<y<2 or
(11)O<C2< —1< 2%y <0,

\/_ 1— CZZ 2X0+4

Gorntr L <V < 35qa0r

(ii1) Z<C2§1,20=—J%,A>0,1<y<2,0r

(iv) Z<c2<1,—/CL<205—1,

A>\/§ -Gy % l<y<?20r

(2+2)2’
V) 3<Cr=<1,—-1<3<0,
1-C, 53 25+4
)\,>«/§ (2_"_2)(%,1 <322_+4,0r
(Vi) C2> 1,5 =— /&, 1>0,1 <y < 335,
(vii) C > 1, — /L <Xy <0,
1-C %5 2X0+4
> V2 G L <y < ssgor

(vii)) 0 < Cr, <1,0 < Xy < /C_z’

_ 2
0<ir<A2 izocj;%,l<y<2,or

ix) 0<(Cr<1,—-1 < Xy <0,

[1-C258 235+4
O<)\.<\/§ m,m<y<2,0r

() C2>1,0< %y </,

_ 2
O<A<ﬁ %,1<y<2,or

or
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4x1012 |

|
Re(f) |
2x10'2 “

Fig. 14 Real parts of f; (left panel) and g; (right panel) cor- ( 0. \/—\/ 22(=2C2+22+8)* (2(2C2+1))LZ+4(02 1)Cr24)> ) .

responding to the equilibrium points Q30 : (X, A, u,w) = z_j’ 2220y
0 NG \/ A2(72C2+)\2+8)2(2(2C2+1))L2+4(C27l)Cz+k4)2 -1, respectlvely Then, Q3¢ and Q3;, are either sources or they are
Cz—— 2220, &= non-hyperbolic (with four pure imaginary eigenvalues)
land Q31 : (X, A, u, w) =
. 1 _ 5
(xi) Cp > 1,—,/C—2 < X <0, iv) 0 < Cy < ‘—1‘,«/5 :E()Cj;g =AMl <y <
1-C252 23544 2,—2<Xy<-—1,0r
0<2r<v2 (EO+2)3,328+4<J/<2,OF 01_ 1-Cy 32
£ 240 <
X11 < < 1,/ = < - > +
(xiD) 0 < C2 <, =/ 7 < Zo < =2,2 >0, W 0<C< i V2 Ehr=hl<y<20s
1<y<20r EO<J%’Or
(Xlll) 0<C2< i -1 <Xy <0, (vi) CZZJT,_l <20<0’y=2§§81421)’
1-C, 52 25044 2 1
O<)"<\/_ (2+2)2, V<328+4,OI' 0<A< o2 5, OI
(xiv) 0 < Cy < 4, -2 < 5y < —1, (Vi) Ca =4, —1 < Zp < 0,y = 35242,
_ 8 _
0<i<+2 %,1<y<2,0r 2h >\ —2or
X T (vili) Co =}, —1 < Xp <0,y = 2502,
(XV) Z§C2<ls_ C_<EO§_1, 0
2 ,/EO+2—2—2A1<V<20r
A< ﬁ % l<y<20r i
(Zo+2)2° 14 ’ (IX) C2—4,1<)/<2
(xvi) 1 <Cr=1,-1< 3 <0, [52m —2=21-2< %) <—1lor
1-C, 5% 250+4 _
0<i<2 (2j2)3,1<y<32814,or (x) 4C, = 1,1 < y < 2, m 2 = 24,0 <
. Xy < 2,0r
(xvii) €2 > 1’_\/_ <2p <0, (xi) Cp = }t,l <y <2, Xy=-2,A>0,0r
Lyl _2(Z0+2)
1-C, 53 250+4 (xii)) 7 <C2 =1, -1 <X <0,y =357
0<x<+2 = +2)2,1< < 35g 4 : 3T0+4
1-C, 23
(c) L is non-hyperbolic for: 0<x<v2 (Zo +2)2’

(i)O<C2<—, 1<Z’o<0y—2(20+2) (xiii) 7 <Cr=1,-1< Xy <0,

3X0+4 2Z0t2) \/_ 1C222
0
1C220 Yy = 32+4’)" 2+227 or
0<Ai<2 o122 © ! ( :
. 1-C, 52
(i) 0<Cr< i ~1<X<0,y=2402 (xiv) § <G =1, -1 < % < 0,72,/ =55 =1,
_ 1<y <20r
PRV, hme e !
(Zo+2) 1 1-C %)
1-C, 52 (XV)Z<C2<1\/— (2+2)2_)\71<V<2,
1 el (R
(i) 0 < C2 < §.-1 < X < 0,2 Tor2? = 0<20<f’0r

Ml<y <20
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. 1-C 32
(xvi) 3 <C2 = 1,42 <zo+22)3 =irl<y<2,
—% < Xog<-—1,0r
(xvii) C2 > Ly = 35, =+ %o = 0,2 > 0, 0r
(xvii) Co > 1,y =222 1 5, <0,

350+4 ° T JCs

_ 2
O<A<\/§,/ﬂ or

(Zo+2)%°
(i) €2 > 1,y = 33D~ < % <0,
1-C> 53
> V2 S22 O
B P
xx) C; > 1,72 :E()C%E)‘g:)»,l<y<2,0§
20<f’0r
. 1-Cy 52
(xxi) C2 > 1,2 (2j2)g =A1<y <2’_¢%
2o < 0.

The following list contains new points that were not stud-

ied in Sect. 5.6.1.

. _ _ _2(yr=hHBy=2)
1. P13()\') . (29 Kv u, U)) - ( 8Cr(y—1)2+y222°
yQBy=2)1
V2(8C2(y =12 +y222)°
VTV =2h/4=16Ca(y —1)>—y (v (222 -9) +12)
V2(8C2(y =124y 222)
yA2—4(y —1)C2)(4—16Co(y — D> —y (y (222 -9) +12))
(8C2(y—1)2+y232)?

QZ‘:(

eigenvalues are

(2-3y)?
—2 2,2 20,0
YA+ 8(—14y)*Cy

22 —3y)?
Y2A2 4+ 8(=149)2Cy’
_ ((_1 +7)C2 (yzkz +8(—1+ y)zCz)
x (—4 +y (12 +y (—9 + 2A2)) +16(~1+ )’)ZCZ)
+/ ((—1 +y)Ca (yzxz +8(—1+ V)2C2) :
x (—4 ty (12 ty (—9 + 212)) +16(—1+ y)2C2)
x (2)/2(—2 +39)A% + (=1 + )02
x (<a+y (28+7(-33+22))
F16(—1 + y)2C2>>)>/

(2(—1 +9)Ca (y%\z L8(—1+ y)2C2) 2) ,

(-

14+9)Cy (yzkz +8(—1+ y)2C2)

(-
( 44y (12 Ty (—9 + 212)) F16(—1+ y)2C2)

@ Springer

. The

Y ((—1 +1)C, (yzxz +8(—1+ V)2C2> 2
x (—4 Ty (12 ty (—9 n 2x2)) T 16(—1+ y)2C2)
x (2;/2(—2 +3922 + (=1 4+)C2

x (—4 +y (28 +y (—33 + 2x2))
F16(—1 + y)2C2>>))/

(2(—1 +1)C2 (y2)»2 +8(—1+ y)2C2> 2)} .

(a) Pi3(A)isa hyperbolic sink for:
(1)1<C2<2,4C <y <2,

\/(2—3y>2 VS(y 1)202 “n<2 /(V—I)Cz or

- 4Cr= 2(4C2 3)

\/(273;/)2;82(}/71)2@ <x <2/ ;)Cz’or
2(4C>—-3 C
(iii) C» > 2, (8022—9) +2v2 W <y <
2.0 <1 <2 /=00
’ V *

(b) Py3(1) is a hyperbolic source for:
@) 0<C2§%,1 <y <2,

— — 2_ —1)2
2 [ yl)Cz <)< %\/2(2 37) y322<y D’C2 o

i 1 8Cr—2
(i1) C2>2,1<y<8c2 5

2 [x=bC 1)c2 <)< \/2<2 3232y -12Cr
2

(c) Pi3(A)is non hyperbolic for:

(0C2>§,1<)/<M)L_2 yl>c2,01'

s: 1 8Cr—2 _ yCr—Co
(i) C2 > 3, 8C§_3 <y <2,A _21/T,or
2(8Cr— 3) C
(i) Co > 1,1 <y < 166, — +4 /(16622—9)2’
A

(2-3y)*-8(y—-1)2C;
V2
. 2(4C2—3) C
(IV) C2>2,1<)/<W2_9+2\/§ (SQ—39)2’

_ 2_ —1)2
2=3y) J/82(3/ D Cz,or

A=
V) 0<(Cy < %,1 <y <2,A=2‘/@,or
i) 0<Cr<1, 1<y <2,=, /B30 BrC

or
(Vi) 0<Cr<2, 1<y <2, A= WW}#

(d) Pi3(2) is a hyperbolic saddle for:

(i)0<C2§%,l<y<2,0<)L<2 (7—}/1)6‘2’
or
(i) 0<Cr=<t1<y<2,

2 /(y—1>c2 <A <\/<2—3y>2—V8(y—1)2c2 or

(iii) 0<C2_2,]<y<2 s [ @30’ = By = Gy

y?
or
(v <C <Ll <y

y=DC
2 14

,or

8Cr—
< 36 3,O < A<

, or
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1 8Cr—2
W L<C=11<y<3G2,

2 /(y—VncZ <A< \/(2—3y>2—)/82<y—1>262’0r

V)3 < G < 11 <y < §&54
378012

\/(2 3y) ng(y G o

(vii) % <(Cy <1, ggi:g <y <2,
0<i< \/—(2_3}')2_)/82(3/_1)2@, or

(viii) % < Cp < 1,28:3 <y < 2,A >
2,/0C o

(ix) C, > 1,1 <y < 28:5,0<A<2‘/¢,
or

x) Cr>1,1<y< ggi:g,

2 /(wyl)cz << \/(273y>2;82<y71>202,0r

8Cr—2

xi) Cr>1, 1<y < 863

or
(xii) Cy > 1

Y

2(8C2—3) C

16c; -0 T4/ {6, -0y
0 < A< \/W, or

(xiii)) Cy > 1, 86,3 =V <

%
2(8Cr—3) Ch
T605—9 T4/ {T6c, 07"
N W, or

. 2(8C2—3) C
xiv) C2 > 1, Jge—5 +4 /(16C2—Z_9)2 <y<2,
A > 2 [w=DbG
Vi

2. Piy(A) (X, K, u,w) =

8Cr—2
» 8C,—3

<y <

8Cr—2

3y-2> 2-3y)2

_2(y=D) 4-8C(y—1)2—y (y (A2—9)+12) yh A )

T V2@y-2)’ [4-6
Q, = Hy=DC—ys?

EEEEa The real parts of the u;’s are repre-
sented in the Fig. 15 for some values of C,, where it is
shown that Pj4(A) is typically a hyperbolic saddle for the
given values of the parameter C» (or is it non-hyperbolic).
The following points are recovered: limy_.g P13(A) =
Pi3 and lim; ¢ P14(X) = Pi4.

. _ 2-3y _ 1
3P (5K uw) = (5255.0,0,0), 2 = SLy -
2
16((2)/__%. The eigenvalues are:
{y(3y72) Q=3y)? 5 @3y 5, =3y
8(y—DICy’ B(y—1D2C; T 8(y—D2C; A —1)2G

2
4 Pus (5 Kouw) = (<201 - 80 0, 0),

3y=2>
2, = 3=DC The eigenvalues are:

T @-3y)?
_ vy 1 A/(64y—1)2C2—72-3y)?)
»3y—2°" 2 23y-2) >
1, A/ (64y—12C-72-3y)?)
-3t 3Gy =2) :

2-3y)2—8(y—132C
A>\/< P28y -12C;

A2+ (2—-422)Cy

5. Pis(A) (X, K, u,w)=| — 23:4Cs

£2; = 0, with eigenvalues
o e h
(a) P15(A) is a hyperbolic sink for:

(a) %<C2§1,1 <y<2,)»>\/§\/%,or

(b) C2>1,1<y§jg§:§,k>«/§ zccz—{l,or

(c) C2>1,jg§:§ <y<2,k>2W
(b) Py5(}) is a hyperbolic source for:
H0<Cr<tl<y<20<r<2 (V’VI)CZ,
or
i) ¢ > 3.1 < y < ggi:g,o < & <
2 (V—;)Cz,or
(i) C; > %,gg;_:g <y < 20 < & <

C
V2 et
(c) P15(A) is non-hyperbolic for:

%,1<y<2,)»=2 =1

(i 0<(C < 2, or
sy 1 1 _ y=DC
(11)1<C2§z,1<y<2,)\.—2 TZ,OI‘
C
(111)‘—1‘<C2§%,1<y<2,)\=\/§ éwz_l,or
(iv) 3 <Ca<ly =g A =~2 /. 0r
V) % <Oy <l,y= —ggg:g,k:ﬁ —2CC22_1,0r
(Vi)% < (Cp < l,ggi—:g <y < 2,)A =
2,/%E or
Vi) 3 < G < L1 < y < §&50 =
2, /T or
(vil) 1 < G < 1,22;:% < ¥y < 2,0 =
[ c
\/z 46‘2_271’01.
(ix)% < C < 1,1 < y < %,A—
\/Z1/4.6‘C;_2_1’0r
(x)%<C2§1,§8—:§<y<2,A=
«/5, / _2CC;2—1 , or
x) 3 < ¢ = Ll <y < gg;;g,x =
«/z,/zccz—{l,or
(xi) C3 > 1,383 <y <2,A =2 /%,or
8C,—2 4Cr—2 4 __ y-DC
(xiii) Cp > 1, 8C§73 <y < 4C§73,)\ =2 =
or
(xiv) C2>1,1<y<§8:§,kz2 W,or

(xv) G2 > 1y = 385, A =2,/ 75, or

. _8C—2 4 _ [
xvi) C2 > 1,y = 36,3 A=42 1T OF
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.. 4CH—
(xvii) Cy > 1, 4C§

<y<2,)»=«/§ 4CC2—21,0r

3
8Cr—2 4Cr— 2 _
(xviii) Cp > 1, 863 <V < 6= A=42 4C2 Ts

or

(xix)C2>l,1<y<8C22A—«/§ or

_G
Ic,—1°

4Cr— _
Ly =zg6= 3’)‘ V2 2c 301> OF

xxi) Cp > 1,y = 28 3,A=\/_‘/2C2—_1,0r

(xxii) C» > 1, 2222 -y <22 =42 %,or

xx) Cy >

4C,-3
(xxii) Co > 1, 36275 < ¥ < 36273, & = v2,/ 555,
or
(xxiv) Cp > 1,1 <y<§8—:§,k:«/§ zc(’;—z_l
(d) P15(A) isa hyperbolic saddle for:
@) —<C2<1,T<y<2,

/ [r=DC
\/_ 4C2_21 <iA<?2 T, or

(11)C2>1,4C <y<2,

V2 4c2 <)‘<\/_ zcz 26, 1> OF
4Cr—
(111) C2 > 1’ SC <y = 1C— 3’

\/—\/MT<A<2\/W
(iV)O<C2§Z’1<V<27)v>2W,0r

V) 3<C=3l<y<2,

21/(7/ 1)C2<A<«/_ 4C2 o=, or

. 8C:
(vi) Cr > 2, l<y< 8C§—3’

2,/%<k<«/_ Lor

(vii)l<C2<— l<y <2, )L>\/_‘/4C2 7, Or

(viii) -<C2_1,§C2—2<y<2

2,/()' 1)C2<A<«/_ , or

(ix)l<c2<1 1<y<§§§ %,

\/_1/4C <)L<\/_ 2C2 507> Of

4Cr—
(%) C2>1,8C 3<V<402 3,

[y=DC
2 T<}\.<«/— m,or

(i) C2> 1,1 <y < &3,

ﬁ‘/%<)\<\/§ 2CC2—2_1,0r

(xii) Cp > 1, jcz <y <2,

/| _C [ (y—=DC
«/5 2C2271 <A<?2 Tz

7.5 Discussion

In this section, timelike self-similar spherically symmetric
models with scalar field (81), were qualitatively analyzed
using dynamical systems tools. The first notable feature of
the present model is that for non- homogeneous scalar field
¢ (¢, x) and its potential V(¢ (¢, x)) to satisfy the homothetic

@ Springer

symmetry imposed by the metric, it is required [70]:

Pt x) =Y(x) —
V(p(t, x) = e 2U W),
Up) = Upe 7.

It is assumed that A > 0, such that for v > 0, U — 0 as
A — 0. The equations were normalized with the variable 6.

Due to the computational complexity of the resulting prob-
lem, it was not possible to obtain and analytically treat all
the equilibrium points of the system (90). Hence, only some
special cases of physical interest were considered, being (94)
corresponding to a perfect fluid in the form of an ideal gas,
(96) corresponding to the solutions in the invariant set X' = 0,
(97) corresponding to the case of extreme inclination. Finally,
the invariant set A = v = 0 sets of system (98) was studied.
The hyperbolic points were completely classified according
to their stability conditions.

8 Conclusions

In this paper the space of the solutions of the differential
equations that result from considering perfect fluid and/ or
scalar field as the matter content in the Einstein—ather the-
ory was studied. Einstein—ather theory of gravity consists
of General Relativity coupled to a vector field of unit time
type, called the @ther. In this effective theory, the Lorentz
invariance is violated, but the locality and the covariance are
preserved in the presence of the vector field.

In Sect. 2 the 1+ 3 formalism was discussed. This formal-
ism is useful to write the field equations as a system of partial
differential equations in two variables for spherically sym-
metric metrics. Furthermore, using the homothetic diagonal
formulation, it was possible to write the partial differential
equations as ordinary differential equations using the fact
that the metric adapts to homothetic symmetry. The result-
ing equations (with algebraic restrictions) are very similar to
those of the models with homogeneous spatial hypersurfaces
[75]. It was then possible to use the techniques of the quali-
tative theory of dynamical systems for the stability analysis
of the solutions of the models. The analytical results were
verified by numerical integration.

In the Sect. 3 the Einstein—a@ther theory of gravity was
presented, which contains the theory of General Relativ-
ity as a limit. Conformally static metrics were studied in
Einstein—ether theory for models of physical interest, such
as pressure-free perfect fluids, perfect fluids, and models
with extreme tilt. The stability criteria of the equilibrium
points of the dynamical systems were obtained and discussed,
imposing restrictions on the parameter space. Phase portraits
were also presented to illustrate the qualitative behavior of
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C2=05

Fig. 15 Real parts of the 1;’s corresponding to Pj4()) for some values of C»

the solutions. The equilibrium points obtained by [67] are
recovered as particular cases of the present model. In the
notation Kernelzggg) the kernel indicates the interpretation
of the point: M, C represent the Minkowski spacetime; K
represents a Kasner solution; 7 corresponds to static solu-
tions; S L 4 corresponds to a flat FLRW space and static orbits
depending on the parameter y . H is associated with a change
of causality of the homothetic vector field. The following

results were retrieved:

SL4: Sonic lines defined by A = —%, v =

ey — 1, were analyzed in Sect. 5.1. As a difference

}/2
4y-1)?
the system (75) admits the following equilibrium points:

SLi: ¥ = 2(r=D v=Ay =1 A= _Yr(ZF+2)-2)
. y ) ’ >

with general relativity, for | <y <2and C =

4y—1)7
Ly - 2= — Yy (Z+2)-2)
Sy X =—=5—v=—Jy - L A= 5n,

which lie on the sonic line. If y = 2, C, = 1 these points
exist, and since y = 2 the fluid behaves like stiff matter.
Additionally, if y = 2, C» = 1, these points correspond
to models with extreme tilt (v = ¢), SL1 : ¥ =1, A =
—2,v=1,and SL, : ¥ = —1,A = 0,v = —1.
SL+ corresponds to a flat FLRW space and static orbits
depending on the parameter y.
(y—l)yi(\/(y—1)(<y—1>y2+(2—y)(3y—2>))
=y 4
(K, £2;) = (0,0), exist for C; = 1. They represent the
Minkowski space-time.
M*T (X, A,v) =(0,1,1), (K,$2) = (0,0), corre-
sponds to Ps for C, = 1. It represents the Minkowski
space-time.
M~ (X, A,v) =(0,1,-1), (K, £2:) = (0,0), cor-
responds to Pg for Co = 1. It represents the Minkowski
space-time.
CO (X, A,v) = (0,0,0), (K,$2) = (1,0), corre-
sponds to Nj. It represents the Minkowski space-time.
C*: (¥, A,v)=(0,0,£1), (K,2)=(,0),corre-
spond to N7 3. They represent the Minkowski space-time.
K% 1 (Z,A,v) = (=1,0,0), (K,$;) = (0,0), cor-
responds to Py for C, = 1. It represents the Kasner
solution.

ME . (zAv = |o1.

K9 1 (Z,A,0) = (1,0,0), (K,£2,) = (0,0), cor-
responds to Pjp for C, = 1. It represents the Kasner
solution.
KE¥:(Z, A v)=(=1,0,£1), (K, ;) =(0,0),cor-
respond to P; » for Co = 1. They represent the Kasner
solution.
Kf (X, A, v) = (1,0, £1), (K, ;) = (0,0), cor-
respond to P34 for C» = 1. They represent the Kasner
solution.

T (5, A,v) = (—23Vy;_12,0, 0),

(K, $2;) = (%, %), corresponds to Pj3 for
Cr=1.

H™: The curve of equilibrium points A(X) = X + 1,
v(X) = —1, (0,—2XA). This line of equilibrium
points is associated with a change of causality of the
homothetic vector field.

These results are of interest in Cosmology and Astrophysics.

In Sect. 6 conformally static metrics were studied in
Einstein—ather theory for models with tilted perfect fluid
and inhomogeneous scalar field with exponential potential,
so the model contains the model studied in Sect. 4 and thus
contains the model studied in [75]. Particular cases of interest
in Physics were studied, such as the perfect fluid in the form
of an ideal gas, solutions with X' = 0, models with extreme
tilt and the invariant set A = v = 0. It was possible to study
a more general model than the one studied in [75], and the
results obtained by the authors were reproduced through the
use of techniques from the qualitative theory of dynamical
systems. A qualitative analysis of some invariant points was
also made for models with timelike self-similar spherically
symmetric metrics with a perfect fluid and a scalar field.
New equilibrium points were obtained, and their stability
conditions were found either numerically or analytically, by
imposing restrictions on the parameter space.
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