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Abstract The influence of non-minimal coupling of a
scalar field and the Gauss–Bonnet term on the inflation-
ary stage of evolution of the universe is investigated in this
paper. The main cosmological effects of such a coupling
were considered. The deviations between Einstein–Gauss–
Bonnet inflation and standard one based on Einstein gravity
were determined. The corrections of a weak GB coupling
preserving the type of the scalar field potential to standard
inflationary models is considered as well.

1 Introduction

At this stage in the development of theoretical investigations
of the early universe, cosmological inflation [1–7] seems to
be the most convincing theory. The first models of cosmolog-
ical inflation were based principally on Einstein gravity and
the assumption that there is some scalar field φ as an ideal
barotropic fluid with negative pressure at the inflationary
stage of the evolution of early universe [2–7]. Also, according
to the theory of cosmological perturbations, quantum fluctu-
ations of a scalar field induce corresponding perturbations of
the metric, which give rise to a large-scale structure of the
universe and relic gravitational waves [8]. At the moment, a
large number of different models of cosmological inflation
with canonical scalar fields based on Einstein gravity are con-
sidered to describe the inflationary stage of the evolution of
universe [9–12].

Another possibility for constructing the cosmological
models of early universe is using modified gravity theories
which include the higher-order curvature terms [1,13–17]
which can be associated with quantum effects in the low-
energy limit of string theory and supergravity. One such
a correction is the Gauss–Bonnet term (scalar) R2

GB =
Rμνρσ Rμνρσ −4RμνRμν+R2 which arises in the low-energy
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effective action for the heterotic strings [18–22], and also
appears in the second order of Lovelock gravity theory [23].

Cosmological models with the Gauss–Bonnet (GB) term
in four-dimensional Friedmann universe was considered ear-
lier in a large number of works (for example, see [24–42]).
The important property of such a models is that the GB-
term affects the cosmological dynamics in four-dimensional
space-time only for the case of non-minimal coupling of this
term with a scalar field [24–42] that can be defined by some
coupling function ξ(φ).

The evolution of cosmological perturbations and their cor-
responding parameters for Einstein–Gauss–Bonnet (EGB)
inflationary models were considered in papers [43–52]. In
this case, it should be noted that the non-minimal coupling
of a scalar field and the Gauss–Bonnet scalar allows to verify
cosmological inflationary models from observational con-
straints on the values of cosmological perturbation parame-
ters [53,54], in contrast to some models constructed based
on Einstein gravity only due to difference in the evolution of
perturbations at the inflationary stage [31,44,45,48,49].

An important difference between inflationary models
based on Einstein–Gauss–Bonnet gravity and ones based on
GR is the dependence of the velocities of the propagation
of cosmological perturbations on cosmic time [43–52], that
implies the deviations of these velocities from the speed of
light in a vacuum for EGB-inflation.

A common method for analyzing cosmological models
based on modified gravity theories is conformal transforma-
tions of a space-time metric that bring the initial action to the
Einstein-Hilbert form with corresponding transformations of
the material components [13–16]. The explicit form of the
transformations allows one to compare models based on Gen-
eral Relativity and its modifications. However, for the case
of Einstein–Gauss–Bonnet gravity, no such a transformations
were found [55].

In papers [56–60] it was proposed to consider the rela-
tionship between standard inflationary models and EGB-
inflation directly from the equations of cosmological dynam-
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ics in flat four-dimensional Friedmann–Robertson–Walker
(FRW) space-time, which is sufficient for comparing such
a models, since this type of geometry is the basis for con-
structing phenomenologically correct cosmological of mod-
els [53,54,61,62]. Also, this approach was used to analyze
cosmological inflationary models based on the other modifi-
cations of Einstein gravity [60,63,64]. Thus, the application
of the approach based on a connection between Einstein–
Gauss–Bonnet gravity and General Relativity in relevant cos-
mological models makes it possible to evaluate the effects of
the non-minimal coupling of a scalar field and the Gauss–
Bonnet term.

The aim of this work is to develop the method of analysis
of Gauss–Bonnet term corrections to standard inflationary
models which was proposed in [56–60]. The article is orga-
nized as follows. In Sect. 2, the difference between equa-
tions of cosmological dynamics for the case of Einstein–
Gauss–Bonnet gravity and General Relativity in flat four-
dimensional FRW space-time is considered. In Sect. 2.1, this
difference is defined in terms of the deviation parameters, and
estimates of the influence of the non-minimal coupling of a
scalar field and the Gauss–Bonnet term on the main param-
eters of the background cosmological dynamics are given.
It was further obtained that the slow-roll conditions imply a
weak effect of such a coupling on cosmological dynamics.
This result was applied in Sect. 2.6 for the analysis of EGB-
inflationary models with a weak coupling and the parame-
terization of the Gauss–Bonnet term corrections through a
coupling constant. In Sect. 4, different cosmological infla-
tionary models with weak a GB-coupling were considered,
and the main effects of such a coupling on the inflationary
parameters were determined. In conclusion, the results of this
work were discussed.

2 The cosmological models based on the
Einstein–Gauss–Bonnet gravity

The models of cosmological inflation with Einstein gravity
can be considered on the basis of the action [2–7]

SE =
∫
M

d4x
√−g

[
1

2
R − 1

2
gμν∂μφE∂νφE − VE(φE)

]
,

(1)

and for inflationary models with additional non-minimal cou-
pling of a scalar field and the Gauss–Bonnet term, the action
is [24–36,38]

SGB =
∫
M

d4x
√−g

[
1

2
R − 1

2
gμν∂μφGB∂νφGB

−VGB(φGB) − 1

2
ξ(φGB)R2

GB

]
, (2)

where φ is a scalar field with the potential V (φ), R the Ricci
scalar curvature of the space-timeM, R2

GB = Rμνρσ Rμνρσ −
4RμνRμν + R2 the Gauss–Bonnet term and ξ(φGB) is a cou-
pling function. Index “E” denotes Einstein gravity, and index
“GB” means Einstein–Gauss–Bonnet gravity.

The background dynamic equations corresponding to the
action (2) in a spatially flat four-dimensional Friedmann–
Robertson–Walker space-time

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (3)

in the system of units 8πG = c = 1, are [24–36,38]

3H2
GB = 1

2
φ̇2

GB + VGB + 12ξ̇H3
GB, (4)

φ̇2
GB = −2ḢGB + 4ξ̈H2

GB + 4ξ̇HGB(2ḢGB − H2
GB), (5)

φ̈GB + 3HGBφ̇GB + ∂VGB(φGB)

∂φGB

+12H2
GB

(
ḢGB + H2

GB

) ∂ξ(φGB)

∂φGB
= 0, (6)

where a dot represents a derivative with respect to the cosmic
time t , H ≡ ȧ/a denotes the Hubble parameter and a = a(t)
is a scale factor.

Since the Eq. (6) can be derived from (4) and (5), one can
consider the dynamic Eqs. (4)–(6) in the following form

VGB(φGB) = 3H2
GB + ḢGB − 10H3

GBξ̇ − 2H2
GBξ̈

−4HGB ḢGBξ̇ , (7)
1

2
φ̇2

GB = −ḢGB − 2H3
GBξ̇ + 4HGB ḢGBξ̇ + 2H2

GBξ̈ . (8)

The transition to the case of Einstein gravity (minimal
coupling) is carried out by means of the condition ξ̇ = 0,
when Eqs. (7) and (8) are reduced to

VE(φE) = 3H2
E + ḢE, (9)

1

2
φ̇2

E = −ḢE, (10)

corresponding to action (1), where the inflationary parame-
ters for EGB-inflation are reduced to ones for the standard
inflation under this condition

V (ξ̇=0)
GB = VE, φ

(ξ̇=0)
GB = φE, H (ξ̇=0)

GB = HE. (11)

The usual method for analyzing cosmological models
based on modified gravity theories is conformal transforma-
tions of the metric g(E)

μν = 	2(φ)gμν , where 	2(φ) is the
conformal factor, which lead the action defining the model
based on modified gravity to the Einstein-Hilbert action (1)
with corresponding transformations of geometric and mate-
rial components in action [13–17,46,47]. However, such a
transformations can’t eliminate the non-minimal coupling of
a scalar field and the Gauss–Bonnet scalar [55].
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Thus, in this case, an approach seems to be relevant in
which the connections between inflationary parameters for
the case of Einstein–Gauss–Bonnet gravity and General Rel-
ativity are determined directly from the equations of cosmo-
logical dynamics in the Friedman-Robertson-Walker space-
time.

2.1 The deviations between Einstein–Gauss–Bonnet
inflation and standard one

As one can see from Eqs. (7)–(8) and (9)–(10), the non-
minimal coupling of a scalar field with the Gauss–Bonnet
scalar changes the evolution of a field itself, its potential and
the dynamics of the universe’s expansion in the Friedman-
Robertson-Walker space-time.

To characterize the difference between these inflationary
parameters for EGB-inflation and standard inflation in spa-
tially flat FRW space-time one can define following deviation
parameters


V ≡ VGB − VE, (12)


X ≡ XGB − XE, (13)


H ≡ HGB − HE, (14)

as the functions of cosmic time, where XGB ≡ 1
2 φ̇2

GB and
XE ≡ 1

2 φ̇2
E are the kinetic energies of a scalar field for

EGB-inflation and standard one. In general case, the devia-
tion parameters are the some functions of cosmic time, also,
under condition ξ̇ = 0 one has 
V = 
X = 
H = 0.

It should be noted, that one can’t define the deviation
parameters in explicit form without the connection between
inflationary parameters for standard inflation and EGB-
inflation.

To find such a connection one can consider the coupling
function as follows

ξ =
∫

HGB − F

2H2
GB

dt + const, ξ̇ = HGB − F

2H2
GB

, (15)

where F = F(t) is some arbitrary function of cosmic time.
After substituting (15) into dynamic equations for EGB-

inflation (7)–(8) one has

VGB = −2H2
GB + 5FHGB + Ḟ, (16)

1

2
φ̇2

GB = −Ḟ + FHGB − H2
GB. (17)

To determine the meaning of function F , one can con-
sider the transition to standard inflation ξ̇ = 0 which can be
implemented by the conditions HGB = F and F = HGB in
expression (15).

Under these conditions, from Eqs. (16)–(17), taking into
account (11), one has

VE = 3F2 + Ḟ = 3H2
E + ḢE, (18)

1

2
φ̇2

E = −Ḟ = −ḢE. (19)

Therefore, one can conclude that function F is the Hubble
parameter for the case of Einstein gravity F ≡ HE, and the
condition ξ̇ = 0 in expression (15) corresponds to HGB =
HE.

Thus, the connection between Hubble parameters for stan-
dard inflation and EGB-inflation can be obtained from Eq.
(15) in following form

HE = HGB
(
1 − 2ξ̇HGB

)
. (20)

This relation between the Hubble parameters HE and HGB

was considered earlier in the papers [56–60].
Thus, for F = HGB one can write dynamic Eqs. (16)–(17)

for EGB-inflation as

VGB(φGB) = −2H2
GB + 5HEHGB + ḢE, (21)

1

2
φ̇2

GB = −ḢE + HEHGB − H2
GB. (22)

Further, from definitions (12)–(14) and Eqs. (9)–(10),
(20)–(22) one can obtain the deviation parameters in explicit
form


V =−2H2
GB+5HEHGB−3H2

E =2H3
GBξ̇ (1 − 6HGBξ̇ ),

(23)


X = −HGB(HGB − HE) = −2H3
GBξ̇ , (24)


H = HGB − HE = 2H2
GBξ̇ , (25)

These parameters are connected by the relations


V = −3
2
H − 
X , 
X = −HGB
H . (26)

Since the deviation parameters (23)–(25) can be both pos-
itive and negative, the character of the influence of non-
minimal GB coupling depends on the choice of a specific
model of cosmological inflation.

2.2 The influence of GB-term on a scalar field

As the first application of proposed approach, one can deter-
mine the change in the characteristics of a scalar field inspired
by non-minimal GB coupling.

The influence of such a coupling on the pressure of a scalar
field p = X − V can be found as the difference between
pressures for EGB-inflation and standard one

pGB − pE = XGB−XE−VGB+VE =
X −
V =3
2
H+2
X .

(27)

As one can see, this difference depends on the model’s type
of inflation.
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However, for the difference between energy densities of a
scalar field ρ = X + V one has

ρGB −ρE = XGB − XE+VGB −VE =
X+
V =−3
2
H <0,

(28)

for any inflationary model.
Therefore, in four-dimensional spatially flat Friedmann–

Robertson–Walker space-time the non-minimal coupling of
a scalar field with the Gauss–Bonnet term leads to decrease
of it’s energy density.

Further, one can write a state parameter of a coupled scalar
field as

wGB = pGB

ρGB
= wE + 3
2

H (pE + ρE) + 2
XρE

(ρE − 3
2
H )ρE

= wE + 2

3

(

2

H εE + 
X

H2
E − 
2

H

)

= −1 − 2

3

(
ḢE − 
X

H2
E − 
2

H

)
, (29)

where

wE = pE

ρE
= −1 − 2ḢE

3H2
E

= −1 + 2

3
εE, (30)

is a state parameter and εE = −ḢE/H2
E is slow-roll param-

eter for the case of Einstein gravity.
Thus, in general case, the non-minimal coupling of a scalar

field with the Gauss–Bonnet scalar can significantly change
the equation of state of a scalar field. Nevertheless, when
evaluating such a changes, the condition ρGB > 0 should be
taken into account, which will be considered further. Also,
for the case ξ̇ = 0 one has 
X = 
H = 0 and the state
parameter wGB is reduced to wE.

2.3 The influence of GB-term on the background dynamics

The influence of such a coupling on the dynamics can be qual-
itatively estimated by the sign of ξ̇ . In the case of decreasing
coupling function ξ(t) (ξ̇ < 0) one has HGB − HE < 0,
that means a decrease in the rate of expansion of the universe
relative to the standard inflationary models and one has the
inverse effect (acceleration) in the case of the growth of cou-
pling function ξ(t) (ξ̇ > 0).

This effect can be also quantified by the difference in the
e-folds numbers which changes as

NGB − NE =
∫ tE

ti
(HGB − HE)dt =

∫ te

ti

Hdt, (31)

where ti and te are the times of the beginning and the end of
inflationary stage.

From the conditions of positive energy density of a scalar
field ρGB > 0, expansion of the universe HE > 0, HGB > 0
and expression ρE = XE + VE = 3H2

E one has following
restriction on the Hubble parameter for EGB-inflation

ρGB = ρE − 3
2
H > 0, 0 < HGB < 2HE, (32)

and the restrictions on the deviation parameters

−HE < 
H < HE, − 2H2
E < 
X < 2H2

E , (33)

which limits changes in the state parameter of a scalar field
(29) as well.

In terms of the slow-roll parameter ε which characterize
the dynamics of the inflationary stage, this restriction can be
formulated as

1

2
εE < εGB < 1, (34)

since ε = 1 is the condition for completing the stage of
cosmological inflation.

Also, from (32) one has the following restriction on the
increment of e-folds number

NGB − NE < NE, NGB < 2NE, (35)

for Einstein–Gauss–Bonnet inflation compared to standard
one.

Thus, the results obtained mean that the non-minimal cou-
pling of a scalar field and the Gauss–Bonnet scalar can accel-
erate the rate of expansion of the Friedmann universe by less
than two times.

2.4 The influence of GB-term on the parameters of
cosmological perturbations

In accordance with the theory of cosmological perturbations,
quantum fluctuations of the scalar field generate the corre-
sponding perturbations of the space-time metric during the
inflationary stage. In the linear order of cosmological per-
turbation theory, the observed anisotropy and polarization
of cosmic microwave background radiation (CMB) [53,54]
are explained by the influence of two types of perturbations,
namely, scalar and tensor ones. The third type of perturba-
tions (vector perturbations) quickly decay in the process of
accelerated expansion of the early universe [8].

The calculation of cosmological perturbation parameters
for inflationary models with taking into account the non-
minimal coupling of a scalar field and the Gauss–Bonnet
scalar was carried out in many works [43–52] before.

To compare the predictions of the inflationary model with
the observational data of CMB anisotropy, it suffices to con-
sider two parameters of cosmological perturbations, namely,
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the spectral index of scalar perturbations nS and the tensor-
scalar ratio r which is the ratio of the squared amplitudes of
tensor and scalar perturbations [43–52].

The expressions for these parameters on the crossing of the
Hubble radius (k = aH ) can be written as follows [43–52]

nS(GB) − 1 = −2εGB − 2εGB(2εGB − 2δGB) + 
2

2εGB − 
1
, (36)

rGB = 8 (2εGB − 
1) , (37)

where the slow-roll parameters and deviation ones for EGB-
inflation are defined as

εGB =− ḢGB

H2
GB

, δGB =− ḦGB

2ḢGBHGB
=εGB − ε̇GB

2εGBHGB
,

(38)


1 = 4ξ̇HGB, (39)


2 = −4ξ̈ + 
1εGB. (40)

On the basis of expression (20), one can redefine the devi-
ation parameters as


1 = 2

(
1 − HE

HGB

)
= 2

(
1 − HE

HE + 
H

)
, (41)


2 = 2

(
ḢE

H2
GB

− ḢGBHE

H3
GB

)
= − 
̇1

HE + 
H
. (42)

The deviation parameters 
1 and 
2 are connected with
slow-roll parameters δ1 and δ2 which are usually used to
define the GB-term corrections [48,49] as follows1


1 = δ1, (43)


2 = −δ1δ2 + δ1εGB, (44)

δ2 = ξ̈

ξ̇HGB
= εGB − 
2


1
. (45)

The parameters (41) and (42) are considered instead of
δ1 and δ2, in framework of proposed approach, for the con-
venience of analyzing the deviations between EGB-inflation
and the standard inflationary scenarios, since for ξ = const ,
parameters δ2 and δ̃2 have an undefined values.

From Eqs. (36)–(42) one has following expressions for
the spectral index of scalar perturbations and tensor-to-scalar
ratio in the case of EGB-inflation

nS(GB) − 1 = −2εGB − 2ε̇GB − 
̇1

(2εGB − 
1)HGB

= −(
1 + 
3) − 
̇3


3HGB
, (46)

rGB = 8 (2εGB − 
1) = 8
3, (47)

where


3 = 2εGB − 
1. (48)

1 In papers [44,45,51] the other parameter δ̃2 = δ2−εGB corresponding
to the hierarchy δ̃i+1 = d ln |δ̃i |/d ln a (i ≥ 1) was used.

Also, one can define the connection between background
deviation parameters {
H ,
X ,
V } and ones correspond-
ing to the Gauss–Bonnet term corrections to the parameters
of cosmological perturbations {
1,
2,
3}.

Firstly, from Eqs. (23)–(25) one can obtain

HGB = −
X


H
, (49)

HE = −
X + 
2
H


H
. (50)

Further, from expressions (41), (42) and (48), taking into
account (49)–(50), one has


1 = −2

2

H


X
, (51)


2 = −2

H


X

d

dt

(

2

H


X

)
, (52)


3 = 2

2

H


X
− 2

d

dt

(

H


X

)
. (53)

Also, it as possible to write the relations (51)–(53) in
terms of third background deviation parameter 
V on the
basis of the connections (26). Thus, the relations (49)–(53)
allow one to determine the parameters {
1,
2,
3} from the
background deviation parameters {
H ,
X ,
V } that will be
used in following analysis of inflationary models.

The expressions (36)–(37) were obtained in [43–52] tak-
ing into account the slow-roll conditions, which can be writ-
ten as

εGB � 1, δGB � 1, (54)


1 � 1, 
2 � 1, 
3 � 1. (55)

For the case of Einstein gravity ξ̇ = 0 one has HGB = HE,
εGB = εE, δGB = δE and 
1 = 
2 = 0, and expressions for
the parameters of cosmological perturbations are reduced to

nS(E) − 1 = −4εE + 2δE, (56)

rE = 16εE, (57)

that corresponds to the result obtained for the standard infla-
tion [65–67] with the slow-roll conditions

εE � 1, δE � 1, (58)

where the slow-roll parameters for the standard inflation
based on Einstein gravity are

εE = − ḢE

H2
E

, δE = − ḦE

2ḢEHE
= εE − ε̇E

2εEHE
. (59)

The parameters of cosmological perturbations must sat-
isfy the following observational constraints [53,54]

nS = 0.9663 ± 0.0041, (60)
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r < 0.065, (61)

that defines the method of the verification of cosmological
inflationary models.

From restrictions (32)–(33) and definition (41) one has
the condition 
1 < 1. However, the equation (47) leads to

1 < 2εGB � 1. Thus, the expressions (36)–(37) are valid
only for the case of satisfying conditions (55). A consequence
of the conditions (55), taking into account the expressions
(41)–(42), is the weak influence of non-minimal coupling of
a scalar field and the Gauss–Bonnet scalar on cosmological
dynamics 
H � HE.

Thus, the slow-roll conditions for EGB-inflation corre-
spond to the interpretation of non-minimal coupling of a
scalar field and the Gauss–Bonnet scalar as a small quan-
tum corrections to the main dynamical effects determined by
Einstein gravity at the inflationary stage of the evolution of
early universe, which can be called as a weak GB coupling.

2.5 The influence of GB-term on the velocities of
cosmological perturbations

To analyze the influence of non-minimal coupling on the
velocities of cosmological perturbations one can use their
exact expressions which were considered, for example, in
[48,49].

The velocity of the scalar perturbations can be expressed
as follows

c2
S = 1 − [4εGB − δ1(1 − 4εGB − δ2)]
2

4εGB − 2δ1 − 2δ1(2εGB − δ2) + 3δ1

, (62)

where 
 = δ1
1−δ1

.
In terms of the deviation parameters 
1 and 
2 the expres-

sion (62) can be noted as

c2
S = 7
3

1εGB + 4
3
1 + 
2

1
2 − 12
2
1 − 7
2

1 − 4
1
2 + 10
1εGB + 2
1 + 2
2 − 4εGB

(2
2
1εGB + 5
2

1 + 2
1
2 − 6
1εGB − 2
1 − 2
2 + 4εGB)(
1 − 1)
. (63)

On the basis of the slow-roll conditions (54)–(55) for a
weak GB coupling, after neglecting the small terms second
and higher orders, from expression (63) one has c2

S � 1.
The expression for the velocity of tensor perturbations

(relic gravitational waves) for the case of EGB-gravity is
[48,49]

c2
g = 1 + δ1(1 − δ2)

1 − δ1
= 1 + 
1 − 
1εGB + 
2

1 − 
1
. (64)

After neglecting the second order small term 
1εGB, from
expression (64) one has

c2
g � 1 + 
2

1 − 
1
. (65)

Thus, the parameters 
1 and 
2 define the small devia-
tions of the velocity of tensor perturbations from the speed
of light in vacuum c (in chosen system of units c = 1).
It should be noted, that the velocity of gravitational waves
cg = 1 corresponds to a limited class of gravity theories,
including General Relativity [68].

Based on detection of gravitational waves from neutron
star merging GW170817 event [69] in modern era of the
universe’s evolution one has the following restriction on the
value of their velocity

|cg − 1| ≤ 5 × 10−16. (66)

In papers [70–72] this result was extrapolated to the relic
gravitational waves on inflationary stage, and the conditions
on the parameters δ1, δ2 and corresponding coupling function
ξ were found for the cases c2

g = 1 and c2
g � 1.

One can obtain this result for c2
g = 1 in terms 
1 and 
2

from Eq. (64) under condition


1 − 
1εGB + 
2 = 0. (67)

Taking into account relations (39)–(40), one has

ξ̇ = ξ0aGB(t), (68)


1 = 4ξ0aGBHGB, (69)


2 = − 4ξ0

aGB

[
HGB + ḢGB

HGB

]
, (70)

where ξ0 is the constant of integration.
For the case c2

g � 1 from Eq. (65) one has condition


1 + 
2 = 0. (71)

From this condition and relations (39)–(40) one can obtain
the following coupling function and corresponding deviation
parameters

ξ̇ = ξ0
aGB

HGB
, (72)


1 = −
2 = 4ξ0aGB. (73)

The conditions (68)–(70) and (72)–(73) significantly limit
the possible models of cosmological inflation based on the
Einstein–Gauss–Bonnet gravity.
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Nevertheless, in the paper [73] it was shown that condition
|cg −1| ≤ 5×10−16 is met only for distances corresponding
to redshift z < 0.1 and on large scales the constraint on the
velocity of propagation of gravitational waves can changes.
Taking into account the dependence from redshift, this con-
straint was estimated as follows

|cg − 1| ≤ 10−1 − 10−2. (74)

from z = 2 to the CMB scale (z ∼ 1100) [73].
Thus, one can consider the coupling function ξ which dif-

fer from (68) or (72) to analyze the models of cosmological
inflation based on EGB gravity, tacking into account restric-
tion (74) on the velocity of relic gravitational waves instead
of extrapolation of constraint (66) to the inflationary stage of
the evolution of the universe.

2.6 Inflation with a weak coupling of a scalar field and
Gauss–Bonnet scalar

The weak influence of non-minimal coupling of the Gauss–
Bonnet scalar and a scalar field on cosmological dynamics
can be defined in terms of the deviation parameter 
H as

HGB = HE + 
H , 
H � HE. (75)

After substituting expression (75) into (24) and (26) with
neglecting the second order terms O(
2

H ) one has


X = −HE
H − 
2
H � −HE
H , (76)


V = HE
H − 2
2
H � HE
H . (77)

Thus, one can obtain the expressions of the energy density
and pressure of a scalar field for a weak GB coupling from
(27)–(28) in the following form

ρGB = ρE + 
X + 
V � ρE = 3H2
E , (78)

pGB = pE + 2
X + 3
2
H � pE + 2
X � −3H2

E

−2ḢE + 2HE
H . (79)

The state parameter (30) for a weak GB coupling is

wGB � −1+ 2

3

(
εE + 
X

H2
E

)
� −1+ 2

3

(
εE − 
H

HE

)
. (80)

Therefore, in the case of a weak coupling, a decrease in the
energy density of a scalar field is negligible, the pressure and
the state parameter changes only slightly on the inflationary
stage of accelerated expansion of the universe.

The background dynamic Eqs. (21)–(22) in this case are
reduced to expressions

VGB(φGB) = 3H2
E + ḢE + HE
H − 2
2

H � 3H2
E + ḢE

+HE
H , (81)

1

2
φ̇2

GB = −ḢE − HE
H − 
2
H � −ḢE − HE
H .(82)

Also, on the basis of Eq. (20), one can write following
expression

ξ̇ = HGB − HE

2H2
GB

= 1

2HE

[
x

(1 + x)2

]

= 1

2HE

[
x + O(x2) + · · ·

]
� 
H

2H2
E

, (83)

where x ≡ 
H
HE

� 1.
Further, one can calculate the parameters of cosmological

perturbations for the case of a weak GB coupling on the basis
of results which were obtained in Sect. 2.5.

The deviation parameters 
1, 
2 and 
3 can be written
from equation (76) and (51)–(53) as


1 = −2

2

H


X
� 2


H

HE
, (84)


2 = −2

H


X

d

dt

(

2

H


X

)
� − 2

HE

d

dt

(

H

HE

)
, (85)


3 = 2

2

H


X
− 2

d

dt

(

H


X

)
� −2


H

HE
− 2

ḢE

H2
E

= 2εE − 2

H

HE
. (86)

Further, after substituting (84) and (86) into (46) one has

nS(GB)−1 = −2εE− 2

HE

(
1 + 
H

HE

)−1 d

dt
ln

[
εE − 
H

HE

]
,

(87)

and, taking into account a weak GB coupling condition

H
HE

� 1, the spectral index of a scalar perturbations can
be written in following form

nS(GB) − 1 � −2εE − 2

HE

d

dt
ln

[
εE − 
H

HE

]
. (88)

Also, after substituting (84) and (86) into (47), one has
expression for tensor-to-scalar ratio for a weak GB coupling

rGB � 16

[
εE − 
H

HE

]
. (89)

As one can see, for the case 
H = 0, expressions (88)–
(89) are reduced to (56)–(57) for a standard inflation.

Since the deviation 
H is a free parameter of the theory,
it can be considered as a generating function for constructing
and analyzing inflationary models of the early universe with
a weak coupling of a scalar field and Gauss–Bonnet scalar.
Thus, one can consider the specific choice of the deviation
parameter 
H in order to satisfy the restriction (74) for any
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potential of a scalar field coupled with GB scalar. It should
also be noted that the choice of the deviation parameter 
H

defines a special class of inflationary models based on the
Einstein–Gauss–Bonnet gravity.

3 Special class of inflationary models with a weak GB
coupling

In general case, one can consider various types of the devia-
tion parameter 
H to construct the models of cosmological
inflation with non-minimal GB coupling. In order to consider
a special class of EGB inflationary models corresponding to
constrain (74), one can define the deviation parameter as fol-
lows


H = −αGB
ḢE

HE
, (90)

where |αGB| < 1 is a coupling constant.
For the case of quasi de Sitter expansion (when εE � 1),

after substituting (90) into expressions for deviation param-
eters (41) and (42) and neglecting the small terms of second
order and higher, from (64) one has

c2
g � 1 + αGBεE

1 − αGBεE
, |cg − 1| � |αGB|εE. (91)

At the stage of cosmological inflation one can estimate the
slow-roll parameter as εE < 10−2 [53,54], and, therefore, the
models with deviation parameter (90) correspond to restric-
tion (74) on the value of the velocity of relic gravitational
waves.

The state parameter of a scalar field (30), for the deviation
parameter (90), is

wGB = −1 + 2

3
(1 − αGB) εE. (92)

Thus, on inflationary stage, one has the deviations of the
velocity of tensor perturbations from the speed of light in
vacuum (in natural units) and deviations of the state param-
eter wGB from wE, which are defined by the small factor
αGBεE � 1 connected with deviations from pure de Sitter
exponential expansion (when εE = 0).

The background dynamic Eqs. (81)–(82) with the devia-
tion parameter (90) can be written as

VGB(φGB) = 3H2
E + (1 − αGB)ḢE, (93)

φ̇2
GB = −2(1 − αGB)ḢE. (94)

As one can see from Eqs. (9)–(10) and (93)–(94), a weak
GB-coupling defined by the deviation parameter (90) does
not change the shape of the potential.

From Eqs. (75), (90), (9)–(10) and (93)–(94) one has fol-
lowing connections between the potentials, Hubble parame-
ters and scalar fields for standard inflation and EGB-inflation

VGB = VE − αGB ḢE, (95)

HGB = HE(1 + αGBεE), (96)

φGB = φE

√
1 − αGB, (97)

where a weak GB coupling (75) implies that condition
αGBεE � 1 is satisfied.

A coupling function can be obtained by integration of
expression (83) after substituting the deviation parameter
(90) into this expression. As a result, one has

ξ(φGB) = αGB

4H2
E(φGB)

+ ξ0, (98)

where ξ0 is the integration constant, however, it should be
noted, that the constant coupling of a scalar field and the
Gauss–Bonnet term ξ = const does not affect the dynamic
of four-dimensional Friedmann universe.

After neglecting the small terms −αGB ḢE � VE and
αGBεE � 1 in expressions (95)–(96) one has VGB ≈ VE

and HGB ≈ HE, that, taking into account Eqs. (93) and (98),
gives well known result [33,36,45,48] (with ξ0 = 0)

VGB(φGB)[ξ(φGB) − ξ0] ≈ 3

4
αGB = const, (99)

therefore, in this approximation one has the changing of a
field (97) only.

To determine the difference between results (98) and (99),
one can consider a nominal coupling function in the following
form

ξ(φGB) � 3

4
αGB

[
VGB(φGB) − (1 − αGB)ḢE + �

]−1 + ξ0

= 3

4
αGB [VGB(φGB) + XGB + �]−1 + ξ0, (100)

where potential was redefined as

VGB(φGB) → VGB(φGB) + �, (101)

and cosmological constant � can be associated with non-zero
vacuum energy.

From (99) one has expression similar to (100) with XGB =
0 after redefinition (101), which was considered in [33,36] to
eliminate the divergence in a value of non-minimal coupling
function ξGB(φGB) after completion of inflationary stage.

From expression (100) on the inflationary stage when
VGB � XGB + � one has

ξ(φGB) � 3αGB

4VGB(φGB)
+ ξ0, (102)
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and at the reheating phase when XGB � VGB+� and energy
of a scalar field is transferred to radiation, the coupling func-
tion is

ξ(φGB) � 3αGB

4XGB
+ ξ0. (103)

At the following stage, when � � XGB + VGB one has

ξ(φGB) � 3αGB

4�
+ ξ0 = const, (104)

that implies the negligible GB coupling effects after comple-
tion of inflationary stage.

Therefore, the difference with results obtained in [33,36,
45,48] is the existence of an additional stage of the predom-
inance of a scalar field’s kinetic energy (kination) with cor-
responding coupling function ξ(φGB) which is defined by
expression (103).

3.1 Background dynamic equations in terms of a scalar
field

To generate the exact solutions for the inflationary models
based on Einstein gravity one can use the Eqs. (9)–(10), and,
moreover, the method based on the representation of dynamic
equations in terms of a scalar field.2

In the framework of this approach, one can rewrite the
background dynamic equations for standard inflation (9)–
(10) on the basis of the relation

ḢE = dHE

dt
= dHE

dφE

dφE

dt
= dHE

dφE
φ̇E, (105)

in following form

VE(φE) = 3H2
E − 2

(
dHE

dφE

)2

, (106)

φ̇E = −2
dHE

dφE
. (107)

Also, the slow-roll parameters can be determined from
expressions (59) as

εE = − ḢE

H2
E

= 2H−2
E

(
dHE

dφE

)2

, (108)

δE = − ḦE

2ḢEHE
= 2H−1

E

(
dH2

E

dφ2
E

)
. (109)

In this case, one can generate the exact solutions of Eqs.
(106)–(107) by the choice of the Hubble parameter HE =
HE(φE) as the function of a scalar field φE.

2 A review of this method is given in [10,12].

For the case of a weak GB coupling, on the basis of relation

ḢE = dHE

dφGB
φ̇GB, (110)

from Eqs. (93)–(94) one has

VGB(φGB) = 3H2
E − 2(1 − αGB)2

(
dHE

dφGB

)2

, (111)

φ̇GB = −2(1 − αGB)
dHE

dφGB
, (112)

where the Hubble parameter HE = HE(φGB) is considered
as the function of a scalar field φGB.

Thus, background dynamic Eqs. (111)–(112) can be con-
sidered as the Hamilton–Jacobi type equations [74] or, other-
wise, the Ivanov–Salopek–Bond equations [10,12] by anal-
ogy with the case of GR, for a special class of EGB inflation-
ary models with the deviation parameter (90).

The expression for the non-minimal coupling function
remains the same

ξ(φGB) = αGB

4H2
E(φGB)

+ ξ0, (113)

and the connection (96) between Hubble parameters HGB

and HE can be written as

HGB = HE(1+αGBεE) = HE

[
1 + 2αGBH

−2
E

(
dHE

dφE

)2
]

,

(114)

with the same relation (97) between scalar fields φGB and φE.
Thus, expressions (93)–(98) or (106)–(114) completely

determine the relations between exact inflationary solutions
in the case of Einstein gravity (see, for example, in [10,12,
75,76]) and approximate ones for a weak GB coupling. The
difference between the solutions is determined by a coupling
constant αGB.

Also, on the basis of Eqs. (106)–(107) and (111)–(112),
one can conclude that a weak GB coupling with the deviation
parameter (90) does not change the shape of the potential of
a scalar field.

3.2 The parameters of cosmological perturbations for a
weak GB coupling

After substituting (90) into Eqs. (88)–(89) one has following
expressions for the parameters of cosmological perturbations
corresponding to the deviation parameter (90) for a weak GB
coupling

nS(GB) − 1 = −4εE + 2δE = nS(E), (115)
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rGB = 16(1 − αGB)εE = (1 − αGB)rE. (116)

It should be noted that a similar expressions of the param-
eters of cosmological perturbations for EGB-inflation

nS(GB) − 1 = −2ε1 − ε2, (117)

rGB = 16(1 − λ)ε1, (118)

were considered earlier in the paper [36] on the basis of pos-
tulated connection δ1 = 2λε1 between slow-roll parame-
ters, where λ is a some constant, δ1 = 
1, ε1 = εGB and
ε2 = 2(εGB − δGB).

The difference between expressions (115)–(116) and
(117)–(118) is that the first ones (115)–(116) determine
the difference between cosmological perturbations param-
eters for inflationary models based on General Relativ-
ity and Einstein–Gauss–Bonnet gravity, the second expres-
sions (117)–(118) correspond to the case of Einstein–Gauss–
Bonnet gravity only where the difference between EGB-
inflationary models is defined by the value of the parameter
λ.

The transition from expressions (117)–(118) to (115)–
(116) can be carried out as follows: after neglecting the small
term αGBεE � 1 in equation (96) one has HGB ≈ HE, which
implies the following relations εGB ≈ εE and δGB ≈ δE. Fur-
ther, after substituting these relations into (117)–(118), one
has (115)–(116). Also, for the case αGB = 0 and λ = 0, all
these expressions are reduced to (56)–(57) corresponding to
Einstein gravity.

As one can see, for a weak GB coupling, the corrections
to the value of the spectral index of scalar perturbations are
negligible nS(GB) � nS(E). Nevertheless, such a coupling can
have a significant effect on the value of the tensor-to-scalar
ratio, namely, the positive coupling constant 0 < αGB < 1
leads to decreasing the value of tensor-to-scalar ratio rGB <

rE, and the negative one αGB < 0 gives a greater contribution
of tensor perturbations to the CMB anisotropy than in the case
of standard inflation rGB > rE.

Thus, the corrections to Einstein gravity associated with a
weak non-minimal coupling of a scalar field and the Gauss–
Bonnet term can have a significant effect on the verification of
cosmological models from observational constraints on the
value of the tensor-to-scalar ratio [53,54], and in principle,
taking into account such corrections can ensure compliance
with this observational constraint for any model of cosmo-
logical inflation, initially considered on the basis of Einstein
gravity only.

Thus, one can consider inflationary models, for which
taking into account corrections associated with a weak GB-
coupling is critical for verification from observational data,
and also other models based on GR that satisfy observational
constraints. In both of these cases, one can define an explicit
form of the coupling function ξ(φGB) and the constraints on

the corresponding coupling constant αGB for a special class
of models with the deviation parameter (90).

4 The examples of inflationary models with a weak GB
coupling

In order to determine in more detail the influence of a weak
GB coupling on the inflationary parameters, one can consider
known models of cosmological inflation based on Einstein
gravity with corrections (95)–(97).

At the moment, a many models of cosmological inflation
with different scalar field potentials and different specifics of
its evolution are considered to describe the evolution of the
universe. A large number of inflationary models of the early
universe based on Einstein gravity was considered in [9–12].

It should be noted that transformation (101) can be applied
to all models under consideration to eliminate the divergence
in a value of non-minimal coupling function ξ(φGB) after
completion of inflationary stage. Condition ξ0 = 0 will also
be considered, since the constant coupling of a scalar field
and the Gauss–Bonnet scalar does not affect the dynamics of
the universe.

Thus, one can use the observational constraints on the
values of cosmological perturbation parameters (60)–(61) to
estimate the value of a coupling constant αGB. At the level of
qualitative analysis, from expressions (115)–(116), one has
that for the case αGB ≤ 0, the standard inflationary mod-
els and corresponding EGB-inflation can be verified, and for
0 < αGB < 1, EGB-inflation only corresponds to the obser-
vational constraints. On the other hand, quantitative estimates
of the coupling constant αGB make it possible to determine
the influence of a weak GB coupling on the parameters of
cosmological inflationary models.

4.1 The inflation with a weak GB coupling based on the
double-well potential

This type of cosmological inflation was considered earlier in
a large number of works (see, for example, in [7,77–81]).
The specificity of this model is that for a certain choice of
parameters, the potential corresponds to the Higgs poten-
tial implying realization of the mechanism of spontaneous
symmetry breaking [7,77–79]. Also in works [80,81] it was
shown that such a model implies two stages of the acceler-
ated expansion of the universe at small and large times and
exit from the first inflation as well. Nevertheless, it should
be noted that in the case of Einstein gravity, this model does
not correspond to the observational constraints (60)–(61) on
the values of the parameters of cosmological perturbations
[80–82].
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For this type of inflation one can consider the Hubble
parameter as follows

HE(φ) = β

(
2

3
μ + φ2

E

)
, (119)

and from Eqs. (106)–(107) one has

φE(t) = φ0 exp(−4βt), (120)

VE(φE) = λE

9
μ2 + 1

2
m2

Eφ2
E + λE

4
φ4

E, (121)

HE(t) = β

(
2

3
μ + φ2

0e
−8βt

)
, (122)

aE(t) ∝ exp

(
2μ

3
βt + φ2

0

8
e−8βt

)
, (123)

where β and μ are some constants, φ0 is the initial value of
the scalar field, λE = 12β2 is the self-coupling constant, and
squared mass of the field is m2

E = 2
3λE(μ − 2).

For the case μ < 2 one has m2
E < 0 that corresponds to

the spontaneously broken symmetry in this model [7,77–79].
For the case μ > 2 one has a model without the symmetry
breaking where squared mass ism2

E > 0, and the value μ = 2
implies the transition from the Higgs inflation to chaotic one
with potential VE ∼ φ4

E [7].
For EGB-inflation, from Eqs. (111)–(112), one has

φGB(t) = φ0

√
1 − αGB exp(−4βt), (124)

VGB(φGB) = λGB

9
(1 − αGB)2μ2 + 1

2
m2

GBφ2
GB

+λGB

4
φ4

GB, (125)

ξGB(φGB) = 27

(
αGB

λGB

) [
3φ2

GB − 2μ(1 − αGB)
]−2

,

(126)

where

λGB = 12β2

(1 − αGB)2 = λE

(1 − αGB)2 , (127)

m2
GB = 2

3
λE

(
μ + 2αGB − 2

1 − αGB

)
. (128)

Also, the mass of the Higgs field coupled with Gauss–
Bonnet term can be defined as

m2
GB = m2

E + 2

3
μλE

(
αGB

1 − αGB

)
. (129)

The condition of spontaneous symmetry breaking also
change, namely, taking into account a weak GB coupling,
such a condition can be written as

μ + 2αGB − 2 < 0. (130)

Also, for the case μ + 2αGB − 2 = 0 one has the transi-
tion from the Higgs inflation to chaotic EGB-inflation with
corresponding potential VGB ∼ φ4

GB.
The deviation parameter, Hubble parameter and the scale

factor for the Higgs inflation with a weak GB coupling are


GB(t) = 24αGBβφ2
0e

−8βt

2μ + 3φ2
0e

−8βt
, (131)

HGB(t) = HE(t) + 24αGBβφ2
0e

−8βt

2μ + 3φ2
0e

−8βt
, (132)

aGB(t) ∝ aE(t)e8αGBβt
(

3φ2
0 + 2μe8βt

)−αGB
. (133)

As one can see, for 2μe8βt � 3φ2
0 one has aGB(t) � aE(t)

up to a constant, that corresponds the condition αGBεE � 1
in expression (96).

For the Hubble parameter (122) from expressions (59) one
has εE = − 1

3δ2
E + 2δE � 2δE, and the connection between

tensor-to-scalar ratio and spectral index of scalar perturba-
tions for the Higgs inflation is

r = 16

3
(1 − αGB)(1 − nS). (134)

From observational constraints (60)–(61) one has the fol-
lowing values of a coupling constant 0.6 < αGB < 1 for the
verifiable inflation with the Higgs potential. Thus, the mass
of the Higgs field for a weak GB coupling changes as m2

GB >

m2
E+μλE and self-coupling parameter is λGB > 1.58λE. The

scalar field for this type of inflation with a weak GB coupling
can be estimated as 0 < φGB < 0.63 φE. The dependence
r = r(nS) for inflation with double-well potential is shown
on the Fig. 1.

Fig. 1 The r = r(nS) diagram for different values of the coupling
constant αGB
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Now, we consider the behaviour of this model on a large
times t → ∞, corresponding to the Dark Energy domination
era [53,83,84].

Firstly, from expression (131) one has 
GB(t → ∞) = 0,
i.e. at a large times the non-minimal coupling are negligible,
and the gravity theory corresponds to General Relativity.

Secondly, from expressions (122)–(121) for t → ∞ one
has

HSI = 2

3
βμ, (135)

aSI (t) ∝ exp

(
2μ

3
βt

)
, (136)

VSI = � = 4

3
β2μ2, (137)

therefore, at the large times this models leads to cosmological
constant as the source second accelerated expansion on the
universe [53,83,84].

Consequently, a weak GB coupling defined by the func-
tion (126) with a coupling constant 0.6 < αGB < 1 can
be taken into account at the inflationary stage to construct
a phenomenologically correct models of cosmological infla-
tion based on the double-well potential. At the large times
such corrections are negligible, and the gravity theory corre-
sponding to GR.

Another possibility of constructing verified Higgs infla-
tion is to consider the non-minimal coupling of a scalar field
with the Ricci scalar, which, however, changes the shape of
the potential [82,85] in contrast to a weak GB coupling.

4.2 Exponential power-law inflation with a weak GB
coupling

This type of cosmological inflationary model was considered
in papers [60,86,87] on the basis of General Relativity and
some modified gravity theories as well. Exponential power-
law (EPL) inflation also leads to two stages of accelerated
expansion of the universe at small and large times with cor-
responding exit from the initial inflationary stage at small
times.

In contrast to the model with double-well potential (121),
EPL-inflation corresponds to observational constraints (60)–
(61) on the values of the parameters of cosmological pertur-
bations for the case of Einstein gravity [87]. Thus, for this
model, the coupling constant αGB of a scalar field and the
Gauss–Bonnet term can be either positive or negative.

For canonical scalar field the Hubble parameter corre-
sponding to EPL-inflation can be written as follows

HE(φE) = μ1 exp(−μ2φE) + μ3, (138)

where μ1, μ2 and μ3 are some positive constants.
The exact solutions of the Eqs. (106)–(107) are

VE(φE) = μ2
1(3 − 2μ2

2) exp(−2μ2φE)

+6μ1μ3 exp(−μ2φE) + 3μ2
3, (139)

φE(t) = 1

μ2
ln

(
2μ1μ

2
2t + c

)
, (140)

HE(t) = μ1

2μ1μ
2
2t + c

+ μ3, (141)

aE(t) ∝ exp(μ3t)(2μ1μ
2
2t + c)1/2μ2

2 , (142)

where c is the constant of integration.
For ELP-inflation with a weak GB coupling, from Eqs.

(111)–(112), one has

φGB(t) = 1

μ̃2
ln

[
2(1 − αGB)μ1μ̃

2
2t + c

]
, (143)

VGB(φGB) = μ2
1

[
3 − 2(1 − αGB)3μ̃2

2

]
exp(−2μ̃2φGB)

+6μ1μ3 exp(−μ̃2φGB) + 3μ2
3, (144)

ξGB(φGB) = αGB

(
2μ3 + 2μ1e

−μ̃2φGB
)−2

, (145)

where

μ̃2 = μ2√
1 − αGB

. (146)

Corresponding deviation parameter, Hubble parameter
and the scale factor for ELP-inflation with a weak GB cou-
pling are


GB(t) = 2μ2
2μ

2
2αGB(

2μ1μ
2
2μ3t + cμ3 + μ1

)
(2μ1μ

2
2t + c)

, (147)

HGB(t)=HE(t) + 2μ2
2μ

2
2αGB(

2μ1μ
2
2μ3t+cμ3+μ1

)
(2μ1μ

2
2t + c)

,

(148)

aGB(t) ∝ aE(t)

(
2μ1μ

2
2t + c + μ1

μ3

)−αGB

(2μ1μ
2
2t + c)αGB .

(149)

As one can see, for c � μ1
μ3

one has aGB(t) � aE(t) up
to a constant, that corresponds the condition αGBεE � 1 in
expression (96).

For the Hubble parameter (141) from expressions (59)

one has ε = 1
2

(
δ

μ2

)2
, and the connection between tensor-

to-scalar ratio and spectral index of scalar perturbations for
EPL-inflation can be written as

nS = 1 − r

4(1 − αGB)
− 1

2μ2

(
2r

1 − αGB

)1/2

. (150)

As one can see, for this type of inflation the observa-
tional constraints (60)–(61) can be satisfied by the choice
of two constants μ2 and αGB. Nevertheless, one can define
the restriction on the coupling constant αGB for some certain
value of μ2. Namely, for μ2 ≥ 12 one has only positive val-
ues of the coupling constant 0 ≤ αGB < 1 and for μ2 < 12
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Fig. 2 The r = r(nS) diagram for μ2 = 12 and different values of the
coupling constant αGB

the values of the coupling constant can be both positive or
negative −1 < αGB < 1 for verified EPL-inflation.

On the Fig. 2 the dependence r = r(nS) for EPL-inflation
with GB-corrections for μ2 = 12 is shown. As one can see,
for this case, the model corresponds to observational con-
straints for 0 ≤ αGB < 1 and, therefore, taking into account
GB-corrections is necessary for verification of EPL-inflation
with parameter μ2 > 12.

Thus, in this case, the scalar field can be either increased
or decreased by means of a non-minimal coipling with the
Gauss–Bonnet term, which depends on the value of the
parameter μ2.

At the large times from (147) one has 
(t → ∞) = 0,
therefore GR-corrections are negligible at the Dark Energy
domination era. The dynamic of the universe’s expansion

HSI = μ3, aSI ∝ exp(μ3t), (151)

is defined by a cosmological constant � = 3μ2
3. Also, in

[86,87] it was shown that between two these stages, universe
expands without acceleration.

Similarly, one can estimate the corrections induced by the
non-minimal coupling of a scalar field and the Gauss–Bonnet
term for other models of cosmological inflation [9–12] and
obtain the form of the corresponding coupling function as
well.

5 Discussion

In this paper, the influence of the non-minimal coupling of
a scalar field and the Gauss–Bonnet scalar on the process of
cosmological inflation was considered. The basis of the pro-

posed analysis is the presented relations between the param-
eters of inflationary models for the case of General Relativity
and Einstein–Gauss–Bonnet gravity.

The effect of non-minimal GB coupling was determined
by means of background deviation parameters {
H ,
X ,
V }
and ones corresponding to the Gauss–Bonnet term cor-
rections to the parameters of cosmological perturbations
{
1,
2,
3} which are related by Eqs. (26) and (51)–(53).

In general case, two main results were obtained that char-
acterize the influence of the GB-term on the inflationary pro-
cess. The first result is that in four-dimensional spatially flat
Friedmann–Robertson–Walker space-time the non-minimal
coupling of a scalar field with the Gauss–Bonnet term leads
to decrease of it’s energy density. The second result is that
such a coupling can accelerate the rate of expansion of the
universe by less than two times.

Nevertheless, the slow-roll conditions correspond to a
weak influence of such a coupling on cosmological dynam-
ics. This result leads to the interpretation of non-minimal
coupling of a scalar field and the Gauss–Bonnet scalar as a
small quantum corrections to the main dynamical effects of
General Relativity at the inflationary stage of the evolution
of early universe.

Based on this notion, which was called a weak GB cou-
pling, the effect of such a coupling on the background infla-
tionary parameters and cosmological perturbation parame-
ters was evaluated. To satisfy the constraint (74) on the veloc-
ity of tensor perturbations at the inflationary stage of the uni-
verse’s evolution for any potential of a scalar field, the special
class of inflationary models with a weak GB coupling and
the deviation parameter (90) was considered. For this class
of cosmological models the influence of the Gauss–Bonnet
scalar on the inflationary parameters is determined by the
value of the coupling constant αGB only. Also, such a models
implying the conservation of the shape of minimal coupled
scalar field potential VE. It should also be noted that in the
case of exponentially accelerated expansion of the universe,
the difference between EGB gravity and General relativity is
absent for any value of the parameter αGB in cosmological
models with the deviation parameter (90).

The first effect of such a coupling is a change of a scalar
field itself, which decreases for positive values of a coupling
constant αGB and increases for its negative values. The sec-
ond effect is a change in the mass of a scalar field the Higgs
inflation based on Einstein–Gauss–Bonnet gravity compared
to General Relativity. Also, the non-minimal coupling of the
Higgs field with the Gauss–Bonnet term changes the condi-
tion of spontaneous symmetry breaking. The observational
constraints on the parameters of cosmological perturbations
were used to estimate the value of a coupling constant αGB for
inflationary model with double-well potential and for EPL-
inflation as well. In the modern era, a weak GB-corrections
for these models are negligible, and the dynamics of the

123



1145 Page 14 of 16 Eur. Phys. J. C (2020) 80 :1145

accelerated expansion of the universe is determined by the
cosmological constant (prevailing over Dark Matter and the
baryonic component [53]) based on Einstein gravity.

Thus, the proposed approach, on the one hand, allows to
define the Gauss–Bonnet term corrections for any standard
inflationary model based on Einstein gravity; on the other
hand, it gives the possibility to verify such a models from
observational constraints on the parameters of cosmological
perturbations.

It should also be noted that, in the general case, one can
consider a wider class of EGB-inflationary models with a
deviation parameter which differ from (90). However, in this
case, it is necessary to check whether the velocity of relic
gravitational waves corresponds to constraint (74) for each
specific model.
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