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Abstract In this paper, we have introduced a new f (R)

gravity model as an attempt to have a model with more para-
metric control, so that the model can be used to explain the
existing problems as well as to explore new directions in
physics of gravity, by properly constraining it with recent
observational data. Here basic aim is to study the properties
of Gravitational Waves (GWs) in this new model. In f (R)

gravity metric formalism, the model shows the existence of
scalar degree of freedom as like other f (R) gravity models.
Due to this reason, there is a scalar mode of polarization of
GWs present in the theory. This polarization mode exists in
a mixed state, of which one is transverse massless breath-
ing mode with non-vanishing trace and the other is massive
longitudinal mode. The longitudinal mode being massive,
travels at speed less than the usual tensor modes found in
General Relativity (GR). Moreover, for a better understand-
ing of the model, we have studied the potential and mass
of scalar graviton in both Jordan frame and Einstein frame.
This model can pass the solar system tests and can explain
primordial and present dark energy. Also, we have put con-
straints on the model. It is found that the correlation function
for the third mode of polarization under certain mass scale
predicted by the model agrees well with the recent data of
Pulsar Timing Arrays. It seems that this new model would
be useful in dealing with different existing issues in the areas
of astrophysics and cosmology.

1 Introduction

Einstein’s General Relativity (GR) has been the most widely
accepted theory capable of explaining a number of phenom-
ena and the geometry of spacetime in general. However,
recent experimental observations showed the existence of
phenomena with deviations from GR predictions. Among
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them the present acceleration of the universe has been a big
problem in cosmology lacking of a proper or satisfactory
explanation till now. This problem was discovered around 22
years ago with the help of type Ia supernovae observations
[1–4]. It put a big question on the viability of GR, specially
at cosmological scale. However, if one still wishes to stick
with GR then he has to bear with the problem of mysterious
invisible and exotic dark energy, which is responsible for
around 76% of total energy content of the universe. More-
over, a theoretical problem associated with GR is that it is
not renormalizable based on the conventional methods. In
order to overcome these drawbacks of GR different modifi-
cations have been proposed. In most of the cases the modifi-
cations were introduced to solve some specific problems and
as expected/ eventually they redefined the spacetime geome-
try and imprinted some changes in other sectors/ranges also.
These changes can be a measure of how much the new theory
is deviating from GR. A very important result from GR is the
Gravitational Waves (GWs). In modified theories of gravity,
the properties of GWs also change and can result massive
modes of polarization apart from the usual GR modes or ten-
sor modes of polarization [5]. These massive modes travel
with less speed than the tensor modes. Besides the presence
of massive modes of polarizations, the generation and propa-
gation of GWs are also affected in different modified theories
of gravity. The study of these variations can be a good tool to
test the modified theories of gravity. With the first detection
of GWs in 2015 by the LIGO and Virgo collaborations [6] fol-
lowed by many other detections till now, a new and promising
direction of studying gravitational theories has begun. These
experimental evidences of GWs put a new set of constraints
on GR as well as on modified theories of gravity.

A straight forward and simple modification to GR is the
f (R) theory of gravity. In this theory, the Ricci scalar R of
Einstein–Hilbert action is replaced by a function of R. Till
now many models of f (R) theory have been proposed. Some
successful models capable of explaining the drawbacks of
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GR upto a significant range are the Starobinsky model [7],
Hu–Sawicki model [8], and Tsujikawa model [9–12] or expo-
nential gravity. The properties of GWs in these models have
been studied earlier. These studies show that GWs in f (R)

gravity vary significantly from those in GR. As mentioned
above, in GR, there are two polarization modes of GWs, viz.,
the tensor plus mode and tensor cross mode. These modes
are massless in nature and they propagate with the speed of
light in spacetime. In metric formalism f (R) gravity, there
exists a scalar degree of freedom in the theory and hence the
total degrees of freedom in the theory increases, which leads
to increase the polarization modes of GWs in such theories
[5,13]. It is found that total number of polarization modes
of GWs that can exist in f (R) theories of gravity is 3 [14].
Recent studies show that there exist a massless breathing
mode and a massive longitudinal mode in a mixed state as a
single polarization mode of GWs in f (R) theories of gravity.
The existence of this extra polarization mode can be checked
with the help of modified Newman–Penrose scalars and also
by geodesic deviation equations in the theory [14]. However,
another study shows that the existence of third mixed polar-
ization mode of GWs are model dependent and there exists a
model in f (R) gravity where the massive longitudinal mode
vanishes and the third polarization mode becomes a pure
massless breathing mode [15].

In this work, we have used a new f (R) gravity model as
a toy model and studied the behaviour of the potential and
scalar field mass both in Jordan frame and Einstein frame. We
have also checked the polarization modes of GWs present in
this model and tried to constrain the model.

The paper is organized as follows. In the next section, we
have introduced our new f (R) model along with motiva-
tions. The characteristics of this model and the behaviour of
the associated scalar field both in Jordan frame and Einstein
frame have been studied in this section. Also, in this section,
we have checked the viability of the model in terms of solar
system tests. In Sect. 3, we have compared the model with
two other most viable models viz., the Starobinsky model and
the Hu–Sawicki model. In Sect. 4, the model has been con-
strained. In Sect. 5, we have studied the polarization modes of
GWs present in the model by using the perturbed field equa-
tion and the modified Newman–Penrose formalism. In Sect.
6, we have reviewed a way to detect the polarization modes of
GWs experimentally and discussed the possibilities of exper-
imental validation of the model. In the last section, we con-
clude the paper with a very brief discussion of the results and
the future aspects of the model in such type of studies.

2 A new model of f(R) gravity

Although we have a pretty good number of f (R) gravity
models, no f (R) gravity model can explain all cosmological
and astrophysical aspects of the present universe completely.

Moreover, as like GR, different f (R) gravity models come
with different types of drawbacks. However, we should men-
tion that including the Starobinsky and Hu–Sawicki mod-
els there are several viable models in f (R) gravity, which
were proposed in order to overcome the drawbacks of GR.
Although the asymptotic behaviour of such viable models are
almost same, the functional forms are completely different.
In such f (R) gravity models the modifications of geometry is
done in a unique manner by different f (R) functions, which
might result different and unique cosmological and astro-
physical features in the intermediate curvature regime. Thus
a new f (R) gravity model capable of explaining the draw-
backs of GR might have some different implications in differ-
ent perspectives and also can have drawbacks or anomalies
in different realms. Furthermore, a f (R) gravity model with
more parametric control is more suitable in this respect in the
sense that such a model can be constrained properly with the
observational data by controlling its parameters and hence
can be used easily to overcome the drawbacks of GR. With
these motivations, here we introduce another f (R) gravity
model containing three parameters, over and above to the
existing ones, as given by:

f (R) = R − α

π
Rc cot−1

(
R2
c

R2

)
− β Rc

[
1 − exp

(
− R

Rc

)]
,

(1)

where α and β are two dimensionless positive constants and
Rc is a characteristic curvature constant having dimensions
same as curvature scalar R. This model has two correction
terms:
α

π
Rc cot−1

(
R2
c

R2

)
and β Rc

[
1 − exp

(
− R

Rc

)]
.

The first correction factor is estimated by two parameters α

and Rc. Similarly, the second correction factor has also two
parameters β and Rc and it mimics the exponential f (R)

gravity model. We’ll show that this model passes the basic
requirements of a viable f (R) gravity model including the
solar system tests.

The requirements for any f (R) gravity model to describe
the late-time dark energy problem are [16–19]:

(1) A sufficient and suitable chameleon mechanism which
allows f (R) gravity to pass the constraints of local sys-
tems. In case of our model, we’ll show that it can pass the
solar system tests. A detailed study of chameleon mech-
anism in this model is beyond the scope of this paper.

(2) A late-time stable de-Sitter solution. The condition for
the existence of de-Sitter solution for a model is

2 f (R0) − R0 f
′(R0) = 0, (2)

where R0 is the de Sitter curvature. To ensure the stability
of the de Sitter solution, the model needs to satisfy the
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following condition [20]:

f ′(R0)

f ′′(R0)
> R0. (3)

For simplicity, considering R0 = Rc in the Eq. (2) and
solving for β we find,

β = −e(2α − π(α − 2))

(6 − 4e)π
, (4)

where e is the natural exponential. This is the de Sitter
solution for the case R0 = Rc. Now the stability condi-
tion (3) gives,

(e α + π β)(2 e α + 2 π β − e π) < 0. (5)

Using the expression for β from Eq. (4) in the above
expression, we find the allowed range of α as

− 1.68381 < α < 0.367545. (6)

Thus for R0 = Rc, the model can have stable de Sitter
solutions if α lies in the above range. In Sect. 3, we explic-
itly showed that the model has a stable de Sitter solution
and also compared it with two other viable models.

(3) A positive effective gravitational coupling, leading to
f ′(R) > 0. By putting our model in this condition gives,

1 − 2 α R R3
c

πR4 + πR4
c

− β exp
(
− R

Rc

)
> 0.

(4) A stable cosmological perturbation and a positivity of the
GWs for the scalar mode, causing to f ′′(R) > 0. Using
our model in this condition we find,

β exp
(
− R

Rc

)

Rc
− 2 α R3

c

(
R4
c − 3R4

)

π
(
R4 + R4

c

)2 > 0.

This condition ensures the absence of tachyonic instabil-
ities in the model, i.e. this condition results m2

φ > 0.
(5) An asymptotic behaviour to the �CDM model in the

large curvature region. In case of our model, at large cur-
vature region i.e. at R → ∞, we have f (R) − R →
− 1

2 Rc(α+2β) = constant, which mimicks the �CDM
model in the large curvature region. Again, at R → 0,
we have f (R) − R → 0.

Thus it is seen that this model is capable of explaining the
late-time dark energy problem. In the following part of this
paper, we’ll study the behaviour of scalar degrees of freedom
of the model as well as the nature of GWs in it.

2.1 Scalar degrees of freedom in Jordan frame

The action of a generic f (R) gravity model is given as

S = 1

2κ

∫
d4x

√−g f (R) +
∫

d4x
√−gLm

[
gμν, ψ̄

]
. (7)

In the above equation, the function f (R) stands for any arbi-
trary function of Ricci curvature scalar R, gμν is the met-
ric, κ2 = 8πG = M−2

pl and h̄ = c = 1. Here Mpl ≈
2 × 1018 GeV is the reduced Planck’s mass. Lm

[
gμν, ψ̄

]
is

the Lagrangian for a matter field ψ̄ . Variation of the action (7)
with respect to the metric gives the following field equation:

f ′(R)Rμν − 1

2
f (R)gμν − ∇μ∇ν f

′(R) + gμν � f ′(R)

= κ2 Tμν(g
μν, ψ̄), (8)

where � ≡ ∇μ∇μ, Tμν(gμν, ψ̄) = − 2√−g
δ
(√−gLm

[
gμν, ψ̄

])

δgμν
is the matter energy–momentum ten-

sor and f ′(R) = ∂R f (R). Trace of Eq. (8) is

f ′(R)R + 3 � f ′(R) − 2 f (R) = κ2 T, (9)

where T = gμνTμν is the trace of Tμν . It is seen that the
trace of the field equation is dynamical. This equation also
indicates the existence of an extra scalar degree of freedom in
the theory. For a detailed study about this degree of freedom
we would like to use our model given in the Eq. (1). Now, if
we define a scalar field as

φ = f ′(R), (10)

then for our model the field φ becomes,

φ = 1 − 2αR3
c

πR3
(
R4
c

R4 + 1
) − β exp

(
− R

Rc

)
. (11)

This shows that the scalar curvature R can be expressed as
a function of the field φ. From this definition of scalar field
φ, we may view the trace Eq. (9) as an effective scalar field
equation of Klein-Gordon with the following identification
[21]:

dV

dφ
≡ 1

3

[
2 f (R(φ)) − R(φ) f ′(R(φ))

]

≡ 1

3

[
2 f (R(φ)) − R(φ)φ

]
, (12)

where V is the potential of the scalar field φ. Thus, the trace
Eq. (9) can be written as a Klein-Gordon type equation for
the scalar field φ as given by,

�φ = dV

dφ
+ 1

3
κ2 T = dVef f

dφ
, (13)
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where Vef f is effective potential of the field and is define as

dVef f
dφ

= 1

3

[
2 f (R(φ)) − R(φ)φ + κ2 T

]
. (14)

At far away from the source or in absence of any matter
source Vef f ≡ V . Again, from the stationary condition:

dVef f
dφ

= 0, (15)

we can have φ = φ0 satisfying φ0 = f ′(R0). From this
condition, the mass of the scalar field (or the scalaron mass)
can be obtained by differentiating the Eq. (14) with respect
to φ as

m2
φ ≡ dV 2

e f f

dφ2

∣∣∣
φ=φ0

= 1

3

[
f ′(R0)

f ′′(R0)
− R0

]
. (16)

Here R0 is the background curvature corresponding to φ0.
From the above equation, we can see that avoiding of tachy-
onic instabilities demands f ′(R0)

f ′′(R0)
− R0 ≥ 0 and to keep the

mass term finite we need f ′′(R0) 
= 0. For our model the
mass term is found as

m2
φ =

⎡
⎣ Rc exp(R/Rc)

(
π

(
R4 + R4

c

)2 − 8αR5R3
c

)
− πβ(R + Rc)

(
R4 + R4

c

)2

3πβ
(
R4 + R4

c

)2 − 6αR4
c exp(R/Rc)

(
R4
c − 3R4

)
⎤
⎦

R = R0

. (17)

For R0 = 0, this equation gives

m2
φ

∣∣
R0 = 0 = π(β − 1)Rc

6α − 3πβ
. (18)

This shows that the mass of the scalar field is non-vanishing
even at a large distance away from the source or in the
Minkowski space. The mass mφ of the scalar field depends
on the model parameters α, β and Rc. Figure 1 shows the
variation of m2

φ with respect to R0 for different sets of model
parameters. From the figure we see that, the mass of the scalar
field increases rapidly with the increasing value of the back-
ground curvature after a hump in the curve for 0 < R0 < 1
region, which increases when the parameter α takes value
closer to parameter β. By increasing the difference between
β and α (i.e. for β � α) the hump can be minimized.
An increase of α increases the hump which occurs near the
small curvature region as mentioned above and compara-
tively decreases the mass of the scalar field at higher curva-
ture region.

2.1.1 Scalar tensor equivalence of the model

To see the origin of the scalar field in the theory, we would
like to rewrite the action (7) by introducing a new auxiliary
scalar field ψ as [14,22]

S = 1

2κ2

∫
d4x

√−g
[
fψ(ψ)R − {

fψ(ψ)ψ − f (ψ)
}]

+
∫

d4x
√−gLm

[
gμν, ψ̄

]
, (19)

where fψ = ∂ f (ψ)

∂ψ
. Now, varying this equation with respect

to the new auxiliary scalar field ψ we get,

fψψ(ψ) (R − ψ) = 0. (20)

For finiteness of the previously defined mass square term of
the scalar field (see Eq. (16)), we have f ′′(R) 
= 0, which is
in terms of ψ , fψψ(ψ) 
= 0. With this condition the above
equation gives, R = ψ . Substituting of this result in the
action (19) we can recover the original action (7). Moreover,
the quantum stability condition demands that f ′′(R) ≥ 0.
This along with the finiteness condition of the mass of the
scalar field demands that f ′′(R) > 0. Thus, it is always
possible to have a scalar tensor representation of f (R) theory
of gravity. Redefining the previously defined scalar field φ in
terms of the new auxiliary field ψ as

φ = fψ(ψ) , (21)

the action (19) can be rewritten as

S = 1

2κ2

∫
d4x

√−g
[
φR −U (φ)

]

+
∫

d4x
√−gLm

[
gμν, ψ̄

]
, (22)

where U (φ) = fψ(ψ) ψ − f (ψ) = φ ψ(φ) − f (ψ (φ))

is the potential of the scalar field. To be precise, this term
fψ(ψ) ψ − f (ψ) originates the scalar field. Unless and oth-
erwise this term equals to zero, there exists a scalar field in
the theory. In terms of the Ricci scalar, this term reads,

V = U (φ) = f ′(R) R − f (R)
∣∣
R = R0

. (23)

For f (R) = R and hence for f ′(R) = 1, the action (22)
recovers GR giving the potential term V = 0. Using Eq. (1)
in this Eq. (23), the scalar field potential for our model can
be obtained as

V = α

π
Rc cot−1

(
R2
c

R2

)

+R

⎡
⎣− 2αR3

c

πR3
(
R4
c

R4 + 1
) − β exp

(
− R

Rc

)
+ 1

⎤
⎦

+βRc

[
1 − exp

(
− R

Rc

)]
− R

∣∣∣
R = R0

. (24)
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Fig. 1 Mass square of the
scalar field as a function of the
background curvature for
different sets of values of α and
β with characteristic curvature
constant Rc = 1 in arbitrary
units

Fig. 2 Variation of the
potential (24) as a function of
the background curvature R0 for
different sets of values of α and
β with Rc = 1 in arbitrary units

The variation of the potential V with respect to R0 for
different values of α and β is shown in Fig. 2 in arbitrary
units considering Rc = 1. The Figure shows that the poten-
tial in Jordan frame increases gradually with respect to the
background curvature with some initial deviations depending
upon the values of α and β. In contrast to the case of mass
square of the scalar field, the potential shows some slight
amount of dip, but near to the same small curvature region,
which increases slowly when the value of α moves closer to
the value of β. In fact, this dip in the potential is responsible
for the hump in the mass square curve for the correspond-
ing values of α and β. This dip region of the potential curve
almost eliminates in the case when α � β. Moreover, with
the increasing values of both α and β, the potential com-
paratively increases after the dip region or without the dip
region.

2.2 Model in Einstein frame

In order see the behaviour of our model (1) in Einstein frame,
which is usually used to avoid the non-minimal coupling
of gravity with the scalar field, we would like to study the
model in this frame also. In the Einstein frame, the following

conformal transformation of the metric is performed [23,24]:

g̃μν = f ′(R)gμν,

which for our model takes the form:

g̃μν =
⎡
⎣1 − 2αR3

c

πR3
(
R4
c

R4 + 1
) − β exp

(
− R

Rc

)⎤
⎦gμν. (25)

Consequently, in this frame with Lm = 0, the action changes
to [23,24]

S =
∫

d4x
√−g

×
[

1

2κ2 R̃ − 1

2
g̃μν ∇μφE∇νφE − V (φE )

]
, (26)

where the scalar field

φE = −
√

3

2

1

κ
ln f ′(R) = −

√
3

2

1

κ
ln

×
⎡
⎣1 − 2αR3

c

πR3
(
R4
c

R4 + 1
) − β exp

(
− R

Rc

)⎤
⎦ (27)
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and V (φE ) is potential of the scalar field in this frame, and
is given by,

V (φE ) = 1

2κ2

U

f ′(R)2 = 1

2κ2

f ′(R)R − f (R)

f ′(R)2

∣∣∣
R=R0

.

(28)

The Eq. (27) shows the dependency of the Einstein frame
scalar field φE on the scalar curvature R. Using our model,
this potential (28) can be expressed as

V (φE ) = 1

2κ2

π Rc χ ex
[

− π β χ (x + 1) + ex
(
πβ + πβ x4 − 2 α x2

) + α χ ex cot−1
(
x− 2

) ]

[
ex

(
πx4 − 2 α x + π

) − πβχ
]2 , (29)

where x = R0/Rc and χ = x4 + 1. Hence, the mass square
term of the scalar field in the Einstein frame is

m2(φE ) = d2V (φE )

dφ2
E

= 1

3

[
1

f ′′(R)
+ R

f ′(R)
− 4 f (R)

f ′(R)2

]

R = R0

= 1

3
Rc

[
πχ2ex

2 α ex
(
3x4 − 1

) + πβχ2

+ πχex x

ex
(
πx4 − 2 α x + π

) − πβχ

]

− 4Rc
[−π−1α cot−1

(
x−2

) + β
(
e−x − 1

) + x
]

3
[
2 α x

(
πx4 + π

)−1 + βe−x − 1
]2 .

(30)

In Minkowski space i.e. for R0 = 0, this equation takes the
form:

m2(φE ) = πRc

3(πβ − 2 α)
. (31)

From Eqs. (29) and (30), we see that although the expres-
sions for the scalar field potential and scalaron mass square
in Einstein frame are little bit complicated in comparison
to that in the Jordan frame, their variations as a function of
R0 are found to be almost similar as seen from Figs. 3 and
4 respectively. That is, the behaviours of potential and the
mass term of the scalar field are almost identical in both
frames. In Fig. 5, the variation of field φE as a function of
background curvature is shown. The field φE at R0 = 0 and
R0 → ∞ is independent of α, whereas it is independent of
β only at R0 → ∞. Moreover, φE is non-zero at R0 = 0
and tends to zero at R0 → ∞, which is obvious from it’s
expression. Again from Eqs. (11) and (27) it is clear that all
these behaviours of φE should be applicable to φ also, but
with positive values of φ for all values of R0. Variation of
the potential (29) as a function of φE is shown in Fig. 6. It
is seen from this figure that the minimum of the potential
moves towards the higher value of φE when α � β than

the case when α ∼ β. Obviously, similar behaviour can be
attributed to the potential (24) as a function of the field φ.
Thus, because of the similarity of behaviours of the scalar
field, it’s potential and mass square term in both Jordan and
Einstein frames, the rest of the study in this paper is done in
the Jordan frame only.

2.3 Solar system tests of the model

It is possible to recover GR by introducing the Chameleon
mechanism in the theory. In this mechanism, the scalar field
φ = f ′(R) is coupled with the matter density of the environ-
ment. Thus, when a model is used inside the solar system,
due to presence of matter density, the scalar field coupled
with it gains mass and hence allows the model to pass the
solar system tests. Clearly, this mechanism implies that the
functional form f (R) should have a very closer value to the
Ricci scalar R, for R above or equal to the solar system scale.
A model is considered viable and consistent if it passes the
solar system tests. Guo has introduced several methods to test
whether an f (R) gravity model passes the solar system tests
or not in Jordan frame [25]. According to Guo, a model can
pass solar system tests if it satisfies the following conditions:
∣∣∣∣
f (R) − R

R

∣∣∣∣ � 1, (32)
∣∣ f ′(R) − 1

∣∣ � 1, (33)

R f ′′(R) � 1. (34)

We’ve calculated the above functions numerically for our
model (see Table 1). These functions are plotted against back-
ground curvature in the units of Rc for different parameters
(see Fig. 7). These indicate that the model can be made to
pass the solar system tests by increasing the ratio R0/Rc or
by simply decreasing the parameter Rc. However, a simple
and effective way to make the model solar system viable is
to decrease all the parameters (i.e. α, β and Rc) sufficiently
(see Table 1). Thus, within a viable range of parameters, the
model can easily pass the solar system tests. This is another
advantage of this model, which allows us to enlist the model
as a solar system viable model.

3 Comparison of the model with other viable models

In this section, we would like to compare the model with two
other viable models viz., the Starobinsky model and the Hu-
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Fig. 3 Variation of scalar field
potential as a function of
background curvature in
Einstein frame for different
values of α and β parameters
with Rc = 1 in arbitrary units

Fig. 4 Variation of scalaron
mass square as a function of
background curvature in
Einstein frame for different
values of α and β parameters
with Rc = 1 in arbitrary units

Fig. 5 Variation of scalar field
φE as a function of scalar
curvature in Einstein frame for
different values of α and β

parameters with Rc = 1 in
arbitrary units

Fig. 6 Variation of scalar field
potential as a function of field
φE in Einstein frame for
different values of α and β

parameters with Rc = 1 in
arbitrary units
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Fig. 7 Plots of solar system test functions with respect to R0/Rc

Table 1 Numerical values of
solar system test functions for
specific values of R0/Rc, α and
β

Values of Model parameters

∣∣∣∣
f (R) − R

R

∣∣∣∣
∣∣ f ′(R) − 1

∣∣ R f ′′(R)

R0/Rc = 0.00148, α = 0.1500, β = 0.500 0.49970 0.49940 0.00060

R0/Rc = 0.05000, α = 0.0450, β = 0.500 0.48842 0.47705 0.02235

R0/Rc = 0.50000, α = 0.1500, β = 0.500 0.41686 0.34820 0.11727

R0/Rc = 1.00000, α = 0.0500, β = 0.080 0.06307 0.04534 0.04534

R0/Rc = 1.50000, α = 0.0050, β = 0.044 0.02401 0.01061 0.01657

R0/Rc = 2.00000, α = 0.0005, β = 0.008 0.00356 0.00112 0.00226

Sawicki model in terms of stability and nature of the models
in local regime. At first, we would like study the de Sitter
stability of our toy model. For our model the Eq. (2) takes
the form:

2 α x2

x4 + 1
+ π

[
βe−x (x + 2) + x − 2β

] = 2α cot−1
(
x− 2

)
,

where x = R0/Rc and Rc 
= 0. On solving this equation for
β, we get,

β = −
ex

(
−πx5 − 2αx2 + 2α cot−1

(
1
x2

)
+ 2αx4 cot−1

(
1
x2

)
− πx

)

π (− x + 2ex − 2)
(
x4 + 1

) .

(35)

The contour plot of β as a function of x and α is shown in
Fig. 8. The Starobinsky model and the Hu–Sawicki model
are defined respectively as

fS(R) = R − s1m
2
s

[
1 −

(
R2

m4
s

+ 1

)− n
]

, (36)

and

fH (R) = R −
m2c1

(
R
m2

)μ

c2

(
R
m2

)μ + 1
. (37)

The de Sitter solution for the Starobinsky model is

s1 = xs
(
x2
s + 1

)n+1

2
(
x2
s

(
x2
s + 1

)n + (
x2
s + 1

)n − nx2
s − x2

s − 1
) , (38)

where xs = R0/m2
s . Similarly, for the Hu–Sawicki model,

using μ = 1 the de Sitter solution is found to be,

c2 = c1 + √
(c1 − 1)c1 − 1

xh
. (39)

The contour plots of the parameters s1 and c2 respectively for
the Starobinsky model and the Hu–Sawicki model are shown
in Fig. 9. From the contours it can be seen that for very small

Fig. 8 β as a function of x and α. The contour shows the de Sitter
solutions of the model
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values of n and xs in the Starobinsky model, we do not have
de Sitter solutions. The parameter s1 rises very rapidly for
the increase of the parameters n and xs . For the Hu–Sawicki
model, we see that, there is no de Sitter solutions present for

c1 < 1 and the parameter c2 rises very slowly for increments
of c1 beyond 1. On the other hand, for our toy model, we see
that α and x have a wider region of de Sitter solutions. The
other parameter β has a higher value than α in the de Sitter
solution space towards higher values of x .

The de Sitter space defined by the Eq. (35) is stable if it
satisfies the condition (3). Our model (1) in Eq. (3) leads to
the inequality:

[
2αex

(
3x4 − 1

)
+ πβ

(
x4 + 1

)2
]

×
[
πβ(x + 1)

(
x4 + 1

)2 + ex {8αx5 − π
(
x4 + 1

)2}
]

< 0. (40)

By using Eq. (35) in the above inequality, we can further
reduce it to the following form:

(
x − 2ex + 2

)2

×
[
πx

(
x4 + 1

)2 − 2α
(
x4 + 1

)2

× cot−1
(

1

x2

)
+ 2αA

]

×
[

2α(x + 1)
(
x4 + 1

)2
cot−1

(
1

x2

)

+π
(
−x2 − 2x + 2ex − 2

) (
x4 + 1

)2 − 2αBx2
]

> 0, (41)

where A = (
x6 − 3x5 − 6x4 + ex

(
6x4 − 2

) + x2 + x + 2
)

and B = (
x5 − 3x4 + 8 (ex − 1) x3 + x + 1

)
. When the

model satisfies this Eq. (41), it can have stable de Sitter solu-
tions. The stability region of the model in parameter space is
shown in Fig.10. Again, in order to get oscillatory behaviour
around the de Sitter space, the following condition needs to
be satisfied [20]:

f ′(R0)

f ′′(R0)
>

25R0

16
. (42)

Using our model in this inequality, we get,

(
x4 + 1

) {ex (
πx4 − 2αx + π

) − πβ
(
x4 + 1

)}
2αex

(
3x4 − 1

) + πβ
(
x4 + 1

)2 >
25x

16

(43)

Now, eliminating β by using Eq. (35), we may rewrite the
above expression as

−
2

(
x4 + 1

) {−π (−x + ex − 1)
(
x4 + 1

) − α
(
x4 + 1

)
cot−1

(
1
x2

)
+ 2α (ex − 1) x}

πx
(
x4 + 1

)2 − 2α
(
x4 + 1

)2 cot−1
(

1
x2

)
+ 2α{x6 − 3x5 − 6x4 + ex

(
6x4 − 2

) + x2 + x + 2}
>

25x

16
. (44)

If the toy model satisfies the above condition, it will have
a stable de Sitter solution as well as oscillatory behaviour
around the de Sitter solution. Similarly, for the Starobinsky
model, the stability condition (3) takes the form:

s1n{(2n + 1)x2
s − 1}{4s1n(n + 1)x3

s −
(
x2
s + 1

)n+2}
< 0. (45)

Using Eq. (38) in the above inequality, we obtain,

C
[
x4{−2n2 +

(
x2
s + 1

)n − 3n − 1} +
(
x2
s + 1

)n

+x2
s {2

(
x2
s + 1

)n − n − 2} − 1
]

> 0, (46)

where C = nxs
(
x2
s + 1

)2n+2 {(2n + 1)x2
s − 1}[(

x2
s + 1

)n + x2
s {

(
x2
s + 1

)n − n − 1} − 1
]2

. The Starobin-

sky model gives stable de Sitter solutions for any parame-
ter set satisfying the above inequality. For this model, the
condition (42) gives,

C
[
x4
s {−50n2 + 16

(
x2
s + 1

)n − 16 − 57n}
+x2

s {32
(
x2
s + 1

)n − 32 − 7n}
+16

(
x2
s + 1

)n − 16
]

> 0. (47)

Any parameter sets in the Starobinsky model satisfying this
condition will give oscillations around de Sitter solutions in
de Sitter space. Finally for the Hu–Sawicki model, condition
(3) gives:

c1μxμ+1
h {c2(μ + 1)xμ

h − μ + 1}
×

[
xh

(
c2x

μ
h + 1

) 3 − c1μxμ
h {c2(μ + 2)xμ

h − μ + 2}
]

> 0. (48)

Now using Eq. (39) in the above expression and considering
μ = 1, we get,

(c1 − 1) xh{
√

(c1 − 1) c1x2
h + (c1 − 1) xh}

{2
√

(c1 − 1) c1x2
h + 2c1xh − xh} > 0. (49)

123



1101 Page 10 of 21 Eur. Phys. J. C (2020) 80 :1101

Fig. 9 Figure on left side shows the de Sitter solutions of the Starobinsky model and figure on right side shows the de Sitter solutions for the
Hu–Sawicki model

Similarly, for the Hu–Sawicki model, the condition for exis-
tence of oscillations around stable de Sitter solutions gives:

c2
1xh{

√
(c1 − 1) c1x2

h + (c1 − 1) xh}{(32c1 − 41)
√

(c1 − 1) c1x2
h +

(
32c2

1 − 57c1 + 25
)
xh} > 0. (50)

We have plotted these inequalities to check the stability
region of the models in parameter space in Figs. 11 and 12.

From the Fig. 10, it is seen that the toy model has a small
region of instability for lower values of x and compara-
tively higher values of α (greater than 0.4 approximately).
For higher values of x , the model has a continuous stabil-
ity region in the parameter space. In case of the Starobinsky
model, from Fig. 11 it is seen that there is a small region of
instability in the parameter space. But in case of Hu–Sawicki
model, the model is stable only for the values of c1 > 1
(Fig. 12). This suggests that, the toy model has a wider range
of stability region in the parameter space. Since, the model
also has a comparatively larger region admitting Eq. (42), it
can be easily concluded that the toy model with a selected
set of parameters can pass the stability conditions as well as
the condition for having oscillatory solutions in the de Sitter
space.

Now, we would like to compare the bahviour of the toy
model with the Starobinsky and Hu–Sawicki models using
the functions used in the expressions (32), (33) and (34).
These expressions ensure the viability of the models in local
systems. Although, in the previous section, we have chosen
the parameters freely to check the solar system viabilities,
now we shall study the same and compare with the other two
models in de Sitter sitter stability regions of the parameter
spaces. However, it should be noted that most of the parame-
ter sets used in that sections are found to belong automatically
in the de Sitter sitter stability region of the model. The func-

tion used in relation (32) takes the following respective form
in the toy model, Starobinsky model and Hu–Sawicki model
in the de Sitter solution regime,

f (R0) − R0

R0

=
α

(
x4 + 1

)
cot−1

(
1
x2

)
− (ex − 1)

(
πx4 + 2αx + π

)

π (−x + 2ex − 2)
(
x4 + 1

) , (51)

fS(R0) − R0

R0

= −
(
x2
s + 1

) ((
x2
s + 1

)
n − 1

)

2
((
x2
s + 1

)
n + x2

s

((
x2
s + 1

)
n − n − 1

) − 1
)

(52)

and

fH (R0) − R0

R0

= − c1 (xh)
μ+1
h√

(c1 − 1) c1 (xh)2
h (xh)

μ
h + (c1 − 1) (xh)

μ+1
h + (xh)2

h

.

(53)

The second function in (33) gives,

f ′(R0) − 1

=
2α

(
x4 + 1

)
cot−1

(
1
x2

)
− x

(
π

(
x4 + 1

) + 4α (ex − 1)
)

π (−x + 2ex − 2)
(
x4 + 1

) ,

(54)
f ′
S(R0) − 1

= nx2
s

− (
x2
s + 1

)
n + x2

s

(− (
x2
s + 1

)
n + n + 1

) + 1

(55)

123



Eur. Phys. J. C (2020) 80 :1101 Page 11 of 21 1101

Fig. 10 Stability region of the model (1). Figure on the left side shows the stability region allowed by Eq. (41) and figure on the right side shows
the stability region allowed by Eq. (44)

Fig. 11 Stability region of the Starobinsky model. Figure on the left side shows the stability region allowed by Eq. (46) and figure on the right
side shows the stability region allowed by Eq. (47)

and

f ′
H (R0) − 1

= − c1μxμ+3
h(√

(c1 − 1) c1x2
h x

μ
h + (c1 − 1) xμ+1

h + x2
h

)
2

.

(56)

The third function for the respective models are calculated
as:

R0 f ′′(R0)

=
2αx

(
3x4 − 1

)

π
(
x4 + 1

)2

−
x

(
−πx5 − 2αx2 + 2α cot−1

(
1
x2

)
+ 2αx4 cot−1

(
1
x2

)
− πx

)

π (−x + 2ex − 2)
(
x4 + 1

) ,

(57)
R0 f ′′

S (R0)

=
nx2

s

(
(2n + 1)x2

s − 1
)

(
x2
s + 1

) ((
x2
s + 1

)
n + x2

s

((
x2
s + 1

)
n − n − 1

)
− 1

)

(58)
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Fig. 12 Stability region of the Hu–Sawicki model. Figure on the left side shows the stability region allowed by Eq. (49) and figure on the right
side shows the stability region allowed by Eq. (50)

and

R0 f
′′
H (R0)

=
c1μxμ+3

h

(
(μ+1)

√
(c1−1) c1x2

h x
μ
h + (c1−1) (μ+1)xμ+1

h −(μ−1)x2
h

)

(√
(c1 − 1) c1x2

h x
μ
h + (c1 − 1) xμ+1

h + x2
h

)
3

.

(59)

These functions for the said models are compared in Fig. 13.
It is seen that the models are capable of passing the solar
system tests in the de Sitter stable regime for higher values
of x . The Hu–Sawicki model in this regime shows a con-
stant behaviour. However, the Starobinsky model and the toy
model give the higher values of the test functions for lower
x values. In this case, the behaviour of the toy model still
indicates the ability to pass the solar system tests. One inter-
esting point to note that for the toy model and the Starobin-
sky model, the asymptotic behaviours of the test functions
are almost same. These results suggest that the behaviour of
the toy model is closer to the Starobinsky model. However,
to make a clear conclusion, a detailed study of the models is
required and this is beyond the scope of this manuscript.

4 Constraints on the model

For the viability of a model in f (R) gravity it is utmost neces-
sary to impose constraints on the model on the basis of differ-
ent available observational data. A model which passes such
constraints are considered as a viable model in f (R) gravity.
Starobinsky model and Hu Sawicki model are examples of
two viable models in this context as mentioned earlier. There
are several ways to constrain an f (R) gravity model [26–32].

A constrained model is helpful to study different implications
of the model. In this section, we will try to constrain our toy
model using the results published in [26,27] and [29]. In
Ref. [26], authors carried out a Markov chain Monte Carlo
(MCMC) analysis for GWs from Hu Sawicki model using
the data sets of cosmic microwave background (CMB) and
baryon acoustic oscillations (BAO) together with the inde-
pendent constraints on the relationship between the matter
clustering amplitude σ8 and the matter mass-energy density
�m from Planck Sunyaev–Zeldovich (PSZ) cluster number
counts and also from the CFHTLens weak lensing tomog-
raphy measurements. Combining CMB, BAO and σ8 − �m

relationship from the PSZ catalog [33], they obtained a bound
which is still better than the bounds obtained from the GW
event GW170817 [29]. The bound on the parameter f ′(R)

reported by them is

− 3.7 × 10−6 < f ′(R) − 1 < 3.7 × 10−6, (60)

with 95% confidence level at upper bound [26]. On the other
hand in Ref. [27] a constraint was introduced on the Compton
wavelength λg of the graviton. From their study, we have a
constraint on λ−1

g as given by,

0 m−1 < λ−1
g < 1.098901099 × 10−23 m−1 (61)

with 90% confidence level on upper bound [27].
Now, we have computed the values of f ′(R) − 1 and λ−1

g
for our model by taking into consideration of above cited
respective upper bounds with the corresponding confidence
levels to constraint our model parameters Rc, α and β. The
results of this computation along with the contour plots are
shown in Fig. 14. Here we have not considered the constraint
on the model parameters coming from the fact that at higher
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Fig. 13 Solar system test functions with respect to x for the toy model (with α = 0.3), Starobinsky model (with n = 2 at the upper panel and n = 1
at the lower panel) and Hu–Sawicki model (with μ = 1 and c1 = 1.5 at the upper panel and c1 = 1.1 at the lower panel)

curvatures it goes near to the cosmological constant. How-
ever, the parameters are chosen from the stability region of
the parameter space. It is seen that the model can be a viable
one within a proper range of variables. The figure shows the
contours with 95% confidence level for f ′(R) − 1 and 90%
confidence level for λ−1

g (the larger contour) and with 68%
confidence level for the both (the smaller contour). The cen-
tral point denotes the boundary value for both the parameters
f ′(R) − 1 and λ−1

g and any value lower than the boundary
value is viable. This point corresponds to the galaxy cluster
Abell 1689 data [27]. In the plots we have considered three
sets of the parameters and we see that the smaller values of α

allow the model to pass the constraints easily. In the Fig. 14,
we have also shown 3 other points corresponding to galaxy
clusters Abell 262, Abell 1991 and Abell 383 data from the
Ref. [28]. All these points lie within the confidence level
contours.

The model can be constrained by using the GWs event
GW170817 also. In a recent study [29], f (R) gravity was
constrained by using the GW170817. They provided a bound
on f ′(R), which is

− 3 × 10−3 < f ′(R) − 1 < 3 × 10−3. (62)

Fig. 14 Contours with 95% confidence level on the upper bounds of
f ′(R) − 1 [26] and 90% confidence level on the upper bounds of λ−1

g
[27] (the larger contour) and with 68% confidence level on the both
(the smaller contour). The central red dot denotes the λg corresponding
to galaxy cluster Abell 1689 [27], blue dot corresponds to Abell 262,
black one corresponds to Abell 1991 and yellow one corresponds to
Abell 383 [28] data

Using our toy model in this expression, we find,

− 3

1000
<

2αx

πx4 + π
+ βe−x <

3

1000
. (63)
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Now, using Eq. (35) in the above expression, we can have,

− 3

1000
<

πx
(
x4 + 1

) − 2α
(
x4 + 1

)
cot−1

(
1
x2

)
+ 4α (ex − 1) x

π (−x + 2ex − 2)
(
x4 + 1

)

<
3

1000
. (64)

Choosing x = 7.5 (an arbitrary point in the stability region
from Fig. 10) and considering α to be a positive quantity, the
above equation reduces to,

0 ≤ α < 0.743783. (65)

In Fig. 15, we have shown the variations of λg with respect
to R0, f ′(R) − 1 with respect to R0 and mg with respect to
f ′(R)− 1 for the values of the model parameters used in the
contour plots in Fig. 14. The hump in the mass of the scalar
field encountered in the Fig. 1 and in the Fig. 6 are also present
in the λg vs. R0 curves. However, as mentioned earlier, this
hump vanishes when (β − α) � 0. For higher curvatures,
λg rapidly moves towards zero. The function f ′(R) − 1 also
has significantly higher values near the Minkowski spacetime
and as soon as the background Ricci curvature increases, this
model dependent function decreases rapidly. This nature of
the model is suitable for overcoming the local system con-
straints. Again as seen from the figure, with the increase of
the function f ′(R) − 1 mass of the scalar field decreases
initially at a faster rate and then becomes almost constant at
later stage.

5 Polarization modes of GWs in the model

In this section, we wish to check the polarization modes of
GWs in the model. In presence of massive polarization mode,
it would be easy to constraint the model using the experimen-
tal results. To explore the polarization modes of GWs in the
model, at first we’ll introduce the perturbation to the field
equation.

5.1 Perturbation to the field equation

If there are propagating GWs in spacetime, then they per-
turbs the metric around its background value. Considering
the background metric as ḡμν we may express the spacetime
metric to the first order of perturbation value hμν , which is
usually usually very small, as

gμν = ḡμν + hμν, where
∣∣ hμν

∣∣ � ∣∣ ḡμν

∣∣ . (66)

Now, expanding the Ricci tensor and the Ricci scalar upto
the first order of hμν , we may write:

Rμν � R̃μν + δRμν + O(h2)

= R̃μν − 1

2
(∇μ∇νh − ∇μ∇λhλν − ∇ν∇λhμλ + �hμν)

+ O(h2) (67)

and

R � R̃ + δR + O(h2)

= R̃ − �h + ∇μ∇νhμν − R̃μνh
μν + O(h2). (68)

Similarly, we may write for the f (R) and f ′(R) as

f (R) � f (R̃) + f ′(R̃) δR + O(h4), (69)

f ′(R) � f ′(R̃) + f ′′(R̃) δR + O(h4), (70)

where R̃ is some constant curvature. Thus, due to the pertur-
bation in spacetime the trace equation (9) can be rewritten
as

3 f ′′(R̃)�δR +
[
f ′′(R̃)R̃ − f ′(R̃)

]
δR = 0, (71)

where we have used Tμν = 0 for the empty space or far away
from the source. Fixing the gauge to be harmonic gauge with

∇μh
μ
ν = 1

2
∇νh, which after operating by ∇ν we find,

∇μ∇νhμν = 1

2
�h. (72)

An important point to be mentioned here is that, the Eq. (8)
is also satisfied by another solution: Rμν = �gμν = R̃μν ,
giving

2 f ′(R̃)R̃μν − gμν f (R̃) = κ2 Tμν. (73)

This equation actually corresponds to the Eq. (15), which is
the stationary condition used earlier in the Sect. 2. In empty
space, this equation has the form:

2 f ′(R̃)R̃μν − gμν f (R̃) = 0 (74)

and it leads to have the equation,

2 f (R̃) − R̃ f ′(R̃) = 0. (75)

This is the stationary condition (15) of the scalar field poten-
tial in the empty space corresponding to the constant curva-
ture R̃ of spacetime. Using the Eqs. (68), (72) and (75) in
Eq. (71), we get

3 f ′′(R̃)�2h +
(

5 f (R̃) f ′′(R̃)

f ′(R̃)
− f ′(R̃)

)
�h

+
(

2 f (R̃)2 f ′′(R̃)

f ′(R̃)2
− f (R̃)

)
h = 0. (76)

Now, we would like to define �h = m2h, where m is the
mass of the associated scalar field. Using this definition in
the above equation we obtain,

3 f ′′(R̃) m4 +
(

5 f (R̃) f ′′(R̃)

f ′(R̃)
− f ′(R̃)

)
m2
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Fig. 15 Plot on left shows the variation of λg with respect to R0, plot
in middle shows the variation of f ′(R) − 1 with respect to R0 and
plot on right shows variation of mg with respect to f ′(R) − 1 for (i)
α = 0.150, β = 0.500, Rc = 30 × 10−50 m−2; (ii) α = 0.045, β =

0.500, Rc = 70 × 10−50 m−2; (iii) α = 0.300, β = 0.850, Rc =
10 × 10−50 m−2. These are the constrained set of parameters of our
model that is done on the basis of upper bounds on f ′(R) − 1 [26] and
λg [27]

+
(

2 f (R̃)2 f ′′(R̃)

f ′(R̃)2
− f (R̃)

)
= 0. (77)

This is a quadratic equation in m2 and solution for m2 gives,

m2 = f ′(R̃)

3 f ′′(R̃)
− 2 f (R̃)

3 f ′(R̃)
= 1

3

[
f ′(R̃)

f ′′(R̃)
− R̃

]
, (78)

and

m2 = − f (R̃)

f ′(R̃)
= − R̃

2
. (79)

We see that the second solution corresponds to tachyonic
scalar field which becomes zero in the Minkowski spacetime
or at far distance away from the source. The first solution is
identical to Eq. (16). Thus the term m2 given by Eq. (78) is
exactly same as the scalar field mass square term m2

φ given

in Eq. (17) for our model, when R̃ = R0. Therefore this
solution suggests that there exists a massive scalar mode of
polarization of GWs in the theory apart from the massless
tensor modes.

At very far distance away from the source, we can consider
ḡμν = ημν , i.e. the Minkowski metric and the background
curvature R̃ = 0. In this case, the Ricci scalar slowly varies
near zero, i.e. R � 0 + δR. Hence, for the Minkowski space
the Eq. (66) can be written as

gμν = ημν + hμν. (80)

And to the first order of hμν , we get

Rμν = 1

2

(
∂μ∂ρh

ρ
ν + ∂ν∂ρh

ρ
μ − ∂μ∂νh − �hμν

)
, (81)

R = ∂μ∂ρh
ρμ − �h, (82)

where h = ημνhμν . So for our model, to the first order of
perturbation, the Eq. (8) becomes

Rμν − 1

2
ημνR − (2α − πβ)

π(β − 1)Rc

(
∂μ∂νR − ημν �R

) = 0.

(83)

Taking the trace of this Eq. (83), we get

(� − m2
0)R = 0, (84)

where

m2
0 = π(β − 1)Rc

6α − 3πβ

with α > 0 and β > 0. This is also exactly the same mass
square term m2

φ

∣∣
R0 = 0 in Minkowski space given by the Eq.

(18) for our model. Next, we introduce a variable

h̄μν = hμν − 1

2
ημνh − (2α − πβ)

π(β − 1)Rc
ημνR. (85)

The trace of this variable is

h̄ = ημν h̄μν = − h − 4
(2α − πβ)

π(β − 1)Rc
R. (86)

Using this Eq. (86) in the variable (85) we find,

hμν = h̄μν − 1

2
ημν h̄ − (2α − πβ)

π(β − 1)Rc
ημνR. (87)

From Eq. (85) and Eq. (87), one can easily see that both
hμν and h̄μν are interchangeable, i.e. replacing h̄μν by hμν

and vice-versa in Eq. (85) gives Eq. (87). Again, under an
infinitesimal coordinate transformation, xμ → xμ′ = xμ +
ςμ, we have

h′
μν = hμν − ∂μςν − ∂νςμ. (88)

The trace of this equation is

h′ = h − 2 ∂μςμ. (89)

And

h̄′
μν = h̄μν − ∂μςν − ∂νςμ + ημν ∂ρςρ. (90)
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The trace trace of this equation gives,

h̄′ = h̄ + 2 ∂ρςρ. (91)

Here we raise or lower the indices with the help of ημν , i.e.
with the Minkowski metric. The Lorentz gauge condition
∂μh̄′

μν = 0 can be obtained if ςμ satisfies �ςν = ∂μh̄μν .
The Lorentz gauge condition does not constrain the gauge
freedom and there is always a possibility to choose the
transverse and traceless conditions, i.e. ∂μh̄μν = 0 and
h̄ = ημν h̄μν = 0 [14,34–36]. By using the transverse
traceless gauge condition and substituting the Eq. (87) into
Eq. (81), we get

Rμν = 1

2

[
−�h̄μν + 2

(2α − πβ)

π(β − 1)Rc
∂μ∂νR

+ (2α − πβ)

π(β − 1)Rc
ημν �R

]
. (92)

Plugging Eq. (92) into Eq. (83), we obtain

3
2α − πβ

2π(β − 1)Rc
ημν(� − m2

0)R − 1

2
�h̄μν = 0. (93)

Combining Eqs. (84) and (93), we get

�h̄μν = 0, (94)

which is the wave equation of the massless tensor field. The
solution to this Eq. (94) is [34,35]

h̄μν = eμν exp(iqμx
μ) + c.c., (95)

where ημνqμqν = 0 and qμeμν = 0. Whereas the solution
to the massive scalar field Eq. (84) is given by [34,35],

R = ψ = ψ0 exp(i pμx
μ) + c.c., (96)

where ημν pμ pν = − m2
0. Assuming the GWs propagation

direction along z, the general solution can be written as [14]

hμν = h̄μν(t − z) + 2α − πβ

π(1 − β)Rc
ημν ψ(vt − z), (97)

where h̄μν is transverse and traceless and it represents the
standard spin-2 graviton, and ψ represents the scalar field
which is massive in nature and travels with a speed less than
c. The solution of the scalar part along z axis, i.e. ψ(vt − z)
can be expressed as

ψ = ψ0 e
−iωt + ikz (98)

and hence the mass of the field in terms of k and ω is

m0 =
√

ω2 − k2. (99)

5.2 Calculation of exact polarization amplitudes and
Newman–Penrose quantities of the model

In 1973, a powerful method was introduced in Ref. [37]
which deals with the study of the properties of GWs in any

metric theory of gravity. This method involves analysing all
the relevant components of Riemann tensor, which results
relative acceleration between two test particles. They used a
null-tetrad basis in order to calculate the Newman–Penrose
quantities [38]. In the Newman–Penrose formalism, there are
ten �’s, nine �’s, and a �, which are algebraically indepen-
dent and represent the irreducible parts of the Riemann tensor
Rλμκν . They are known as Newman–Penrose quantities. But
in case of plane waves or nearly plane waves, the differen-
tial and symmetry properties of Rλμκν reduce the number
of independent, nonvanishing components, to six. Hence, in
this formalism, the set {�2, �3, �4,�22} is used to describe
the six independent components of GWs in the metric the-
ory. In the tetrad basis, the Newman–Penrose quantities of
the Riemann tensor are [37]:

�2 = − 1

6
Rlklk, (100)

�3 = − 1

2
Rlklm, (101)

�4 = − Rlmlm, (102)

�22 = − Rlmlm . (103)

It should be noted that, �3 and �4 are complex. Therefore,
each one of them is capable of describing two independent
polarizations. One polarization mode for the real part and
one for the imaginary part. Thus total number of polarization
modes is 6.

The tetrad components of Ricci tensors can be expressed
as [37],

Rlk = Rlklk, (104)

Rll = 2 Rlmlm, (105)

Rlm = Rlklm, (106)

Rlm = Rlklm, (107)

and the Ricci scalar is

R = − 2 Rlk = − 2 Rlklk . (108)

In normal coordinate system [37],

�2 = − 1

6
Rztzt ,

�3 = − 1

2
Rxtzt + i

2
Rytzt ,

�4 = − Rxtxt + Rytyt + 2i Rxtyt ,

�22 = − Rxtxt − Rytyt .

Although the amplitudes {�2, �3, �4,�22} of a wave
depend on the observer [37], there are certain invariant state-
ments about them that hold true for all the standard observers
if they hold true for any one. These statements characterize
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the invariant E(2) classes of waves. For a standard observer,
under the assumptions that (a) the wave travels in the +z
direction, and (b) the same frequency for a monochromatic
wave is observed, the E(2) classes are:

• Class I I6: �2 
= 0. Standard observers measure the same
non-vanishing amplitude in the �2 mode. Presence or
absence of all other modes is observer-dependent;

• Class I I I5: �2 = 0, �3 
= 0. Standard observers mea-
sure the absence of �2 and the presence of �3. Presence
or absence of �4 and �22 is observer-dependent;

• Class N3: �2 = �3 = 0, �4 
= 0,�22 
= 0. Presence
or absence of all modes is observer-independent;

• Class N2: �2 = �3 = �22 = 0; �4 
= 0. Observer-
independent;

• Class O1: �2 = �3 = �4 = 0; �22 
= 0. Observer-
independent;

• Class O0: �2 = �3 = �4 = �22 = 0. Observer-
independent. All standard observers measure no wave.

In f (R) gravity, the field equation derived from the
Lagrangian in metric formalism results dynamical expres-
sions for Ricci tensor and Ricci scalar, as we have already
seen. Using this method, the expressions for Ricci tensor and
scalar are calculated in weak field limit, i.e. far from the GWs
source considering that the GW is propagating along z axis.
Thus, the Ricci tensor components corresponding to direc-
tions other than z and t will vanish. But from earlier sections,
we see that a massive scalar mode of polarization is present
in this model and so it is not possible to use this Newman–
Penrose formalism formalism which is developed for null
waves [14]. For waves with massive propagation mode, mod-
ified Newman–Penrose formalism has to be applied [39].
In modified Newman–Penrose formalism, the polarization
amplitudes as well as Newman–Penrose quantities are cal-
culated for a massive wave subject to proper gauge condition.
Considering the monochromatic wave solution of the form:

hμν = Cμνe
−iωt+ikz , (109)

where ω is the frequency and k is the wave number. How-
ever, we have noticed that, the modified Newman–Penrose
scalars and polarization amplitudes introduced in [39] using
Lorentz gauge condition can not distinguish breathing mode
when the scalar field becomes massless. It is due to the fact
that, they have used the transverse traceless condition to make
the non-tensor modes vanish when ω = k. But ω = k can’t
demand p(b)

6 = 0 because, the breathing mode is massless
in nature [15]. Breathing modes satisfy the transverse con-
dition but not the traceless condition. It implies that a model
having ω = k can have massless breathing mode of polar-
ization [15]. Keeping this fact in mind, we have modified
the polarization amplitudes and Newman–Penrose quanti-

ties. According to our calculations, modified polarization
amplitudes are expressed as:

p(l)
1 = 1

2

(
ω2 − k2

ω2 + k2

)
ω2(htt + hzz) − 1

2

(
ω2 − k2

)
htt ,

p(x)
2 = 1

2

(
ω2 − k2

)
hxz ,

p(y)
3 = 1

2

(
ω2 − k2

)
hyz ,

p(+)
4 = 1

2
ω2 (

hxx − hyy
)

,

p(×)
5 = 1

2
ω2hxy,

p(b)
6 = 1

2
ω2(hxx + hyy) . (110)

Here, we have not applied the traceless condition to the
breathing mode. These are the exact polarization amplitudes
of the wave. These expressions are valid for any metric the-
ory. The modified Newman–Penrose quantities now can be
expressed as:

�2 = − 1

24

(
ω2 − k2

ω2 + k2

) [
(3k2 − ω2)htt + (k2 − 3ω2)hzz

]
,

�3 = 1

8

(ω − k)(ω + k)2

ω
(hxz − ihyz) ,

�4 = 1

8
(ω + k)2(hxx + hyy) − 1

4
(ω + k)2(hyy + ihxy) ,

�22 = 1

8
(ω + k)2(hxx + hyy) . (111)

These equations differ from those in Ref. [39].
Now, for our model the general wave solution is given by

Eq. (97). Using this Eq. (97) in the above set of Eqs. (110),
we found the polarization amplitudes for our model as

p(l)
1 = 1

2
m2

0 C1ψ ,

p(x)
2 = 0 ,

p(y)
3 = 0 ,

p(+)
4 = − 1

2
( ¨̄hxx − ¨̄hyy) ,

p(×)
5 = − 1

2
¨̄hxy ,

p(b)
6 = ω2C1ψ , (112)

where m2
0 is given by Eq. (99) and C1 = 2α−πβ

π(1−β)Rc
(see

Eq. (97)). From the above expressions we can calculate the
Newman–Penrose quantities. Note that, above results sug-
gest, there are 4 non-zero polarization amplitudes in the
theory. Using Eqs. (111), we’ve calculated the Newman–
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Penrose quantities for the model as

�2 = 1

12
m2

0 C1ψ ,

�3 = 0 ,

�4 = ( ¨̄hyy + i ¨̄hxy) ,

�22 = 1

4
(ω + k)2 C1ψ . (113)

Thus the E(2) classification of the model is I I6. The model
exhibits non-zero Newman–Penrose quantities for 4 polar-
ization modes viz., tensor plus, tensor cross, scalar trans-
verse massless breathing mode and scalar longitudinal mas-
sive mode of polarization. However, the degrees of freedom
associated with the theory is 3. This suggests that the breath-
ing mode and the longitudinal mode exist in a mixed state
to give rise to a single polarization mode. If m0 = 0, the
massive longitudinal mode will vanish, giving �2 = 0. Note
that m0 = 0 is not a sufficient condition to imply the absence
of scalar degrees of freedom in the theory. It is because, in
f (R) theory there exists massless breathing mode which is
transverse but not traceless. Absence of scalar degrees of
freedom requires both �2 = 0 and �22 = 0. When both m0

and ψ(vt − z) vanish, the theory reduces to GR giving only
tensor modes of polarizations.

6 Detection of polarization modes of GWs—a review

Experimental detection of polarization modes of GWs is very
important to know the exact nature of GWs and hence in
checking the viabilities of modified gravity theories. In this
section we discuss the Pulsar Timing Arrays (PTAs) as a tool
to distinguish between different polarization modes. More-
over, we include a discussion on the results based on our
model.

PTAs play a significant role in the indirect detection of
GWs. They are also used for numerous astrophysical appli-
cations. In 1968, Counselman and Shapiro explained that
the observations of pulsars could be used to test GR [40].
Later in 1982, the first millisecond pulsar was discovered
[41]. Till now, a pretty good number of millisecond pulsars
has been discovered. The advantage of these pulsars over the
normal pulsars is that they are very stable. Their arrival times
can be measured and predicted with a good accuracy. This
allows to use these pulsars as a probe to search for GWs. In
2004, the Parkes Pulsar Timing Array (PPTA) project began
with the Parkes 64 m telescope [42,43]. After three years,
the North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) in North America was founded [44,45].
NANOGrav uses the Arecibo and Green Bank telescopes
to observe around 36 pulsars. In the same year, the Euro-

pean Pulsar Timing Array (EPTA) project was also founded
[46]. Using the Sardinian, Effelsberg, Nancay, Westerbork
and Jodrell Bank telescopes, EPTA observes around 42 pul-
sars. Later, by combining these three projects, the Interna-
tional Pulsar Timing Array (IPTA) was formed [47,48]. In
this study, we have used some selected data from PPTA [42]
and IPTA [47,48].

From the Ref. [49], we can have the correlation functions
for different polarization modes. The calculation of correla-
tion functions for the tensor and breathing modes are model
independent, but in the case of massive longitudinal mode,
the correlation function is model dependent as it depends on
the mass of the scaler graviton. The correlation function for
tensor modes is [49]

C+,×(θ) = ξGR(θ)

∫ ∞

0

|h+,×
c |2

24π2 f 3 d f, (114)

where

ξGR(θ) = 3 (1 − cos θ)

4
log

(
1 − cos θ

2

)

+1

2
− 1 − cos θ

8
+ δ(θ)

2
,

and θ is the angular separation between two pulsars. For the
scalar modes it is [49]

Cb(θ) = ξb(θ)

∫ ∞

0

|hbc |2
12π2 f 3 d f, (115)

where

ξb(θ) = 1

8

[
cos θ + 3 + 4 δ(θ)

]
.

The normalized correlation function in general is given by:

ζ(θ) = C(θ)

C(0)
.

These are the correlation functions for tensor modes and
massless breathing mode of GW polarization. But in our
model, there exists a massive longitudinal mode. Thus to
see the effect of massive mode, we follow the Refs. [50–52]
in which the timing residual induced by GWs is expressed as

R = − 1

S Ai j Hi j , (116)

here S = 2
(
1 + (c/ωg)kg · n̂)

gives the dispersion relation
of the GWs, the terms ωg and kg connect the mass of the
longitudinal mode of polarization mg by the relation m2

g =
ω2
g − k2

g , Ai j ≡ n̂i n̂ j and Hi j = ∫ τ

0 hi j (τ, 0) − hi j (τ −
|D|/c,D) dτ . D is the displacement vector from the observer
to the pulsar and n̂i and n̂ j are two unit vectors pointing
to two pulsars. The correlation coefficient C between two
different pulsars is given by

C1,2(θ) = 〈R1R2〉 = A1A2〈S1S2H1H2〉,
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Fig. 16 Variation of correlation functions (ζ(θ)) with respect to θ . Plot
on the left shows the correlation function for tensor modes and massless
breathing mode of polarization of GWs. Plot on the right shows the cor-
relation function for the longitudinal mode of polarization for different

values of the mass of the mode as predicted by the model (1) along with
correlation functions for some selected pulsars obtained from PPTA
[42] and IPTA [47,48] data

where the sub-scripts are indices for the pulsars. With these
assumptions and following Ref. [49], the correlation func-
tions are calculated numerically for different values of mg

(see Fig. 16). In terms of our model,

m2
g ≡ m2

φ =
⎡
⎣ RceR/Rc

(
π

(
R4 + R4

c

)2 − 8αR5R3
c

)
− πβ(R + Rc)

(
R4 + R4

c

)2

3πβ
(
R4 + R4

c

)2 − 6αR4
c e

R/Rc
(
R4
c − 3R4

)
⎤
⎦

R = R0

.

All these numerically calculated correlation functions are
plotted with respect to θ in Fig. 16. In this figure we have
used three values of mg for the following sets of parameters:

(i) mg = 0 for R = 0 m−2, Rc = 0 m−2, α, β ∈ [0, 1],
(ii) mg = 10−24 eV for R = 0 m−2, Rc = 10−50 m−2, α =

0.05, β = 0.031831 and
(iii) mg = 10−25 eV for R = 4.44 × 10−52 m−2, Rc =

5 × 10−51 m−2, α = 0.0314565, β = 0.17268558.

To check the experimental viability of our model, we have
calculated the correlation functions for GWs using some
selected data from IPTA and PPTA data set [42,47,48,53,54]
as mentioned above, which are also plotted in Fig. 16.
Although we do not have a clear conclusion, which requires
more observation period as well as data, we can still see
that these experimental data could not directly rule out the
existence of extra polarization modes of GWs. However, to
distinguish between polarization modes, we need to wait for
more PTA data with GW events.

7 Summary and conclusion

In this work, we have introduced a new f (R) gravity toy
model and studied the polarization modes of GWs in it. The
study shows that, in metric formalism, there exists 3 polar-

ization modes of GWs viz., tensor plus mode, tensor cross
mode and scalar mode. The scalar mode is a mixed state
of massless breathing mode and massive longitudinal mode.
The tensor modes of polarization are transverse, traceless
and massless in nature. The scalar breathing mode is trans-
verse but exists with non vanishing trace and massless in
nature. On the other hand, the scalar longitudinal mode is
massive in nature and hence propagates with speed less than
that of tensor modes. When the scalar field becomes mass-
less, the longitudinal mode vanishes and only the massless
scalar breathing mode exists in the scalar degrees of freedom.
As an experimental correspondence of our model prediction
on the modes of GWs, we have compared the correlation
function of massive longitudinal mode as predicted by the
model with that of the some selected PTAs data of PPTA and
IPTA. The result is found to be quite encouraging.

We have also shown that a wisely selected set of the param-
eters easily allows the model to pass the solar system tests,
which is a very important requirement for the viability of a
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model. Further, the model has been constrained using com-
bined CMB, BAO and σ8 − �m relationship from the PSZ
catalog and Abell 1689 galaxy cluster data. The model can be
easily constrained with the help of the parameters Rc, α and
β. Further, we have also constrained the model using the GW
event GW170817. It is seen that, the model can withstand the
constraints put by GW170817 and hence can be included as
a post GW170817 viable model.

In the present work, we have studied only few properties
of the model. However, for a proper understanding of the
model characteristics, a detailed study is required. As such,
in future the model can be checked also for various stabili-
ties and constraints as well as in different cosmological and
astrophysical contexts, which will give us more information
about the viability of the model. Moreover, it is to be noted
that in the Palatini formalism the polarization modes of GWs
in f (R) gravity is model independent. So, this formalism can
not distinguish our model from other f (R) gravity models
in this context. Nevertheless, there may be some cosmolog-
ical variations and stellar structure differences of the model
in Palatini formalism, which might be useful to study the
generation of GWs in such situations.

Acknowledgements A part of this work was done during a visit of
authors to IUCAA, Pune. Authors are grateful to IUCAA for the hos-
pitality during their stay.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: PTA data used
in this work are availble at https://www.atnf.csiro.au/research/pulsar/
ppta/ and http://ipta4gw.org/.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. A.G. Riess et al., Astron. J. 116, 1009 (1998)
2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)
3. N.A. Bahcall, J.P. Ostriker, S. Perlmutter, P.J. Steinhardt, Science

284, 1481 (1999). arXiv:astro-ph/9906463
4. R.P. Kirshner, PNAS 96, 4224 (1999)
5. C. Corda, Int. J. Mod. Phys. A 23(10), 1521 (2008)
6. B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)
7. A.A. Starobinsky, JETP Lett. 86, 157 (2007). arXiv:0706.2041

8. W. Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007).
arXiv:0705.1158

9. S. Tsujikawa, Phys. Rev. D 77, 023507 (2008). arXiv:0709.1391
10. P. Zhang, Phys. Rev. D 73, 123504 (2006). arXiv:astro-ph/0511218
11. G. Cognola et al., Phys. Rev. D 77, 046009 (2008).

arXiv:0712.4017
12. E.V. Linder, Phys. Rev. D 80, 123528 (2009). arXiv:0905.2962
13. C. Corda, JCAP 04, 009 (2007)
14. D. Liang, Y. Gong, S. Hou, Y. Liu, Phys. Rev. D 95, 104034 (2017)
15. D.J. Gogoi, U.D. Goswami, arXiv:1901.11277 (2019)
16. Y.-C. Chen, C.-Q. Geng, C.-C. Lee, H. Yu, Eur. Phys. J. C 79, 93

(2019)
17. L. Amendola, S. Tsujikawa, Dark Energy: Theory and Observa-

tions (Cambridge University Press, Cambridge, 2015)
18. L. Amendola, R. Gannouji, D. Polarski, S. Tsujikawa, Phys. Rev.

D 75, 083504 (2007). arXiv:gr-qc/0612180
19. K. Bamba, C.Q. Geng, C.C. Lee, JCAP 1011, 001 (2010).

arXiv:1007.0482
20. H. Motohashi, A.A. Starobinsky, J. Yokoyama, JCAP 06, 006

(2011). arXiv:1101.0744
21. S. Capozziello, A. Stabile, A. Troisi, Class. Quantum Gravity 24,

2153 (2007). arXiv:gr-qc/0703067
22. P. Teyssandier, P. Tourrenc, J. Math. Phys. (N.Y.) 24, 2793 (1983)
23. U.D. Goswami, K. Deka, Int. J. Mod. Phys. D 22, 1350083 (2013).

arXiv:1303.5868
24. S. Chakraborty, S. Pal, A. Saa, Phys. Rev. D 99, 024020 (2019).

arXiv:1812.01694
25. J.-Q. Guo, Int. J. Mod. Phys. D 23, 1450036 (2014).

arXiv:1306.1853
26. L. Boubekeur et al., Phys. Rev. D 90, 103512 (2014)
27. S. Desai, Phys. Lett. B 778, 325 (2018). arXiv:1708.06502
28. S. Gupta, S. Desai, Class. Quantum Gravity 36, 105001 (2019).

arXiv:1811.09378
29. S. Jana, S. Mohanty, Phys. Rev. D 99, 044056 (2019).

arXiv:1807.04060
30. T. Chiba, T.L. Smith, A.L. Erickcek, Phys. Rev. D 75, 124014

(2007)
31. M. Cataneo et al., Phys. Rev. D 92, 044009 (2015).

arXiv:1412.0133
32. R.C. Nunes, S. Pan, E.N. Saridakis, E.M.C. Abreu, J. Cosmol.

Astropart. Phys. 01, 005 (2017)
33. P.A.R. Ade et al. (Planck Collaboration). A&A 571, A20 (2014).

arXiv:1303.5080
34. C. Corda, J. Cosmol. Astropart. Phys. 04, 009 (2007)
35. C. Corda, Int. J. Mod. Phys. A 23, 1521 (2008)
36. S. Capozziello, C. Corda, M.F. De Laurentis, Phys. Lett. B 669,

255 (2008)
37. D.M. Eardley, D.L. Lee, A.P. Lightman, Phys. Rev. D 8, 3308

(1973)
38. E. Newman, R. Penrose, J. Math. Phys. 3, 566 (1962)
39. Y.-H. Hyun, Y. Kim, S. Lee, Phys. Rev. D 99, 124002 (2019)
40. C.C. Counselman III and Shapiro II, Science 162, 352 (1968)
41. D.C. Backer, S.R. Kulkarni, C. Heiles et al., Nature 300, 615 (1982)
42. R.N. Manchester et al., Publ. Astron. Soc. Aust. 30, e017 (2013).

arXiv:1210.6130
43. S. Osłowski et al., Mon. Not. R. Astron. Soc. 488, 868 (2019).

arXiv:1906.09793
44. A. Brazier et al., arXiv:1908.05356 (2019)
45. Z. Arzoumanian et al., ApJ 821, 13 (2016). arXiv:1508.03024
46. G. Desvignes et al., Mon. Not. R. Astron. Soc. 458, 3341 (2016).

arXiv:1602.08511
47. J.P.W. Verbiest et al., Mon. Not. R. Astron. Soc. 458, 1267 (2016).

arXiv:1602.03640
48. B.B.P. Perera et al., Mon. Not. R. Astron. Soc. 490, 4666 (2019).

arXiv:1909.04534
49. K.J. Lee, F.A. Jenet, R.H. Price, ApJ 685, 1304 (2008)

123

https://www.atnf.csiro.au/research/pulsar/ppta/
https://www.atnf.csiro.au/research/pulsar/ppta/
http://ipta4gw.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/astro-ph/9906463
http://arxiv.org/abs/0706.2041
http://arxiv.org/abs/0705.1158
http://arxiv.org/abs/0709.1391
http://arxiv.org/abs/astro-ph/0511218
http://arxiv.org/abs/0712.4017
http://arxiv.org/abs/0905.2962
http://arxiv.org/abs/1901.11277
http://arxiv.org/abs/gr-qc/0612180
http://arxiv.org/abs/1007.0482
http://arxiv.org/abs/1101.0744
http://arxiv.org/abs/gr-qc/0703067
http://arxiv.org/abs/1303.5868
http://arxiv.org/abs/1812.01694
http://arxiv.org/abs/1306.1853
http://arxiv.org/abs/1708.06502
http://arxiv.org/abs/1811.09378
http://arxiv.org/abs/1807.04060
http://arxiv.org/abs/1412.0133
http://arxiv.org/abs/1303.5080
http://arxiv.org/abs/1210.6130
http://arxiv.org/abs/1906.09793
http://arxiv.org/abs/1908.05356
http://arxiv.org/abs/1508.03024
http://arxiv.org/abs/1602.08511
http://arxiv.org/abs/1602.03640
http://arxiv.org/abs/1909.04534


Eur. Phys. J. C (2020) 80 :1101 Page 21 of 21 1101

50. F.A. Jenet, G.B. Hobbs, K.J. Lee, R.N. Manchester, ApJ 625, L123
(2005)

51. K.J. Lee, Class. Quantum Gravity 30, 224016 (2013).
arXiv:1404.2090

52. K. Lee, F.A. Jenet, R.H. Price, N. Wex, M. Kramer, ApJ 722, 1589
(2010). arXiv:1008.2561

53. G.B. Hobbs, R.T. Edwards, R.N. Manchester, Mon. Not. R. Astron.
Soc. 369, 655 (2006). arXiv:astro-ph/0603381

54. R.T. Edwards, G.B. Hobbs, R.N. Manchester, Mon. Not. R. Astron.
Soc. 372, 1549 (2006). arXiv:astro-ph/0607664

123

http://arxiv.org/abs/1404.2090
http://arxiv.org/abs/1008.2561
http://arxiv.org/abs/astro-ph/0603381
http://arxiv.org/abs/astro-ph/0607664

	A new f(R) gravity model and properties of gravitational waves in it
	Abstract 
	1 Introduction
	2 A new model of f(R) gravity
	2.1 Scalar degrees of freedom in Jordan frame
	2.1.1 Scalar tensor equivalence of the model

	2.2 Model in Einstein frame
	2.3 Solar system tests of the model

	3 Comparison of the model with other viable models
	4 Constraints on the model
	5 Polarization modes of GWs in the model
	5.1 Perturbation to the field equation
	5.2 Calculation of exact polarization amplitudes and Newman–Penrose quantities of the model

	6 Detection of polarization modes of GWs—a review
	7 Summary and conclusion
	Acknowledgements
	References




