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Abstract Models with non-gravitational interactions bet-
ween the dark matter and dark energy components are an
alternative to the standard cosmological scenario. These
models are characterized by an interaction term, and a fre-
quently used parameterization is Q = 3ξHρx , where H
is the Hubble parameter and ρx is the dark energy density.
Although recent analyses have reported that this particular
scenario provides a potential solution to the H0 and σ8 ten-
sions for negative values of the interaction parameter ξ , we
show here that such an interval of values of ξ leads to a
violation of the Weak Energy Condition for the dark mat-
ter density, which is accompanied by unphysical instabilities
of matter perturbations. Using current observational data we
also show that the inclusion of the physical prior ξ ≥ 0 in
the statistical analysis alters the parameter selection for this
model and discards it as a solution for the H0-tension prob-
lem.

1 Introduction

As it is well known, there is no known fundamental principle
that prevents a non-minimal coupling between the energy
components of the cosmological dark sector. Such a pos-
sibility has in fact been explored since the eighties as an
alternative to the standard cosmology (see e.g. [1–3]), with
its theoretical and observational consequences being of great
interest nowadays [4–23]. However, in the absence of a natu-
ral guidance from fundamental physics on the coupling term,
a number of phenomenological models have been proposed
and their cosmological consequences investigated in light of
the current observational data – we refer the reader to [24]
for a recent comparative analysis of different classes of inter-
acting models.

a e-mail: rodrigovonmarttens@gmail.com (corresponding author)

In particular, models in which the coupling or interact-
ing term Q is proportional to the dark energy (DE) density
ρx [25–28], Q = 3ξHρx , where H and ξ are the Hubble
and interaction parameters respectively, have become popu-
lar in the recent years (see e.g. [29] and references therein).
However, as will be shown in this paper, this class of models
shows unphysical behavior for the interval of values of its
parameters currently constrained by observational data [29].
In particular, the model predicts that the pressureless matter
density will eventually become negative, violating the Weak
Energy Condition (WEC), with further consequences for the
evolution of the dark matter and baryon density perturbations.

2 Background dynamics

Let us first consider the balance equations of the model

ρ̇b + 3Hρb = 0, (1)

ρ̇dm + 3Hρdm = 3ξHρx , (2)

ρ̇x + 3Hρx (1 + ωx ) = −3ξHρx , (3)

where ρdm and ρb are respectively the densities of dark matter
(DM) and conserved baryons, ωx < 0 is the DE equation-
of-state (EoS) parameter, and a dot means derivative with
respect to (w.r.t.) cosmological time. Summing up equations
(1) and (2) gives (ρm = ρdm + ρb)

ρ̇m + 3Hρm = 3ξHρx (4)

for the total pressureless matter. The general solutions of (3)
and (4) are

ρm = Ca−3 −
(

ξρx0

ξ + ωx

)
a−3(ξ+ωx+1) , (5)

ρx = ρx0 a
−3(ξ+ωx+1) . (6)
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In the spatially flat case, C and ρx0 obey the additional con-
straint ρm0 + ρx0 = 3H2

0 , where a subscript 0 denotes the
value of the corresponding quantity at present time. That is,

C = 3H2
0

(
1 − ωx�x0

ξ + ωx

)
, (7)

where �x0 = ρx0/(3H2
0 ) is the present DE density parame-

ter.
In order to assess the conditions that lead to the WEC

violation, it is convenient to split the analysis into two parts,
namely, the past and future WEC. From (5), it is possible to
show that the matter energy density becomes negative at

a =
[

ξρx0

(ξ + ωx )C

] 1
3(ξ+ωx )

. (8)

Assuming that wx < 0, it is straightforward to obtain the
conditions that will provide solutions for Eq. (8) in the inter-
vals 0 < a < 1 (past) and a > 1 (future). To ensure that
the matter energy density does not assume negative values at
early times, the interaction parameter must obey the relation

ξ < |ωx |�m0 . (9)

On the other hand, the second term on the right-hand side of
Eq. (5) is negative and it will eventually dominate ρm in the
future unless

ξ ≥ 0, (10)

regardless of the value of wx . Equations (9) and (10), there-
fore, define the range where the model is physically well-
defined for any time scale. In particular, the latter relation
will be used in Sect. 4 to define the WEC or physical prior
when constraining the cosmological parameters within non-
prohibited regions.

For example, if ωx = −1, �x0 = 0.7 and ξ = −0.1, ρm
becomes negative when the scale factor is a ≈ 1.7. In Fig. 1
we show the scale factor for WEC violation as a function of
the interaction parameter ξ . Figure 2 shows the behavior of
the Hubble function, as well as of the DE and matter densities,
as functions of the scale factor. The violation of the WEC in
this class of interacting models was also pointed out in [6].

3 Perturbations

In a model with non-gravitational interaction in the dark sec-
tor, the conservation equations for conserved baryons, DM
and DE are

Tμν
b ;ν = 0, (11)

Tμν
dm ;ν = Qμ, (12)

Tμν
x ;ν = −Qμ. (13)

Fig. 1 Scale factor for WEC violation as a function of the interaction
parameter ξ . The solid line corresponds to wx = −0.8 and the dashed
line corresponds to wx = −1.2. The DE density parameter was fixed
to �x0 = 0.7. The result for wx = −1 is in between solid and dashed
lines

Combining Eqs. (11) and (12) we obtain

Tμν
m ;ν = Qμ. (14)

We can decompose the energy-momentum transfer Qμ in
directions parallel and orthogonal to the fluid 4-velocity uμ,

Qμ = Quμ + Q̄μ, (15)

with

uμ Q̄μ = 0. (16)

For comoving observers, Q represents the energy transfer
between the components, and Q̄μ represents the momentum
transfer.

Assuming that both DE and pressureless matter are adia-
batic perfect fluids, perturbing (13) and (14) in the longitudi-
nal gauge, and assuming that there is no momentum transfer
in the matter rest frame (i.e. matter follows geodesics), we
find the balance and Poisson equations

θ ′
m + Hθm − k2	 = 0, (17)

θ ′
x +

[
ω′
x

1 + ωx
− aQ

ρx
− H(3ωx − 1)

]
θx − k2	

= 1

1 + ωx

[
k2

ρx
δpx − a

Q

ρx
θm)

]
, (18)

δ′
m − 3	′ + θm = −aQ

ρm
δm + aQ

ρm
	 + aδQ

ρm
, (19)

[δρx ]′
ρx

+ 3H
[
δx + δpx

ρx

]
− 3(1 + ωx )	

′ + (1 + ωx )θx

= −aQ

ρx
	 − aδQ

ρx
, (20)

−	 = a2

2

ρ

k2 δ + 3a2

2

(H2

k2

)(
ρm

k2

)
θ

H , (21)

123



Eur. Phys. J. C (2020) 80 :1110 Page 3 of 10 1110

Fig. 2 Background solutions as functions of the scale factor. Left
panel: Hubble function H/H0. Centre panel: DE relative energy density.
Right panel: pressureless matter relative energy density. In all panels

solid lines correspond to ξ = −0.1, ωx = −1 and �x0 = 0.7 and
dashed lines correspond to the �CDM model with the same �x0

where a prime means derivative w.r.t. conformal time, H =
aH , ρ is the total energy density, δ = δρ/ρ, and θ is the fluid
velocity potential.

Multiplying (18) by (1 + ωx ) and setting ωx = −1, we
obtain

δρx = −aQθm

k2 . (22)

Using (22) and (17) in (20),

δQ = Q′θm
k2 . (23)

The remaining equations lead to the Poisson and matter per-
turbation equations

θ ′
m + Hθm − k2	 = 0, (24)

δ′
m − 3	′ + θm = −aQ

ρm

[
δm − 1

k2

(
k2	 + Q′

Q
θm

)]
,

(25)

−k2	 = a2

2
ρmδm −

(
a3Q

2
− 3a2

2
Hρm

)
θm

k2 , (26)

where θ = θm (the DE velocity remains undefined). In the
limit of small scales, Eqs. (24)–(26) are reduced to

θ ′
m + Hθm + a2

2
ρmδm = 0, (27)

δ′
m + θm = −aQ

ρm
δm, (28)

whereas (22) and (23) are negligible in this limit. For con-
served baryons the balance equations are

θ ′
b + Hθb + a2

2
ρmδm = 0, (29)

δ′
b + θb = 0. (30)

There is no pressure term in Eqs. (27)–(30). Instabilities
are caused by the background interaction term Q = 3ξHρx

due to the violation of the WEC discussed earlier. Some
authors try to fix this issue by taking ωx �= −1. In this
case, the system of perturbation equations (17)–(21) does

not close. Then an additional ansatz for δQ is needed, but it
should be consistent to a covariant perturbation of the back-
ground ansatz Q = 3ξHρx . Another possibility is to con-
sider interacting models with a non-adiabatic DE, with sound
speed c2

s = 1, which on the other hand leads in general to
large scale instabilities [4,30] (see also [31,32]). In any case,
the weak energy condition is still violated by the background
in the present model.

In Fig. 3 we plot the evolution of the total matter/baryon
density contrasts and velocity potentials, that show an insta-
bility at a ≈ 1.7, when the matter density becomes negative
(for ξ = −0.1 and �x0 = 0.7). As can be seen in the top left
panel, when ρm reaches values arbitrarily close to zero, δm
diverges. On the other hand, the bottom panels show that this
instability propagates, via δρm , to the baryonic component,
even though that component does not violate the WEC and
remains positive for a > 1.7. In order to solve the closed
system (27)–(30), we have used ξ = −0.1, ωx = −1 and
�x0 = 0.7, besides the initial conditions δm = δb = 10−5

and θm = θb = 0 at a = 10−3.
As we have shown, for ωx = −1 the DE component is

smooth on sub-horizon scales. This is not true if ωx > −1,
when DE clusters and contributes to clustering matter [5].
Therefore, one may argue that the weak energy condition
must be satisfied by the total clustering energy, not by pres-
sureless matter alone. In order to verify this possibility, let
us decompose the dark energy as

ρx = ρ� + ρm′ , (31)

px = ωxρx = −ρ�, (32)

where ρm′ is pressureless and ρ� has EoS parameter −1. The
total clustering matter (including the fluctuating DE part) is
given by

ρc = ρm + ρm′ = ρm + (1 + ωx )ρx . (33)

From (5) and (6) we then have

ρ� = −ωxρx0 a
−3(ξ+ωx+1), (34)
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Fig. 3 Perturbative solutions in subhorizon limit as functions of the
scale factor. Top left panel: pressureless matter density contrast. Top
right panel: pressureless matter velocity potential. Bottom left panel:
Baryon density contrast. Bottom right panel: Baryon velocity poten-

tial. In all panels solid lines correspond to ξ = −0.1, ωx = −1 and
�x0 = 0.7, and dashed lines correspond to the �CDM model with the
same �x0

ρc = Ca−3 +
[
(1 + ωx ) −

(
ξ

ξ + ωx

)]
ρx0 a

−3(ξ+ωx+1).

(35)

It is easy to verify that ρc is positive definite if, and only if,

ωx + ξ + 1 ≥ 0. (36)

When this inequality is saturated, the model is equivalent to
a �CDM model. It is violated, in particular, by the best-fit
values obtained from current observations [29].

With the above decomposition, Eqs. (3) and (4) can be
rewritten as

ρ̇c + 3Hρc = −ρ̇� = Qc, (37)

with

Qc = 3(ωx + ξ + 1)Hρ�. (38)

If (36) is satisfied, the energy flux is from ρ� to ρc. With this
interaction term, the sub-horizon perturbation equations for

the clustering matter are the same as (27) and (28),

θ ′
c + Hθc + a2

2
ρcδc = 0, (39)

δ′
c + θc = −aQc

ρc
δc, (40)

with δ� � δc and δQc ≈ 0. Under condition (36), there is no
instability. Note that the decomposition defined by Eq. (31)
was introduced as part of a complementary discussion on
the weak energy condition analysis. This approach must be
considered only in this context, and there is no relation with
the parameter selection presented in Sect. 4.

To conclude this analysis, a discussion on the use of the
comoving synchronous gauge is in order. In the synchronous
gauge the balance equations are given by

θ̇m + 2Hθm = Q

ρm
(θ − θm) + ∇iδ Q̄i

ρm
, (41)

θ̇x +
[

ω̇x

1 + ωx
− Q

ρx
− H(3ωx − 2)

]
θx
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Table 1 Results of the statistical analysis. The result is presented with the best-fit (in parenthesis) and the mean±1σ CL

Parameter Planck Planck + Pantheon

No prior WEC prior No prior WEC prior

100 ωb (2.234) 2.242+0.015
−0.017 (2.236) 2.243+0.018

−0.012 (2.223) 2.236+0.016
−0.014 (2.240) 2.239+0.014

−0.015

ωc (0.1197) 0.1194+0.0014
−0.0014 (0.1195) 0.1192+0.0014

−0.0012 (0.1210) 0.1202+0.0012
−0.0013 (0.1203) 0.1197+0.0012

−0.0012

ln(1010As) (3.026) 3.037+0.016
−0.016 (3.037) 3.034+0.016

−0.013 (3.044) 3.047+0.014
−0.015 (3.046) 3.046+0.016

−0.014

ns (0.967) 0.967+0.005
−0.005 (0.967) 0.967+0.005

−0.005 (0.961) 0.964+0.004
−0.004 (0.962) 0.966+0.004

−0.005

τreio (0.047) 0.052+0.008
−0.008 (0.053) 0.051+0.008

−0.007 (0.053) 0.055+0.007
−0.008 (0.054) 0.056+0.008

−0.008

H0 (63.12) 63.75+3.3
−3.0 (65.09) 62.52+3.6

−2.1 (67.58) 67.73+1.0
−1.0 (67.35) 66.8+0.73

−0.63

ξ (0.15) 0.13+0.11
−0.12 (0.09) 0.18+0.11

−0.12 (−0.02) −0.01+0.04
−0.04 (0.00) 0.02+0.01

−0.02

�m0 (0.36) 0.35+0.03
−0.04 (0.33) 0.36+0.02

−0.04 (0.31) 0.31+0.01
−0.01 (0.31) 0.32+0.01

−0.01

σ8 (0.74) 0.75+0.05
−0.06 (0.77) 0.73+0.05

−0.04 (0.82) 0.82+0.02
−0.02 (0.81) 0.80+0.02

−0.01

χ2
min 2777.24 2778.56 3804.80 3806.04

= 1

ρx (1 + ωx )

[
k2

a2 δpx − Qθ − ∇iδ Q̄
i
]
, (42)

δ̇m + θm − ḣ

2
= − Q

ρm
δm + δQ

ρm
, (43)

δ̇x + 3H

[
δpx
δρx

− ωx

]
δx + (1 + ωx )θx − (1 + ωx )

ḣ

2

= Q

ρx
δx − δQ

ρx
. (44)

For the metric potential, we obtain from the Einstein’s equa-
tions

ḧ + 2Hḣ = ρmδm + ρxδx + 3δpx . (45)

In the case ωx = −1 we can assume, as above, that matter
follows geodesics, that is, we can set δ Q̄i = 0, θ = θm = 0,
and (41) is identically satisfied. From (42) we see that δρx =
−δpx = 0 (while θx remains undefined). Finally, from (44)
we have δQ = 0 and our system is reduced to

δ̇m − ḣ

2
= − Q

ρm
δm, (46)

ḧ + 2Hḣ = ρmδm . (47)

Systems (27) and (28) and (46) and (47) lead to the same
second order equation for the matter contrast,

δ̈m + (2H + �)δ̇m + (2H� + �̇)δm = ρmδm

2
, (48)

where we have introduced the rate of matter creation � =
Q/ρm . It is easy to check that, for ωx �= −1, this is not gen-
erally possible. Dark energy is perturbed, there is momen-
tum transfer in the matter rest frame, matter does not follow
geodesics, which means that it is not comoving with syn-
chronous observers.

4 Impact of the WEC prior on parameter estimation

We shall now investigate the impact of the physical or WEC
prior, ξ ≥ 0, on the model parameter estimation. With and
without the inclusion of such a prior we perform a Bayesian
statistical analysis considering two different data sets. First,
we use the full CMB data from Planck alone, which contains
information from temperature and polarization maps and the
lensing reconstruction, Planck (TT,TE,EE+lowE+lensing)
[33]. Second we combine the Planck data with the current
sample of the Pantheon catalog of type Ia Supernovae (SNe
Ia) [34,35].1

We choose not to use the Baryonic Acoustic Oscillations
(BAO) data as there is no evidence that the fiducial model
used in the BAO peak extraction would not bias our analysis,
contrary to the usual �CDM parameters [36]. Furthermore,
we emphasize that the parameter estimation itself is not the
main goal of the paper, but rather to assess how the inclusion
of the WEC prior affects the parameter constraints.

In order to perform the parameter selection we make
use of a suitable modified version of the Boltzmann code
class [37] for the studied interacting model, combined
with MontePython [38,39] for running the MCMC pro-
cess. The cosmological parameters considered in our anal-
ysis are the six usual ones plus the interaction parameter,
i.e., θ = {ωb, ωc, ln(1010As), ns, τreio, H0, ξ}, with the dark
energy EoS parameter wx = -1. The results of our analysis
are presented in Table 1.

Figure 4 shows the posteriors obtained for the interaction
parameter ξ for the cases where no prior (left panel) and
the WEC prior (centre panel) are used. As can be seen, the
�CDM limit (ξ = 0) is obtained within 1σ (C.L.) in all

1 The Pantheon data can be downloaded from http://www.github.com/
dscolnic/Pantheon. For CMB analysis, all Planck likelihood codes and
data can be obtained at http://www.pla.esac.esa.int/pla.
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Fig. 4 Posteriors for the interaction parameter without (left) and with
(centre) the WEC prior. The panel on the right shows the posteriors for
H0. Orange lines: Planck (no prior). Red lines: Planck + Pantheon (no

prior). Purple lines: Planck (WEC prior). Blue lines: Planck + Pantheon
(WEC prior)

Fig. 5 Corner plot for �m0 and
σ8

cases. For the case with no prior, when only Planck data
is used, the best-fit and mean value of ξ are both positive,
which avoid the WEC violation discussed earlier. On the
other hand, when the Pantheon data is added to the analysis,
the best-fit and mean value of ξ are slightly smaller than zero,

which means that, inevitably, the WEC will be violated in the
future. Notwithstanding, when the WEC prior is taken into
account, the analysis for ξ is not drastically affected. When
only the Planck data is employed the best-fit and mean values
for ξ are also positive, in agreement with the analysis with

123
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no prior. For the combined Planck + Pantheon data set, the
constraint on ξ has the �CDM limit as the best-fit, with an
upper-bound limit compatible with the previous analysis with
the WEC prior. It is worth mentioning that the interval of ξ

derived from the past WEC condition (Eq. (9)) agrees with
all analysis, which amounts to saying that the impact on the
parameter estimation comes from the future WEC condition,
i.e., the positivity of the interacting parameter ξ defined in
Eq. (10).

The posteriors for H0 are shown in the right panel of
Fig. 4. Both analyses, with and without the WEC prior,
have weak constraints on the Hubble constant when we con-
sider only the Planck data, with best-fit and mean around
H0 ≈ 64 km s−1 Mpc−1. The wide error bars of H0 in
these cases evidence the necessity of adding more data to the
analysis. Adding the SNe Ia data from Pantheon, the studied
model seems to alleviate the H0 tension, which is related to
the negative value of the interacting parameter ξ . The inclu-
sion of the WEC prior moves the constraints towards smaller
values of H0, which increases the well-known tension with
local measurements of the current expansion rate [40].

Finally, we show the corner plot for the plane �m0 - σ8 in
Fig. 5. Similarly to the H0 analysis, in the case where only the
Planck data is employed, we have weak constraints on �m0

and σ8. In particular, the predictions for �m0 and σ8 in both
analyses are about 0.35 and 0.74 respectively. On the other
hand, when the Pantheon data is combined with Planck data,
the constraints on �m0 and σ8 are considerably improved.
Also in this case, the inclusion of the WEC prior alters the
parameter constraints, with a slight preference for smaller
values ofσ8, which somehow seems to alleviate theσ8 tension
between the Planck primary CMB results and estimates from
cosmic shear surveys [41]. For example, a naive comparison
between our estimates of the quantity S8 = σ8(�m/0.3)1/2

with and without the WEC prior with the one provided by the
KiDS weak lensing survey [41] shows a difference of 1.5σ

and 1.64σ , respectively. An even better agreement (� 1σ ) is
obtained from a comparison using the current clustering and
lensing data from the Dark Energy Survey [42].

5 Conclusions

Interacting DE cosmologies are capable of providing a good
description of the Universe evolution and constitute an alter-
native to the standard cosmological model [8]. As recently
reported in [29], the current observational data seem to favor
the former class of models with an interaction term of the type
Q = 3ξHρx . In particular, for negative values of the inter-

acting parameter (3ξ � −0.5), that study showed that this
model is able to provide a solution for the widely discussed
H0 and σ8-tension problems.

In this paper, we have investigated the theoretical consis-
tency of this class of cosmologies and shown that for nega-
tive values of ξ , which physically corresponds to a transfer
of energy from dark matter to dark energy, this particular
model predicts an eventual violation of the WEC (ρ ≥ 0)
for the dark matter density, which results in the instabilities
of the matter perturbations discussed in Sect. 3. For com-
pleteness, we have also discussed the impact of the physical
prior, ξ ≥ 0, on the model parameter estimation through a
statistical analysis of the latest CMB and type Ia Supernovae
data. The results show that the model predictions are in good
agreement with current estimates of σ8 but far from providing
a possible solution for the H0-tension problem.
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Appendix A: Corner plots

For the sake of completeness, we show the resulting trian-
gle plots with all free cosmological parameters. These plots
are particularly useful because they illustrate the correlation
between all parameters. In Fig. 6 we show the result for the
analyses with no prior, while Fig. 7 shows the result for the
case where the WEC prior is taken into account.
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Fig. 6 Triangle plot with the free cosmological parameters for the analyses where the WEC prior is not taken into account using Planck and Planck
+ Pantheon data
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Fig. 7 Triangle plot with the free cosmological parameters for the analyses where the WEC prior is taken into account using Planck and Planck +
Pantheon data
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