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Abstract The invariant differential cross section of inclu-
sive ω(782) meson production at midrapidity (|y| < 0.5)
in pp collisions at

√
s = 7 TeV was measured with the

ALICE detector at the LHC over a transverse momentum
range of 2 < pT < 17 GeV/c. The ω meson was recon-
structed via its ω → π+π−π0 decay channel. The mea-
sured ω production cross section is compared to various cal-
culations: PYTHIA 8.2 Monash 2013 describes the data,
while PYTHIA 8.2 Tune 4C overestimates the data by about
50%. A recent NLO calculation, which includes a model
describing the fragmentation of the whole vector-meson
nonet, describes the data within uncertainties below 6 GeV/c,
while it overestimates the data by up to 50% for higher pT.
The ω/π0 ratio is in agreement with previous measurements
at lower collision energies and the PYTHIA calculations.
In addition, the measurement is compatible with transverse
mass scaling within the measured pT range and the ratio is
constant withCω/π0 = 0.67±0.03 (stat) ±0.04 (sys) above
a transverse momentum of 2.5 GeV/c.

1 Introduction

Measurements of hadron production cross sections in proton–
proton (pp) collisions at high energies are important to test
our understanding of strong interaction and its underlying
theory of quantum chromodynamics (QCD) [1]. Its pertur-
bative treatment (pQCD) becomes feasible for predictions of
particle production in hard scattering processes that have a
sufficiently high momentum transfer Q2. This is possible by
factorizing [2] the scattering process into three contributions:
a QCD matrix element describing the scattering of partons, a
parton distribution function (PDF) [3] describing the proba-
bility to find a scattering parton within each colliding hadron,
and a fragmentation function (FF) [4] that relates the final-
state parton momentum to the momentum of an observed
hadron. While the QCD matrix element can be calculated
in pQCD for sufficiently hard scales, the FFs and PDFs are
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obtained by global fits of experimental data at various col-
lision energies [5]. However, most particles are produced in
soft scattering processes that involve small momentum trans-
fers and therefore can not be calculated within pQCD. In this
regime, calculations rely on phenomenological models that
also require experimental verification.

Comparison of measured particle spectra with calcula-
tions is essential to test their underlying assumptions and
provide constraints for the FFs and the PDFs. For example,
recent measurements of π0 and η mesons [6–8] at several
LHC collision energies constrained gluon fragmentation [9]
in a regime not accessible by measurements at lower col-
lision energies. Like the π0 and η mesons, the ω meson is
comprised mainly of light valence quarks and hence has sim-
ilar flavor content. However, it has spin 1 and is heavier than
the π0 and η with a mass of 782 MeV/c2 [10]. These dif-
ferences make the ω meson an interesting complementary
probe to improve our understanding of hadron production in
high-energy collisions. Even though there have been several
theoretical efforts to describe the fragmentation into pseu-
doscalar mesons and baryons such as π , K, η and protons
[11,12], only a few theoretical models exist to describe the
fragmentation into vector mesons, due to a lack of experi-
mental data. Nonetheless, recent efforts [13,14] have been
made to describe the fragmentation into the entire vector
meson nonet using a model with broken SU(3) symmetry by
analysing RHIC (pp) and LEP (e+e−) data.

This article presents the invariant differential cross section
of inclusive ω meson production at mid-rapidity (|y| < 0.5)
in pp collisions at

√
s = 7 TeV. The cross section of ω pro-

duction in hadronic interactions has been measured at colli-
sion energies of

√
s = 62 GeV [15] and

√
s = 200 GeV [16–

18] at ISR and RHIC respectively. At LHC energies, ω pro-
duction has only been measured by ALICE at forward rapidi-
ties (2.5 < y < 4.0) in pp collision at 7 TeV [19] in a
transverse momentum (pT) range of 1 < pT < 5 GeV/c.
The results reported here provide the first measurement of ω

production at mid-rapidity at LHC energies, and in a wide
pT range of 2 < pT < 17 GeV/c, which tests existing cal-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-08651-y&domain=pdf
mailto:alice-publications@cern.ch


1130 Page 2 of 16 Eur. Phys. J. C (2020) 80 :1130

culations in this regime and provides input for future theo-
retical studies of vector meson fragmentation functions. In
addition, the ω/π0 production ratio as a function of pT is
compared to results of measurements at lower collision ener-
gies. This ratio also tests the validity of transverse mass (mT)
scaling [20] for ω mesons at LHC energies, which is typ-
ically applied to estimate hadronic backgrounds in direct
photon or di-electron measurements in situations where no
measured hadron spectra are available. The empirical scal-
ing rule, which was established in measurements of identi-
fied particle spectra at lower collision energies at ISR and
RHIC [21], states that the pT-differential yields of most par-
ticles can be described as Ed3σ/dp3 = Ch f (mT), where
f (mT) is a universal function for all hadron species and Ch

is a constant normalisation factor.
The article is structured as follows: Sect. 2 briefly

describes the ALICE sub-detectors, with a focus on those
relevant for the measurement. Details on the event selection
and signal extraction are given in Sects. 3–5. Sources of sys-
tematic uncertainties are discussed in Sect. 6. The data and
comparisons to model predictions are presented in Sect. 7.
Finally, conclusions are provided in Sect. 8.

2 ALICE detector

The ω meson was reconstructed via its decay to π+π−π0,
where in turn the π0 decays to two photons. This strategy
required the reconstruction of charged tracks in the ALICE
central tracking system, composed of the inner tracking sys-
tem (ITS) [22] and the time projection Chamber (TPC) [23],
and the reconstruction of photons using the electromag-
netic calorimeter (EMCal) [24,25] and the photon spectrom-
eter (PHOS) [26]. In addition, photons were reconstructed
using the photon conversion method (PCM) [27], which
exploits the capability of the central tracking system to recon-
struct photons from electron–positron track pairs. A detailed
description of the ALICE detector system and its perfor-
mance can be found in Refs. [27,28], respectively. Below,
a brief overview of the previously mentioned detectors and
the V0 detector [29], used for the minimum bias trigger, is
given.

The ITS is positioned closest to the nominal interaction
point and consists of two layers of Silicon Pixel Detec-
tors (SPD), two layers of silicon drift detectors (SDD) and
two outermost layers of silicon strip detectors (SSD). The
layers are positioned between 3.9 cm and 43.0 cm radial dis-
tance from the beamline, where the two SPD layers cover
a pseudorapidity range of |η| < 2 and |η| < 1.4, respec-
tively. The SDD and SSD have a pseudorapidity coverage of
|η| < 0.9 and |η| < 1.0, respectively. The ITS is used for the
tracking of charged particles and the reconstruction of the
primary vertex.

The TPC is a large (90 m3) cylindrical drift detector,
which allows for the measurement of charged particles and
their identification via specific energy loss (dE/dx) measure-
ments. The TPC covers a pseudorapidity range of |η| < 0.9
over the full azimuth and enables the measurement of up to
159 space points per track. A large solenoidal magnet sur-
rounding the central barrel detectors provides a magnetic
field of B = 0.5 T, which allows one to reconstruct tracks
down to pT ≈ 100 MeV/c. For the reconstruction of charged
particles in the ITS and TPC, a transverse momentum reso-
lution of about 1% at 1 GeV/c is achieved, which decreases
to about 3% at 10 GeV/c [23].

The EMCal is a Pb-scintillator sampling calorimeter,
which covered an azimuthal range of �ϕ = 40◦ and
|η| < 0.67 in pseudorapidity during 2010 data taking. In that
period, it was comprised of 4 super modules, each consisting
of 288 modules. The module consists of four towers with a
size of ≈ 6 × 6 cm2, corresponding to approximately twice
the Molière radius. Each tower is made up of 140 alternating
lead and scintillator layers, where the latter are connected to
avalanche photo diodes (APDs) that measure the scintillation
light of the electromagnetic showers produced by particles
traversing the lead absorber. The energy resolution is given
by σE/E = 4.8%/E ⊕ 11.3%/

√
E ⊕ 1.7% with energy E

in units of GeV [25].
The PHOS is an electromagnetic calorimeter with high

granularity based on lead-tungstate (PbWO4) scintillation
crystals. At the time these data were collected, it had an
acceptance of �ϕ = 60◦ and |η| < 0.12, divided into three
modules, each consisting of 3584 crystals that are connected
to APDs. A high granularity is achieved by small crystal
size of ≈ 2.2 × 2.2 cm2, where the lateral dimensions of
the cells are only slightly larger than the PbWO4 Molière
radius of 2 cm. The high light yield of the PbWO4 crys-
tals operated at −25 ◦C results in an energy resolution of
σE/E = 1.3%/E ⊕ 3.6%/

√
E ⊕ 1.1% with energy E in

units of GeV [30].
The V0 detector provides the minimum bias triggers and

is employed to reduce background events, such as beam-gas
interactions and out-of-bunch pileup. It consists of two scin-
tillator arrays located in the forward and backward rapidity
regions of the ALICE apparatus, covering a pseudorapidity
of 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively.

3 Event and track selection

The pp collision data used for the ω meson measurement
were recorded by the ALICE experiment in 2010 at a centre-
of-mass energy of

√
s = 7 TeV. In 2010, a minimum

bias trigger MBOR, which required a signal either in the
SPD or in one of the V0 scintillator arrays, was used. The
total inelastic pp collision cross section was determined on
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the basis of the van der Meer scan and was found to be
σinel = 73.2+2.0

−4.6 (model) ± 2.6 (lumi) mb [31]. The corre-
sponding cross section of the MBOR trigger was σMBOR =
(62.4 ± 2.2) mb. Beam-induced background events, such as
beam-gas interactions or out-of-bunch pileup, are rejected
offline by using the timing information from the V0 detec-
tors and the number of reconstructed hit points and track seg-
ments in the SPD, which are expected to be uncorrelated for
background events. The rejection of in-bunch pileup events,
where multiple interactions occur per bunch crossing, was
achieved by requiring that only a single primary vertex is
reconstructed with the SPD per event. Moreover, collision
events with a reconstructed vertex more than 10 cm away
from the nominal interaction point along the beam axis were
rejected. The integrated luminosities Lint = Nevt/σMBOR

were determined to be L EMCal
int = (6.4 ± 0.2) nb−1 and

L PHOS
int = (6.0 ± 0.2) nb−1 for the measurement involving

the EMCal and PHOS, respectively. The integrated luminos-
ity of the sample using only the PCM for photon reconstruc-
tion amounts to L PCM

int = (7.4 ± 0.3) nb−1.
Charged pion trajectories (tracks) with |η| < 0.9 were

reconstructed in the ITS and TPC, requiring at least 70
crossed cathode pad rows in the TPC and at least one hit
in any of the layers of the ITS. Furthermore, the χ2 of the
track refit procedure per TPC space point was required to
be below 4 and tracks with a momentum below 100 MeV/c
were rejected. The tracks were loosely constrained to the
collision vertex by requiring a maximum distance of clos-
est approach of a few centimeters to the collision vertex in
beam direction and transverse plane. The resolution of the
transverse distance to the primary vertex for ITS and TPC
charged particle tracks is below 150µm for pT� 0.5 GeV/c
[27]. Furthermore, charged pions can be identified using the
specific energy loss dE/dx along the track in the TPC [32].

4 Photon measurement

To enhance the probability of the reconstruction of π0

mesons, all methods to measure photons and π0s at midrapid-
ity with ALICE were exploited. The EMCal and the PHOS
allow for the measurement of photons via their electromag-
netic shower deposits above ∼ 0.5 GeV, while the PCM
enables the measurement of photons down to lower pT by
exploiting the e+e− pair creation by a photon within the
inner detector material. Looser photon selection criteria as
in previous publications, see e.g. Ref. [33], were applied to
increase the ω reconstruction efficiency.

The electromagnetic shower produced in the EMCal or
PHOS by an incoming particle usually spreads over multi-
ple adjacent towers, requiring the combination of the indi-
vidual energy depositions to so-called clusters, which is
achieved by clusterisation algorithms [27]. Each recon-

structed cluster in the EMCal and PHOS was required to
have a total energy of Eclus > 0.7 GeV and 0.3 GeV respec-
tively to suppress contributions from minimum-ionising par-
ticles and noise. Additionally, in case of the EMCal, it
ensures a good timing resolution. Detector noise in a sin-
gle tower was removed by only selecting clusters with
at least 2 (EMCal) or 3 (PHOS) towers for analysis. In
order to remove clusters from pileup events originating
from subsequent bunch crossings, which occur in ≈ 150 ns
intervals, a cut on the timing of the leading tower for
EMCal clusters of −100 ns < tcluster < 100 ns with
respect to the collision time was applied. Photon clusters
were selected according to their cluster shape and, addi-
tionally, a track-matching procedure was applied to sup-
press clusters originating from charged particles recon-
structed in the tracking system. The EMCal cluster shape
is parametrised by the larger eigenvalue σ 2

long of the disper-
sion matrix of the shower shape ellipse [33,34]. A require-
ment of 0.1 ≤ σ 2

long ≤ 0.5 was imposed, where the lower
threshold removes contamination from non-physical back-
ground. The upper threshold suppresses elongated clusters
originating from low-pT electron and hadron tracks that
hit the calorimeter surface not perpendicularly and merged
clusters. The latter mostly originate from high-pT neu-
tral pions that decay with a small opening angle, result-
ing in both decay photons to be reconstructed as a single
cluster.

Photons traversing the detector material of ALICE convert
to an electron–positron pair with a probability of about 8.5%
[27] within a radial distance of 180 cm from the beam axis.
Such photons can be reconstructed using the PCM, which
allows for the measurement of photons converting in the
ITS and TPC within the fiducial acceptance of |η| < 0.9.
First, secondary vertices (V0s) were reconstructed by an algo-
rithm [35] exploiting the distinct topology of two tracks with
opposite curvature that originate from a common point within
the tracking detectors. Good reconstruction quality of the
tracks associated with a secondary vertex was assured by
requiring pT > 50 MeV/c and for the track to be comprised
of at least 60% of the findable TPC clusters. Tracks originat-
ing from electrons were identified via their specific energy
loss dE/dx in the TPC, which was required to be within
−3 to 5 σe of the expected energy loss of electrons, where
σe is the standard deviation of the measured dE/dx distri-
bution of electrons. Contamination of charged pion tracks
was suppressed by rejecting tracks whose dE/dx was within
±1σπ± of the expected energy loss for pions. Several addi-
tional selection criteria were applied to identify V0 candi-
dates originating from photon conversions, exploiting the
kinematics and topology of the conversion, as discussed in
more detail in Ref. [8]. These include, e.g. selections to assure
that the momentum vector of a conversion pair is pointing
towards the primary vertex and a selection based on the min-
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imal distance between the conversion point and the primary
vertex, in order to remove contributions from Dalitz decays.
Furthermore, the quality of the obtained V0 candidates was
improved by constraining the reduced χ2 of the Kalman-filter
hypothesis for the track pair. Remaining contamination from
K0

S, 
 and 
̄ decays was reduced by a selection based on the
decay kinematics in an Armenteros–Podolanski plot [36],
where photon conversions contribute as symmetric decays
of a particle with vanishing rest mass. Compared to previous
PCM measurements [8,33], a pT dependence of the selection
criteria was introduced to further reduce the contamination
from K0

S and 
 decays.

5 Meson reconstruction

In order to reconstruct the ω mesons via their π+π−π0 decay
channel, where the π0 decays to two photons with a branch-
ing ratio of ≈ 99%, a prior selection of π0 candidates from
pairs of photon candidates was applied. For the photons that
passed the selection criteria, the two-photon invariant mass
(Mγ γ ) of all possible photon pairs in a given event was cal-
culated. Four different methods were used for the π0 can-
didate reconstruction, differing in how the photons enter-
ing the Mγ γ calculation were selected. These are referred
to as PCM, PHOS and EMC, when both photons used for
the π0 reconstruction were measured with the respective
method. In addition, a hybrid method (PCM-EMC) was used,
where one PCM photon was combined with a photon mea-
sured with the EMCal. The resulting invariant mass distri-
butions exhibit a peak of photon pairs originating from π0

decays on top of combinatorial background. The peak was
parametrised in pT slices with a Gaussian to characterize
the mean and width (σπ0 ) of the π0 mass distribution. Pho-
ton pairs lying within about ±2σπ0 of the expected π0 mass
were selected as neutral pion candidates for the ω meson
reconstruction. For the PHOS measurement [37], π0 can-
didates were furthermore required to have both photons in
the same PHOS module and to have a minimum transverse
momentum of 1.5 GeV/c. Finally, the nominal neutral pion
mass was assigned to the mass of selected π0 candidates in
order to improve the ω mass resolution. This was achieved
by subtracting the difference between the reconstructed π0

mass and its nominal mass from the reconstructed ω mass.
Analogously to the π0 reconstruction, the invariant mass

of allπ+π−π0 combinations in a given event was determined
by summing the four-momentum vectors of the candidate
decay products passing the selection criteria. While charged
pions were identified by requiring a dE/dx within ±3σ of
their expected energy loss, no such selection was applied for
the ω analysis with the π0 reconstructed in PHOS to improve
the ω reconstruction efficiency.

Figure 1 shows the invariant mass distribution in the vicin-
ity of the ω nominal mass for indicated pT intervals for the
π0 reconstructed with PCM, EMC and PHOS, where a peak
originating from ω meson decays is clearly visible above
the combinatorial background. The latter can be described
using a second order polynomial for pT < 10 GeV/c. At
higher momenta, a first order polynomial was used for the
PHOS measurement. The signal obtained after background
subtraction was fitted with a Gaussian and the raw yield was
obtained by adding counts within ±2σω (±3σω for PHOS)
of the reconstructed ω mass, where σω denotes the standard
deviation of the Gaussian ω signal fit. The ω mass resolution
was found to be about 15 MeV/c2 with a slight dependence
on pT and reconstruction technique. This is achieved by the
use of the previously mentioned nominal mass assignment
for π0 candidates, which improved the mass resolution by
up to 30%.

The obtained raw yields for each reconstruction method
were corrected for geometrical acceptance and reconstruc-
tion efficiency, which were evaluated using Monte Carlo sim-
ulations. The event generator PYTHIA6.2 [38] was used to
simulate the minimum bias pp collisions, where the imple-
mented kinematics of the ω three-body decay are weighted
assuming the experimentally observed phase space density
distributions [39,40]. All final state particles were propagated
through the ALICE detector using GEANT 3 [41], taking into
account the operating conditions of the detector at the time
of data taking. For each calorimeter, PHOS and EMCal, the
relative difference in the energy scale and the non-linearity
were tuned in the Monte Carlo to ensure agreement between
the pT-dependent reconstructed π0 mass and width in data.
This agreement propagates to the ω candidates, where mass
and width in data and Monte Carlo are found to be consis-
tent within the statistical uncertainties. The full correction
factors, ε, that were applied to the raw yields for the four dif-
ferent methods are shown in Fig. 2. These factors include the
geometrical acceptance evaluated for each method and the
reconstruction efficiency, where the former is normalised to
unit rapidity and 2π azimuth angle to allow for a direct com-
parison between the different methods. The use of the four
reconstruction techniques combines the strengths of the indi-
vidual methods and maximizes the accessible pT reach. The
reconstruction with PCM offers a low pT-reach, however,
the efficiency is limited due to the low conversion proba-
bility of about 8.5%, while the reconstruction with the two
calorimeters complements the measurement at high pT.

6 Systematic uncertainties

The systematic and statistical uncertainties on the measured
ω yield for the four individual reconstruction techniques in
exemplary pT intervals are summarised in Table 1. The uncer-
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Fig. 1 Invariant mass of π+π−π0 candidates shown in the vicinity
of the nominal mass of the ω meson for indicated pT-ranges for π0

reconstruction with PCM (left), EMC (middle) and PHOS (right). The
second order polynomial used for the background description is shown
with a band denoting the statistical uncertainties of the fit. The points

show the signal obtained after subtraction of the background fit. The
signal is fitted with a Gaussian, where the vertical lines indicate the
integration range used to obtain the raw yield by bin-by-bin counting,
as outlined in Sect. 5

Fig. 2 Correction factors applied to the raw ω yields for each indi-
cated π0 reconstruction method. The factors include the geometrical
acceptance A and the reconstruction efficiency εrec.. In addition, a nor-
malisation to unit rapidity and 2π azimuth angle is applied to allow for
a direct comparison between the different methods

tainties are given as relative uncertainties of the measured
values in percent.

The signal extraction dominates the systematic uncertain-
ties of the measurement and includes uncertainties due to
the yield extraction. For the PCM, PCM-EMC and EMC
techniques the yield extraction uncertainty was estimated
by varying simultaneously the bin-counting window used
to obtain the raw yield in data and Monte Carlo and the
fit range used for the polynomial fit of the combinatorial
background. Additionally, for the PHOS analysis, the sig-

nal region was excluded from the background fit and the
signal was obtained by Gaussian integral instead of bin-by-
bin counting. The material budget uncertainty accounts for
a possible mismatch between the amount of material present
in the ALICE detector and its implementation in GEANT 3.
The material budget uncertainty for a conversion photon was
studied in Ref. [6], and found to be 4.5% per photon. For
the measurements involving the EMCal or the PHOS uncer-
tainties of 3 and 3.5%, respectively, were assigned for the
material budget, which is dominated by the material of outer
detectors positioned in front of calorimeter modules during
data taking in 2010, as outlined in Ref. [33]. The material
uncertainty of the inner detectors is negligible for calorime-
ter photons due to the low conversion probability.

The conversion and calorimeter photon reconstruction
uncertainties were evaluated by independently varying the
respective selection criteria given in Sect. 4. The conversion
photon reconstruction uncertainty was found to be domi-
nated by the reduced χ2 selection of the electron tracks and
the requirement on the number of space points in the TPC
for each track. For EMCal related measurements, the cluster
energy selection and the cluster shape have most influence on
the uncertainty. For PHOS, the photon reconstruction uncer-
tainty was evaluated by variation of the track matching con-
dition and cluster shape selection. Uncertainties arising from
the non-linearity and cluster energy scale of the respective
calorimeters was taken into account by varying the scheme
used to obtain the energy scale calibration and are included
in the overall calorimeter photon reconstruction uncertainty.
Like the photon reconstruction uncertainties, the systematic
uncertainties arising from the charged pion reconstruction
were estimated by independent variation of the selection cri-
teria given in Sect. 3. To study the influence of in-bunch

123



1130 Page 6 of 16 Eur. Phys. J. C (2020) 80 :1130

Table 1 Overview of the
relative uncertainties given in
percent in exemplary
pT-intervals for the four
individual reconstruction
techniques of the ω meson. The
given categories summarise
systematic uncertainties arising
from each analysis step. For
each method the statistical and
total uncertainties are reported
in addition, as well as the
uncertainties of the combined
measurement. The uncertainty
from the σMBOR determination
of 3.5% is independent from the
individual measurements and
indicated separately in Fig. 3

pT interval 4–5 GeV/c 6–8 GeV/c 12 − 14 GeV/c

Method PCM PCM- EMC PCM PCM- EMC PHOS EMC PHOS
EMC EMC

Signal extraction 12.3 12.6 12.2 13.5 13.5 12.3 6.0 18.9 11.0

Material 9.0 4.7 3.0 9.0 4.7 3.0 3.5 3.0 3.5

Charged pion rec. 6.8 6.8 6.8 6.8 6.8 6.8 6.0 6.8 6.0

Conv photon rec. 4.1 4.1 – 4.1 4.1 – – – –

Calo photon rec. – 5.0 6.9 – 5.0 6.9 5.2 6.9 9.3

Neutral pion rec. 6.0 6.0 6.0 6.0 6.0 6.0 4.0 6.0 4.0

Pileup 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Total syst. uncertainty 18.1 17.7 17.0 19.1 18.3 17.1 11.0 22.4 16.0

Statistical uncertainty 14.5 14.7 9.8 18.9 22.0 9.2 13.0 21.7 32.0

Combined stat. unc. 7.4 7.2 18.0

Combined syst. unc. 13.7 10.3 16.6

pileup on the measurement, the rejection criterium was loos-
ened, resulting in a 0.5% systematic uncertainty. The sys-
tematic uncertainty due to the selection of neutral pion can-
didates was estimated by varying the invariant mass selec-
tion window. For the PHOS measurement, the selection was
additionally varied according to the π0 candidates transverse
momentum. A detailed description of these sources of uncer-
tainty is provided in Refs. [33,37].

Table 1 also shows, for each method, the statistical uncer-
tainty together with the total systematic uncertainty, which
is obtained by adding the individual sources in quadrature.
In addition, the statistical and systematic uncertainties of the
combined measurement are given, which were obtained taken
into account correlations across the measurements as elabo-
rated in the following section.

7 Results

The fully corrected invariant cross sections of ω production
were obtained for each reconstruction technique using

E
d3σ pp→ω+X

dp3 = 1

2π

1

pT
· 1

Lint

· 1

A · εrec.
· 1

BRω→π+π−π0
· Nω

�y�pT
. (1)

Here, LInt is the integrated luminosity given in Sect. 3, εrec.

and A are the reconstruction efficiency and acceptance of
the corresponding method and BR = (89.3 ± 0.6)% is the
branching ratio of the ω → π+π−π0 decay [10]. More-
over, Nω denotes the number of reconstructed ω mesons in
the transverse momentum range �pT and the given rapidity
range �y.

The production cross sections were measured individu-
ally for each reconstruction method and then combined using
pT-dependent weights that are calculated according to the

best linear unbiased estimate (BLUE) algorithm [42], which
uses concepts that are routinely applied in statistical fields.
The combination took into account statistical and systematic
uncertainties. For the systematic uncertainties, the individual
measurements are found to be correlated by about 30%, dom-
inantly originating from the charged-pion selection and the
material budget uncertainties. These correlations were taken
into account in the combination procedure. The statistical
and systematic uncertainties of the combined measurement
are given in Table 1.

The cross section of ω meson production for 2 <pT<

17 GeV/c at midrapidity in pp collisions at
√
s = 7 TeV

is shown in Fig. 3. It was fitted using a Levy–Tsallis func-
tion [46] given by

E
d3σ

dp3 = C

2π

(n − 1)(n − 2)

nT [nT + m(n − 2)]
(

1 + mT − m

nT

)−n

,

(2)

which describes the cross section over the whole measured
transverse momentum range, as demonstrated in the lower

panel of the figure. The parameters m and mT =
√
m2 + p2

T
correspond to the particle mass and the transverse mass,
respectively, while C , T and n are the free parameters of
the Levy–Tsallis function.

The values of the fit parameters and the reduced χ2 of
the fit are given in Table 2, where the fit was obtained using
only statistical uncertainties, and using the systematic and
statistical uncertainties of the measurement added in quadra-
ture. To account for finite pT-interval width, the combined
cross section points were assigned to pT values shifted from
the bin centre of the pT intervals according to the underly-
ing spectrum [47] described by a Levy–Tsallis function. This
correction resulted in a shift below 2% in each pT interval.
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Fig. 3 Invariant cross section of ω meson production in pp collisions
at

√
s = 7 TeV compared to theoretical predictions. The statistical

and systematic uncertainties are represented by vertical bars and boxes,
respectively. A Levy–Tsallis function was used to parametrise the spec-
trum, where the obtained fit parameters are given in Table 2. The predic-
tions are obtained using PYTHIA 8.2 [43] with the Monash 2013 [44]
and 4C [45] tunes. Furthermore, a NLO calculation [14] incorporating
a model dedicated to describe vector-meson fragmentation is shown,
where the band denotes the uncertainty of the scale μ, which was
used for factorisation, renormalisation and fragmentation. In the bottom
panel, the ratios of the theoretical estimates to the Levy–Tsallis fit of
the measurement are shown; the ratio of the data to the Levy–Tsallis fit
is also presented

Figure 4, which shows the ratios of the cross sections for
the individual reconstruction methods to the Levy–Tsallis fit
of the combined measurement, demonstrates the agreement
between all methods within the statistical and systematic
uncertainties, justifying the combination of the individual
results as discussed earlier.

The measured differential cross section of ω produc-
tion is compared to several calculations in Fig. 3. The
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Fig. 4 Ratios of the fully corrected ω spectra obtained with the indi-
vidual reconstruction methods to the Levy–Tsallis fit of the combined
spectrum, where the fit parameters are shown in Table 2. The statistical
and systematic uncertainties are represented by vertical bars and boxes,
respectively

ratio of each prediction to the Levy–Tsallis fit of the mea-
surement is shown in the bottom panel of the figure. Two
PYTHIA 8.2 [43] Monte Carlo event generator calculations
were considered for comparison, which are based on the
Monash 2013 [44] and the 4C [45] tunes, respectively. The
Monash 2013 tune describes the measurement over the full
reported pT range within the uncertainties, while the Tune 4C
overestimates the data by about 50%. The Monash 2013 tune
includes more recent experimental results than Tune 4C and
thus a more refined set of parameters. In particular, the rate
of light flavor vector meson production used in hadronisation
process was revised and lowered, improving the description
of ω meson yields [44].

The measurement is also compared to a next-to-leading
order (NLO) calculation using a model with broken SU(3)
symmetry to describe vector meson production [14], where
the model parameters have been constrained using ω pro-
duction data measured by PHENIX in pp collisions at

√
s =

200 GeV [16]. The same scale μ = pT was used for factori-
sation, renormalisation and fragmentation for the calculation
and the shaded band reported in Fig. 3 denotes the scale vari-
ation of pT

2/2 ≤ μ2 ≤ 2pT
2. The calculation describes the

measurement within the uncertainties below 6 GeV/c, and
overestimates the data by up to 50% for higher pT.

The ratio of ω relative to π0 meson production is shown
as a function of pT in Fig. 5, where data points for the
π0 measurement were taken from Ref. [6]. The ratio is
observed to be constant above 2.5 GeV/c with a value of

Table 2 Parameters and
χ2/NDF of the fit to the ω

invariant cross section using the
Levy–Tsallis function [46] from
Eq. 2

Levy–Tsallis C (×1010 pb) T (GeV) n χ2/NDF NDF

ω 4.01±2.47 (stat)
±3.41 (tot) 0.182±0.042 (stat)

±0.061 (tot) 6.46±0.37 (stat)
±0.55 (tot)

0.45 (stat)
0.22 (tot) 7
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Fig. 5 Ratio of ω/π0 production as a function of transverse momen-
tum pT for pp collisions at

√
s = 7 TeV (black) compared to various

lower collision energies ranging from
√
s = 62−200 GeV [15–18]

(gray). In addition, PYTHIA predictions at
√
s = 7 TeV and the ω/π0

ratio obtained from mT-scaling are shown with lines

Cω/π0 = 0.69 ± 0.03 (stat) ± 0.04 (sys). Within the uncer-
tainties, the ω/π0 ratio is described by the PYTHIA predic-
tions. Even though the Tune 4C overestimates the ω produc-
tion, it describes the ω/π0 ratio due to a similar overestima-
tion of π0 production, which was reported in Ref. [8].

The measured ω/π0 ratio at
√
s = 7 TeV is compared to

data from lower collision energies at
√
s = 62 [15] and

200 GeV [16–18]. The ω/π0 ratios measured at the dif-
ferent collision energies agree within the uncertainties. In
order to test the validity of mT-scaling, the Levy–Tsallis
parametrisation fπ0(pT,π0) of the π0 spectrum reported

in Ref. [6] was scaled using the ratio Cω/π0 = 0.67,
following the procedure discussed in detail in Ref. [20].
The scaled parametrisation fω(pT,ω) was used to calcu-
late the ω/π0 ratio via fω(pT,ω)/ fπ0(pT,ω), where the rela-
tion p2

T,ω + m2
0,ω = p2

T,π0 + m2
0,π0 was used to ensure

the evaluation of both spectra at the same transverse mass.
The obtained mT-scaling prediction of the ω/π0 ratio is
shown in Fig. 5 and found to be consistent with the mea-
surement. Unlike in the case of the η/π0 ratio measured
at

√
s = 2.76, 7 and 8 TeV [6,8,33], where a violation of

mT-scaling was observed below 3.5 GeV, no such violation
is observed within the uncertainties for the ω meson in the
entire measured momentum range. However, while the mea-
surement is compatible with the mT-scaling prediction at
low-pT, the sensitivity of the measurement to a possible mT-
scaling violation is limited by the uncertainties and pT reach.
Here, future studies with increased precision could provide
further insights and more stringent tests of mT-scaling for
low-pT ω mesons. Interestingly, the PYTHIA calculations
and the mT-scaled prediction both describe the ω/π0 ratio
at lower collision energies even below pT = 2 GeV/c, sug-
gesting a universal feature of meson production.

8 Conclusion

The invariant differential cross section of ω meson pro-
duction at midrapidity in pp collisions

√
s = 7 TeV was

measured with the ALICE detector, covering a transverse-
momentum range of 2 to 17 GeV/c. Within the uncertainties,
PYTHIA 8.2 predictions for the Monash 2013 tune describes
the measurement over the whole pT range, while Tune 4C
overestimates the data by about 50%. A NLO calculation
using a model dedicated to describing fragmentation into the
entire vector meson nonet describes the data below 6 GeV/c,
while it overestimates the data by up to 50% at higher pT.
Above 2.5 GeV/c the ω/π0 ratio is found to be constant
with a value of Cω/π0 = 0.67 ± 0.03 (stat) ± 0.04 (sys) and
agrees with measurements at lower collision energies and
with PYTHIA predictions over the whole reported pT range.
Within the uncertainties, the mT-scaling prediction for ω

mesons is consistent with the measured spectrum above
2 GeV/c.
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