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Abstract The full-heavy tetraquarks bbb̄b̄ and ccc̄c̄ are
systematically investigated within the chiral quark model
and the quark delocalization color screening model. Two
structures, meson–meson and diquark–antidiquark, are con-
sidered. For the full-beauty bbb̄b̄ systems, there is no any
bound state or resonance state in two structures in the chiral
quark model, while the wide resonances with masses around
19.1 − 19.4 GeV and the quantum numbers J P = 0+, 1+,
and 2+ are possible in the quark delocalization color screen-
ing model. For the full-charm ccc̄c̄ systems, the results are
qualitative consistent in two quark models. No bound state
can be found in the meson–meson configuration, while in the
diquark–antidiquark configuration there may exist the reso-
nance states, with masses range between 6.2 to 7.4 GeV,
and the quantum numbers J P = 0+, 1+, and 2+. And the
separation between the diquark and the antidiquark indicates
that these states may be the compact resonance states. The
reported state X (6900) is possible to be explained as a com-
pact resonance state with I J P = 00+ in present calculation.
All these full-charm resonance states are worth searching in
the experiments further.

1 Introduction

Multiquark states have been proposed in the early stage of
quark models, which are invented by Gell-Man and Zweig
[1,2]. No one paid attention to the multiquark states at that
time. In 1977, Jaffe did a calculation of the spectra and domi-
nant decay couplings of QQQ̄Q̄ mesons, which were named
as tetrquark states, in the quark-bag model [3,4]. However,
the tetraquarks state became a hot topic only after the obser-
vation of exotic state X (3872) by Belle collaboration in 2003

a e-mail: 181002005@stu.njnu.edu.cn
b e-mail: 181002022@stu.njnu.edu.cn
c e-mail: hxhuang@njnu.edu.cn
d e-mail: jlping@njnu.edu.cn (corresponding author)

[5]. Since then, more and more exotic states were observed
and proposed, such as Y (4260), Zc(3900), X (5568), and so
on. The study of exotic states can help us to understand the
hadron structures and the hadron–hadron interactions better.

The full-heavy tetraquark states (QQQ̄Q̄, Q = c, b)
attracted extensive attention for the last few years, since such
states with very large energy can be accessed experimentally
and easily distinguished from other states. In the experiments,
the CMS collaboration measured pair production of ϒ(1S)

[6]. There was also a claim of the existence of a full-bottom
tetraquark states bbb̄b̄ [7], with a global significance of 3.6σ

and a mass around 18.4 GeV, almost 500 MeV below the
threshold of ϒϒ . However, the LHCb collaboration searched
for the exotic state bbb̄b̄ in the ϒ(1S)μ+μ− final state [8],
and no significant results was found. For full-charm system,
J/ψ pair production [9–11] and double cc̄ production [12]
have also been measured experimentally, which may be help-
ful in seeking the exotic state ccc̄c̄. Very recently, the LHCb
collaboration observed the structure in the J/ψ−pair mass
spectrum, and found a narrow structure X (6900), matching
the lineshape of a resonance and a broad structure next to the
di − J/ψ mass threshold [13]. Such a breakthrough offers
more information for the searching of the tetraquark consist-
ing of four charm quarks.

In fact, the possible existence of these full-heavy tetraquark
states has already been considered in a number of theoreti-
cal work. Some researches pointed out that these full-heavy
tetraquark states are stable under strong interaction decays
[14–22]. Iwasaki first proposed that ccc̄c̄ is a stable bound
state with the mass of about 6.0 GeV or 6.2 GeV in 1975
[14]. Chao predicted that there existed full-charm diquark–
antidiquark states with masses in the range 6.4–6.8 GeV
[15]. Heller et al. used the potential energy coming from
the MIT bag model and found that the dimesons ccc̄c̄ and
bbb̄b̄ are bound, and the binding energy are in the range of
0.16 − 0.22 GeV, which depends on the parameters [16].
Lloyd et al. used a parametrized Hamiltonian to compute the
spectrum of all-charm tetraquark states and obtained several
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close-lying bound states [17]. Berezhnoy et al. took diquark
and antidiquark as point particles and employed hyperfine
interaction between them, the masses of ccc̄c̄ and bbb̄b̄ states
are under the thresholds for J = 1, 2 [18]. Debastiani et al.
used a non-relativistic model to study the spectroscopy of a
tetraquark composed of ccc̄c̄ in a diquark–antidiquark con-
figuration, and they found that the lowest S-wave tetraquarks
might be below their thresholds of spontaneous dissociation
into low-lying charmonium pairs [19]. Yang Bai et al. also
calculated the mass of bbb̄b̄ state in a diffusion Monte Carlo
method and found it was around 100 MeV below the thresh-
old of ηbηb [20]. Esposito et al. showed that the energy of
bbb̄b̄ tetraquark is 18.8 GeV, approximately 100 MeV below
the threshold [21]. Wei Chen et al. studied the existence of
exotic doubly hidden-charm/bottom tetraquark states made
of four heavy quarks in a moment QCD sum rule method
and discovered that the masses of the bbb̄b̄ tetraquarks are
all below or very close to the thresholds of ϒ(1S)ϒ(1S) and
ηb(1S)ηb(1S), except one current of J PC = 0++ and the
masses of the ccc̄c̄ tetraquarks are all above the threshold
[22].

However, there are also some researches, which disap-
proved the existence of the full-heavy tetraquark states [23–
31]. Karliner et al. estimated the masses of the lowest-
lying ccc̄c̄ and bbb̄b̄ tetraquarks by using the color-magnetic
interaction model, and found they were 6192±25 MeV and
18826 ± 25 MeV, respectively, which were higher than the
corresponding thresholds [24]. Hughes et al. searched for
the beauty-fully bound tetraquarks by using the lattice non-
relativistic QCD method, and found no evidence of a QCD
bound tetraquark below the lowest noninteracting thresholds
in the channels studied [25]. Mingsheng Liu et al. studied
the mass spectra of the all-heavy tetraquark systems within
a potential model, and suggested that no bound state can be
formed [27]. Chen studied the ground states of the beauty-
full and charm-full systems in a nonrelativistic chiral quark
model with the help of Gaussian expansion method [29,30],
and Deng employed three quark models by using the same
method [31], neither of them found the ccc̄c̄ and bbb̄b̄ bound
states.

Quantum chromodynamics (QCD) is widely accepted as
a fundamental theory of strong interaction. However, it is
difficult to study hadron–hadron interactions and multiquark
states directly because of nonperturbtive properties of QCD
in the low energy region. Many quark models based on
QCD theory have been developed to get physical insights
into the multiquark systems. A common approach is the
chiral quark model (ChQM) [32], in which the constituent
quarks interact with each other through colorless Gold-
stone bosons exchange in addition to the colorful one-gluon-
exchange and confinement, and the chiral partner σ meson
exchange is introduced to give the immediate-range attrac-
tion of nucleon–nucleon interaction. An alternative approach

to study the hadron–hadron interactions is the quark delocal-
ization color screening model (QDCSM), which was devel-
oped in the 1990s with the aim of explaining the similarities
between nuclear and molecular forces [33]. The quark delo-
calization and color screening in QDCSM work together to
provide the short-range repulsion and the intermediate-range
attraction. Both of these two models can give a good descrip-
tion of the properties of deuteron, nucleon–nucleon and
hyperon–nucleon interactions [34,35]. Recently, QDCSM
has been used to study the pentaquarks with hidden strange
[36], hidden-charm and hidden-bottom [37]. Besides, this
model was also applied to the tetraquarks composed of usd̄b̄
and uds̄b̄ to investigate the existence of X (5568) [38]. There-
fore, it is interesting to extend this model to the full-heavy
tetraquarks. In addition, to check the model dependence of
the full-heavy tetraquarks and explore the hadron–hadron
interactions in different quark models, the ChQM is also
used in this work. The resonating-group method (RGM)
[39], which has been widely used in the nuclear physics,
is employed to do the calculation.

The structure of this paper is as follows. Section 2 gives a
brief introduction of two quark models, and the construction
of wave functions. The numerical results and discussions are
given in Sect. 3. The summary is presented in the last section.

2 Models and wavefunctions

In this work, we investigate the full-heavy tetraquarks within
two quark models: ChQM and QDCSM. Two structures,
meson–meson and diquark–antidiquark, are considered. In
this sector, we will introduce these two models and the wave
functions of the tetraquarks for two structures.

2.1 The chiral quark model (ChQM)

The ChQM has been successfully applied to describe the
properties of hadrons and hadron–hadron interactions [32,
39], and has been extended to the study of multiquark states.
The model details can be found in Refs. [32,40]. We only
show the Hamiltonian of the model here.

H =
4∑

i=1

(
mi + p2

i

2mi

)
− Tcm +

4∑

i=1< j

(VCON
i j + V OGE

i j )

(1)

where Tcm is the kinetic energy of the center of mass; VCON
i j

and V OGE
i j are the interactions of the confinement and the

one-gluon-exchange, respectively. For the full-heavy system,
there is no σ -exchange and the Goldstone boson exchange.
The central part of VCON

i j and V OGE
i j are shown below:

VCON
i j = −λc

i · λc
j (acr

2
i j + V0) (2)
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V OGE
i j = αs

4
λc
i · λc

j

[
1

ri j
− π

2
δ(ri j )

(
1

m2
i

+ 1

m2
j

+4σ i · σ j

3mim j

)]
(3)

where αs is the running quark–gluon coupling constant.

2.2 The quark delocalization color screening model
(QDCSM)

Generally, the Hamiltonian of QDCSM is almost the same as
that of ChQM, but with two modifications [33]. The one is
that there is no σ -meson exchange in QDCSM, and another
one is that the screened color confinement is used between
quark pairs reside in different clusters, aimed to take into
account the QCD effect which has not yet been included in
the two-body confinement and effective one gluon exchange.
Since there is no σ -meson exchange interaction between the
heavy quarks (c or b), the only difference here is the confine-
ment interaction. The confining potential in QDCSM was
modified as follows:

VCON
i j =

⎧
⎨

⎩

−λc
i · λc

j (acr
2
i j + V0), i,j in the same cluster

−λc
i · λc

j ac
1−e

−μi j r
2
i j

μi j
, otherwise

(4)

where μi j is the color screening parameter, which is deter-
mined by fitting the deuteron properties, nucleon–nucleon
scattering phase shifts, and hyperon–nucleon scattering
phase shifts, respectively, with μuu = 0.45 fm−2, μus =
0.19 fm−2 and μss = 0.08 fm−2, satisfying the relation,
μ2
us = μuuμss [35]. When extending to the heavy quark

case, there is no experimental data available, so we take it
as a adjustable parameter μcc = 0.01 ∼ 0.001 fm−2 and
μbb = 0.001 ∼ 0.0001 fm−2. We find the results are insen-
sitive to the value of μcc and μbb. So in the present work, we
take μcc = 0.01 fm−2 and μbb = 0.001 fm−2.

The single particle orbital wave functions in the ordinary
quark cluster model are the left and right centered single
Gaussian functions:

φα(Si ) =
(

1

πb2

) 3
4

e
− (r−Si /2)2

2b2 ,

φβ(−Si ) =
(

1

πb2

) 3
4

e
− (r+Si /2)2

2b2 . (5)

The quark delocalization in QDCSM is realized by writing
the single particle orbital wave function as a linear combina-
tion of the left and right Gaussians:

ψα(Si , ε) = (φα(Si ) + εφα(−Si )) /N (ε),

ψβ(−Si , ε) = (
φβ(−Si ) + εφβ(Si )

)
/N (ε),

N (ε) =
√

1 + ε2 + 2εe−S2
i /4b2

. (6)

Table 1 Model parameters

I II III

b (fm) 0.126 0.16 0.2

mc (MeV) 1728 1728 1728

mb (MeV) 5112 5112 5112

ac (MeV fm−2) 101 101 101

V0cc (MeV) −245.0 −147.4 −70.5

V0bb (MeV) −40.5 95.3 273.3

αscc 0.13 0.265 0.518

αsbb 0.583 1.2 2.35

where ε(Si ) is the delocalization parameter determined by
the dynamics of the quark system rather than adjusted param-
eters. In this way, the system can choose its most favorable
configuration through its own dynamics in a larger Hilbert
space.

The parameters used in our previous work are determined
by fitting the mass spectrum of mesons and baryons includ-
ing light quarks (u, d, s), but the meson composed of heavy
quarks like ηb(ηc) or ϒ(J/ψ) do not fit well. To give the right
mass of the mesons we used in this work, we adjust the param-
eters by fitting the masses of ηb, ϒ , ηc and J/ψ . In order to
give ranges of the model parameters, three sets of parameters
of both two quark models are used in the calculation, which
are listed in Table 1. The running coupling constant αs and
the constant V0 take different values for charm quark pair
and bottom quark pair to have a better fitting. The calculated
masses of the mesons are mηb = 9399 MeV, mϒ = 9460
MeV, mηc = 2979 MeV and mJ/ψ = 3097 MeV within
these model parameters.

2.3 The wave function

In this work, the resonating group method (RGM) [40], a
well-established method for studying a bound-state or a scat-
tering problem, is employed to calculate the energy of the
full-heavy systems. The wave function of the four-quark sys-
tem is of the form

Ψ = A[[ψ Lχσ ]JMχ f χc]. (7)

where ψ L , χσ , χ f and χc are the orbital, spin, flavor and
color wave functions, respectively, which are given below.
The symbol A is the anti-symmetrization operator. For the
meson–meson configuration, A is defined as

A = 1 − P13 − P24 + P13P24. (8)

For the diquark–antidiquark configuration,

A = 1 − P12 − P34 + P12P34. (9)
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2.3.1 The orbital wave function

The total orbital wave function is composed of two internal
cluster orbital wave functions (ψ1(R1) and ψ2(R2)), and one
relative motion wave function (χL(R)) between two clusters.

ψ L = ψ1(R1)ψ2(R2)χL(R), (10)

whereR1 andR2 are the internal coordinates for the cluster 1
and cluster 2, respectively. R = R1 −R2 is the relative coor-
dinate between the two clusters 1 and 2. χL(R) is expanded
by gaussian bases

χL(R) = 1√
4π

(
3

2πb2

) n∑

i=1

Ci

×
∫

exp

[
− 3

4b2 (R − Si )2
]
YLM (Ŝi )d Ŝi , (11)

where si is the generate coordinate, n is the number of the
gaussian bases, which is determined by the stability of the
results. By doing this is expansion, we can simplify the
integro-differential equation to an algebraic equation, solve
this generalized eigen-equation to get the energy of the sys-
tem more easily. The details of solving the RGM equation
can be found in Ref. [40].

2.3.2 The flavor wave function

The flavor wave function for the full-heavy system is very
simple. For the meson–meson structure,

χ
f m1

00 = bb̄bb̄ (12)

χ
f m2

00 = cc̄cc̄ (13)

where the superscript of the χ is the index of the flavor wave
function for meson–meson structure, and the subscripts stand
for the isospin and its third component I Iz .

For the diquark–antidiquark structure,

χ
f d1

00 = bbb̄b̄ (14)

χ
f d2

00 = ccc̄c̄ (15)

The upper and lower indices are similar to those of the
meson–meson structure.

2.3.3 The spin wave function

The total spin wave functions for the four-quark system can
be obtained by coupling the wave functions of two clusters.

χσ1
00 = 1

2
(αβαβ − βααβ − ββα + βαβα) (16)

χσ2
00 =

√
1

12
(2ααββ + 2ββαα

− αβαβ − βααβ − ββα − βαβα) (17)

χσ3
11 =

√
1

2
(αβαα − βααα) (18)

χσ4
11 =

√
1

2
(αααβ − ααβα) (19)

χσ5
11 = 1

2
(αααβ + ααβα − αβαα − βααα) (20)

χσ6
22 = αααα (21)

The spin wave function of two structures is the same.

2.3.4 The color wave function

For the meson–meson structure, we give the wave functions
for the two-body clusters (QQ̄) first, which are

χ1
c[111] =

√
1

3
(rr̄ + gḡ + bb̄) (22)

χ2
c[21] = r b̄ χ3

c[21] = −r ḡ

χ4
c[21] = gb̄ χ5

c[21] = −bḡ

χ6
c[21] = gr̄ χ7

c[21] = br̄

χ8
c[21] =

√
1

2
(rr̄ − gḡ)

χ9
c[21] =

√
1

6
(−rr̄ − gḡ + 2bb̄) (23)

where the subscript [111] and [21] stand for the color singlet
and color octet cluster respectively.

Then, the total color wave functions for the four-quark
system with the meson–meson structure can be obtained by
coupling the wave functions of two clusters.

χcm1 = χ1
c[111]χ1

c[111] (24)

χcm2 =
√

1

8
(χ2

c[21]χ7
c[21] − χ4

c[21]χ5
c[21] − χ3

c[21]χ6
c[21]

+ χ8
c[21]χ8

c[21] − χ6
c[21]χ3

c[21] + χ9
c[21]χ9

c[21]
− χ5

c[21]χ4
c[21] + χ7

c[21]χ2
c[21]) (25)

where χc1
m and χc2

m represent the color wave function for the
color-singlet channel (1 × 1) and the hidden-color channel
(8 × 8), respectively.

For the diquark–antidiquark structure, we firstly give the
color wave functions of the diquark clusters,

χ1
c[2] = rr χ2

c[2] =
√

1

2
(rg + gr) χ3

c[2] = gg

χ4
c[2] =

√
1

2
(rb + br) χ5

c[2] =
√

1

2
(gb + bg)

χ6
c[2] = bb χ7

c[11] =
√

1

2
(rg − gr)

χ8
c[11] =

√
1

2
(rb − br) χ9

c[11] =
√

1

2
(gb − bg) (26)
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and the color wave functions of the antidiquark clusters,

χ1
c[22] = r̄ r̄ χ2

c[22] =
√

1

2
(r̄ ḡ + ḡr̄) χ3

c[22] = ḡḡ

χ4
c[22] =

√
1

2
(r̄ b̄ + b̄r̄) χ5

c[22] =
√

1

2
(ḡb̄ + b̄ḡ)

χ6
c[22] = b̄b̄ χ7

c[211] =
√

1

2
(r̄ ḡ − ḡr̄)

χ8
c[211] =

√
1

2
(r̄ b̄ − b̄r̄) χ9

c[211] =
√

1

2
(ḡb̄ − b̄ḡ) (27)

After that, the total wave functions for the four-quark sys-
tem with the diquark–antidiquark structure are obtained as
below,

χcd1 =
√

1

6
[χ1

c[2]χ1
c[22] − χ2

c[2]χ2
c[22] + χ3

c[2]χ3
c[22]

+ χ4
c[2]χ4

c[22] − χ5
c[2]χ5

c[22] + χ5
c[2]χ5

c[22]] (28)

χcd2 =
√

1

3
[χ7

c[11]χ7
c[211] − χ8

c[11]χ8
c[211] + χ9

c[11]χ9
c[211]]

(29)

Finally, we can acquire the total wave functions by sub-
stituting the wave functions of the orbital, the spin, the flavor
and the color parts into the Eq.(7) according to the given
quantum number of the system.

3 Numerical results and discussions

In the framework of two quark models, ChQM and QDCSM,
we investigate the full-heavy tetraquarks bbb̄b̄ and ccc̄c̄
in two structures, meson–meson and diquark–antidiquark.
The quantum numbers of the teraquarks we study here are
I J P = 00+, 01+, and 02+. For the meson–meson structure
(QQ̄−QQ̄), we take into account of two color configurations
in the ChQM, which are the color singlet–singlet (1 × 1) and
color octet–octet (8 × 8) configurations. Since the QDCSM
considers the effect of the hidden color channel to some
extent [41], only the color singlet–singlet is calculated in this
model. For the diquark–antidiquark structure (QQ − Q̄ Q̄),
two color configurations, antitriplet-triplet (3̄×3) and sextet-
antisextet (6 × 6̄), are considered in both models.

To find out if there is any bound state in such full-heavy
tetraquark systems, we do a dynamic bound-state calculation
here. The single-channel calculation, as well as the channel-
coupling are carried out. All the results for bbb̄b̄ and ccc̄c̄
systems in two structures are listed in Tables 2, 3, 4, 5 and 6,
respectively. In the tables, ChQM (or QDCSM) I, ChQM (or
QDCSM) II, and ChQM (or QDCSM) III stand for the results
of the ChQM (or QDCSM) with three sets of parameters
respectively. The second column shows the combination in
spin (χσi ), flavor (χ f j ), and color (χck ) degrees of freedom

for each channel. The columns headed with Eth denotes the
theoretical threshold of each channel and Esc represents the
lowest energies in the single channel calculation. For meson–
meson structure, Ecc1 and Ecc2 denote the lowest energies of
the coupling of the color-singlet channels and the coupling
of all channels, respectively. An additional column headed
with “Channel” denotes the physical contents of the channel.
For diquark–antidiquark structure, Ecc means the energies of
the coupling of all channels. All the general features of the
calculated results are as follows.

3.1 Full-beauty tetraquarks bbb̄b̄

For the tetraquarks composed of bbb̄b̄, the energies of the
possible quantum numbers with two structures in both ChQM
and QDCSM are listed in Tables 2 and 3, respectively. The
ηb8ηb8 in the Table 2 represents the molecular state ηbηb with
the color octet–octet (8×8) configuration. For meson–meson
structure, the energies of every single channel are above the
corresponding theoretical threshold in both two models with
different sets of parameters. The channel-coupling effect is
very small and cannot help much, and the energies are still
higher than the theoretical thresholds, which means that there
is no any bound states with the meson–meson structure in
both two models. Besides, we also find the results in both
two models are almost the same, this is because that the
quarks are too heavy to run, resulting in the value of the
quark delocalization parameter ε in QDCSM is close to 0.
The color screening parameter in QDCSM is also very small
because of the heavy quarks, which makes the difference of
the confinement between two models is very small. So both
the effect of the quark delocalization and the color screen-
ing in QDCSM is very small in such full-heavy system with
meson–meson structure, and the σ meson exchange is also
inoperative in ChQM, which make the coincident results of
two models.

For the diquark–antidiquark structure, the energies of both
ChQM and QDCSM are shown in Table 3, from which we
can see that the energies of this configuration are higher than
that of meson–meson configuration. Besides, the energies
in QDCSM are generally lower than that in ChQM. Since
the color symmetry of the diquark and antidiquark are color
octet, the color screening will make the quark delocalization
work in QDCSM, which leads to lower energy in this model.
Comparing with the results of three different sets of param-
eters, we find that the energies of the color-singlet channels
are very close to each other, while those of the hidden-color
channels are different. However, the energy of every single
channel is still above the corresponding theoretical thresh-
old. Moreover, the effect of the channel-coupling is also very
small in both two models. So none of these states listed in
Table 3 is a bound state. However, it is possible for them to
be resonance states, because the colorful subclusters diquark
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Table 2 The energies of bbb̄b̄ systems with meson–meson structure in ChQM and QDCSM. [i jk] stand for the indices of spin, flavor and color
wave functions χσ i , χ f m j , χcmk (unit: MeV). The thresholds of ηbηb, ϒϒ , ηbϒ , ϒηb are 18799 MeV, 18920 MeV, 18860 MeV and 18860 MeV,
respectively

[i jk] Channel ChQM I ChQM II ChQM III QDCSM I QDCSM II QDCSM III

Esc Ecc2 Esc Ecc2 Esc Ecc2 Esc Ecc1 Esc Ecc1 Esc Ecc1

I J P = 00+

111 ηbηb 18803 18803 18800 18799 18800 18800 18803 18803 18800 18800 18800 18800

211 ϒϒ 18925 18922 18922 18925 18922 18922

112 ηb8ηb8 19974 19975 19688

212 ϒ8ϒ8 20041 20032 19696

I J P = 01+

311 ηbϒ 18864 18864 18861 18861 18860 18860 18864 18864 18861 18861 18860 18860

411 ϒηb 18864 18861 18860 18864 18861 18860

312 ηb8ϒ8 19925 19927 19641

412 ϒ8ηb8 19925 19927 19641

I J P = 02+

611 ϒϒ 18925 18925 18922 18922 18921 18921 18925 18922 18921

612 ϒ8ϒ8 19923 19933 19660

Table 3 The energies of bbb̄b̄ systems with diquark–antidiquark structure in ChQM and QDCSM. [i jk] stand for the indices of spin, flavor and
color wave functions χσ i , χ f d j , χcdk (unit: MeV)

[i jk] ChQM I ChQM II ChQM III QDCSM I QDCSM II QDCSM III

Esc Ecc2 Esc Ecc2 Esc Ecc2 Esc Ecc2 Esc Ecc2 Esc Ecc2

I J P = 00+

121 20134 19466 20130 19456 19790 19310 19281 19237 19369 19317 19184 19122

222 19466 19456 19313 19256 19344 19165

I J P = 01+

522 19467 19461 19323 19264 19354 19184

I J P = 02+

622 19471 19471 19344 19279 19374 19236

(QQ) and antidiquark (Q̄ Q̄) cannot fall apart directly due
to the color confinement. To check the possibility, we carry
out an adiabatic calculation of the effective potentials for the
bbb̄b̄ system with diquark–antidiquark structure, the results
of which are shown in Fig. 1. The variation tendency of the
effective potentials with different sets of parameters are sim-
ilar. To save space, we only show the results of one set of
parameters here.

From the Fig. 1a we can see that the effective potential
of each channel is increasing when the two subclusters fall
apart, which means that the diquark and antidiquark tend
to clump together without hinderance. This behavior indi-
cates that the odds for the states being diquark–antidiquark
configuration, meson–meson configuration, or other config-
urations are the same. Moreover, from the Tables 2 and 3,
the energy of the each channel with the diquark–antidiquark
structure is higher than the one of the meson–meson struc-
ture. So the state prefers to be two free mesons. Therefore,

none of these state is a observable resonance state in ChQM.
It is different in QDCSM (see Fig. 1b), where the energy of
the state will rise when the two subclusters are too close, so
there is a hinderance for the states change structure to meson–
meson even if the energy of the state is lower in meson–meson
structure. It is possible to form a wide resonance. The reso-
nance energies are 19122 ∼ 19344 MeV for I J P = 00+,
19184 ∼ 19354 MeV for I J P = 01+, and 19236 ∼ 19374
MeV for I J P = 02+, respectively.

The effective potentials for the meson–meson bbb̄b̄ sys-
tems are also calculated and shown in Figs. 2 and 3, corre-
sponding to the color singlet channels and the hidden color
channels respectively. From Fig. 2 we find that the effec-
tive potentials for the color singlet channels are all repulsive
except for the I J P = 00+ ϒϒ channel, which has very
weak attractions. That’s why we cannot obtain any bound
state in the dynamical calculation. Figure 3 only gives the
potential for the hidden color channels in ChQM, because
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Table 4 The energies of ccc̄c̄ systems with meson–meson structure in
ChQM and QDCSM. [i jk] stand for the indices of spin, flavor and color
wave functions χσi , χ f m j , χcmk (unit: MeV). The thresholds of ηcηc,

J/ψ J/ψ , ηc J/ψ , J/ψηc are 5958 MeV, 6195 MeV, 6076 MeV and
6076 MeV, respectively

[i jk] Channel ChQM I ChQM II ChQM III QDCSM I QDCSM II QDCSM III

Esc Ecc2 Esc Ecc2 Esc Ecc2 Esc Ecc1 Esc Ecc1 Esc Ecc1

I J P = 00+

111 ηcηc 5969 5969 5962 5962 5961 5961 5969 5969 5962 5962 5961 5961

211 J/ψ J/ψ 6206 6198 6197 6206 6195 6197

112 ηc8ηc8 6619 6632 6626

212 J/ψ8 J/ψ8 6701 6666 6570

I J P = 01+

311 ηc J/ψ 6088 6088 6080 6080 6079 6079 6088 6088 6080 6080 6079 6079

411 J/ψηc 6088 6080 6079 6088 6080 6079

312 ηc8 J/ψ8 6544 6570 6575

412 J/ψ8ηc8 6544 6570 6575

I J P = 02+

611 J/ψ J/ψ 6207 6206 6198 6198 6197 6197 6207 6198 6197

612 J/ψ8 J/ψ8 6538 6577 6602

Table 5 The energies of ccc̄c̄
systems with
diquark–antidiquark structure in
ChQM and QDCSM. [i jk] stand
for the indices of spin, flavor
and color wave functions χσi ,
χ f d j , χcdk (unit: MeV)

[i jk] ChQM I ChQM II ChQM III QDCSM I QDCSM II QDCSM III

Esc Ecc1 Esc Ecc1 Esc Ecc1 Esc Ecc1 Esc Ecc1 Esc Ecc1

I J P = 00+

121 6729 6492 6717 6479 6669 6451 6174 6095 6320 6231 6405 6314

222 6493 6482 6466 6128 6270 6358

I J P = 01+

522 6495 6488 6479 6149 6285 6375

I J P = 02+

622 6498 6499 6505 6197 6314 6407

the QDCSM considers the effect of the hidden color channel
to some extent, only the color singlet channels are calculated
in this model. It is obvious in Fig. 3 that the behavior of the
potential for the hidden color channels is similar to that of
the diquark–antidiquark configuration, where the effective
potential of each channel is increasing when the two meson
subclusters fall apart. So there is no any observable resonance
state for the meson–meson bbb̄b̄ systems.

To investigate the interaction between two subclusters, we
continue to study the contribution of each interaction term to
the energy of the system. Here, to save space, we take the
results of the I J P = 00+ ϒϒ channel in meson–meson
structure as an example. The total effective potential, as well
as each interaction term to the effective potential, includ-
ing the kinetic energy (VV K ), the confinement (VCON ), the
Coulomb interaction (VCoul ) and the color-magnetic interac-
tion (VCMI ), are shown in Fig. 4. We can see that the kinetic
energy term in both ChQM and QDCSM provides attractive
interactions, and the attraction in QDCSM is stronger than
the one in ChQM. In the ChQM, the confinement does not

contribute to the effective potential between bb̄ and bb̄, but
it provides a slight repulsion in QDCSM. Both the Coulomb
term and the color-magnetic term provide repulsion, which
decrease the attraction of the kinetic energy term, and make
the total weak attraction of this channel.

3.2 Full-charm tetraquarks ccc̄c̄

The full-charm systems ccc̄c̄ are investigated here and the
energies of three sets of parameters in two quark models with
two configurations are listed in Tables 4 and 5, respectively.
The results are similar to the full-beauty systems bbb̄b̄. For
meson–meson structure, the energy of each single channel
is above the corresponding theoretical threshold in both two
models. The energy is almost unchanged by the channel-
coupling calculation, indicating that the effect of the channel-
coupling is very small. This is because the mass difference
between each channel is very large. So there is no any bound
state with the meson–meson structure in both models. The
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Table 6 The energies of ccc̄c̄ excited states with the diquark–
antidiquark structure in the ChQM and QDCSM (unit: MeV)

ChQM I

I J P = 00+ 6210 6910 7160 7250

I J P = 01+ 6740 7275

I J P = 02+ 6725

ChQM II

I J P = 00+ 6210 6825 7150 7210

I J P = 01+ 6830 7280

I J P = 02+ 6825

ChQM III

I J P = 00+ 6270 6900 7150 7260

I J P = 01+ 6960 7250

I J P = 02+ 6970

QDCSM I

I J P = 00+ 6205 6950 7170 7250

I J P = 01+ 7040 7280

I J P = 02+ 7010

QDCSM II

I J P = 00+ 6205 6950 7150 7225

I J P = 01+ 6925 7250

I J P = 02+ 6900

QDCSM III

I J P = 00+ 6205 6975 7140 7250

I J P = 01+ 7150 7250

I J P = 02+ 7050

results of three sets of parameters in both ChQM and QDCSM
are similar.

To study the interaction between two mesons, we also
carry out the adiabatic calculation of the effective potentials
for the ccc̄c̄ systems, and the results are similar to those of
the bbb̄b̄ systems. Besides, since the results of three sets of
parameters in both ChQM and QDCSM are similar, we show
the potentials of one set of them here. For the color singlet
channels, the effective potentials in both two quark models
are shown in Fig. 5a, b, respectively. In ChQM, although the
effective potential of the I J = 00 J/ψ J/ψ is attractive, the
attraction is very weak. The potentials of other four channels
are all repulsive. So none of these color singlet state is bound
in the dynamical calculation. In QDCSM, although the attrac-
tion of the I J = 00 J/ψ J/ψ channel is a little stronger than
the one in ChQM, it is still not large enough to form a bound
state. Besides, the potential of the I J = 02 J/ψ J/ψ chan-
nel is attractive too, but it is very weak. The potential of other
three channels are all repulsive. Therefore, there is still no
any bound state in QDCSM for the meson–meson structure.
Besides, to investigate if there is any resonance state, we also
calculate the effective potential of the hidden color channels
in ChQM, which are shown in Fig. 6. Clearly, the behavior

(a) (b)

Fig. 1 The effective potentials for the diquark–antidiquark bbb̄b̄ sys-
tems in two quark models

(a) (b)

Fig. 2 The effective potentials of the color singlet channels for the
meson–meson bbb̄b̄ systems in two quark models

of the potential is similar to that of the full-beauty systems,
where the effective potential of each channel is increasing
when the two meson subclusters fall apart. So there is no any
observable resonance state for the ccc̄c̄ systems in meson–
meson configuration.

Towards to the diquark–antidiquark configuration, the
energies with three sets of parameters in both ChQM and
QDCSM are listed in Table 5. It is clear in Table 5 that
the energy of every single channel is above the theoretical
threshold of the corresponding channel in both models. The
channel-coupling pushes the lowest energy down a little, but
the effect is not large enough to lower the energy below the
threshold. So there is no any bound state in this diquark–
antidiquark structure, which is similar to the results of the
full beauty systems. To check that if there is any resonance
state, we also carry out the adiabatic calculation of the effec-
tive potentials for the ccc̄c̄ systems, as we do for the bbb̄b̄
systems.

The effective potentials for the ccc̄c̄ system in the diquark–
antidiquark structure are shown in Fig.7, from which we
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Fig. 3 The effective potentials of the hidden color channels for the
meson–meson bbb̄b̄ systems in ChQM

(a) (b)

Fig. 4 The contributions to the effective potential of the I J P = 00+
ϒϒ channel from various terms of interactions in the ChQM and
QDCSM

(a) (b)

Fig. 5 The effective potentials of the color singlet channels for the
meson–meson ccc̄c̄ systems in two quark models

find the behavior of the potential is different from that of
the diquark–antidiquark bbb̄b̄ systems. In ChQM, the min-

Fig. 6 The effective potentials of the hidden color channels for the
meson–meson ccc̄c̄ systems in ChQM III

(a)

(b)

Fig. 7 The effective potentials for the diquark–antidiquark ccc̄c̄ sys-
tems in two quark models

imum potential of each channel (except the first channel of
I J = 00) appears at the separation of 0.3 fm, which indi-
cates that two subclusters are not willing to huddle together
or fall apart. Besides, the energy of each channel is higher
than the corresponding threshold according to Table 5. So
each state is possible to be a resonance state. We also find
that the channel coupling of the I J = 00 system makes the
energy a little lower. In QDCSM, the results are similar. The
minimum potential of each channel appears at the separation
of 0.5 fm, and the energy of each channel is higher than the
corresponding threshold. So it is also possible for each chan-
nel to be a resonance state in QDCSM. From the Table 5, we
can see that the resonance energy in QDCSM is lower than
the one in ChQM. Besides, the minimum potential appears
at the separation of 0.3 fm in ChQM and 0.5 fm in QDCSM,
indicating that these two subclusters are close to each other.
Therefore, these resonance states may be the compact reso-
nance states.
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Fig. 8 The stabilization plots of the energies of the ccc̄c̄ system with
I J P = 00+ in ChQM III

Fig. 9 The stabilization plots of the energies of the ccc̄c̄ system with
I J P = 01+ in ChQM III

To check whether these resonance states can be sur-
vived by coupling to the open channels, we do a channel-
coupling calculation of all channels with both meson–meson
and diquark–antidiquark structures. A stabilization method,
which has proven to be a valuable tool for estimating the
energies of the metastable states of electron-atom, electron-
molecule, and atom-diatom complexes [42], is employed to
find the genuine resonances. This method was also applied
to the pentaquark systems in the quark model calculation
recently [43,44], and it was named as the real scaling method.
In this work, the distance between two clusters (QQ̄ − QQ̄
or QQ− Q̄ Q̄) is labeled as Si , and the largest one is Sm . With
the increasing of Sm , an unbound state will fall off toward its
threshold, but a resonance state will tend to be stable. So we
calculate the energy eigenvalues of the full-heavy systems by
taking the value of Sm from 4.8 fm to 8.5 fm to see if there is
any stable state. The stabilization plots of the energies of the
ccc̄c̄ systems in ChQM III with possible quantum numbers
are shown in Figs. 8, 9 and 10.

Figure 8 represents the results for the ccc̄c̄ system with
I J P = 00+ in ChQM III. The first two horizontal lines

Fig. 10 The stabilization plots of the energies of the ccc̄c̄ system with
I J P = 02+ in ChQM III

stand for two thresholds of ηcηc and J/ψ J/ψ , respec-
tively. The horizontal line around 6270 MeV is on behalf
of a resonance state, and its energy is stable against the
variation of range. Besides, another three horizontal lines
appear in Fig. 8, corresponding to three resonance states
with the energy around 6900 MeV, 7150 MeV, and 7260
MeV, respectively. For the ccc̄c̄ system with I J P = 01+
(see Fig. 9), a threshold of J/ψηc is clearly showed, and
two resonance states around 6960 MeV and 7250 MeV
are obtained. From Fig. 10, it is obvious that the first
horizontal line is the threshold of J/ψ J/ψ , and another
horizontal line is possible to be a resonance state with
I J P = 02+, and the energy around 6970 MeV. We do
the same calculation for the ccc̄c̄ system with another two
sets of parameters in ChQM, as well as in the QDCSM
with three different sets of parameters. All possible res-
onance states with corresponding energies are listed in
Table 6.

From the Table 6 we can see that the results are qual-
itatively consistent in different quark models with differ-
ent parameters. There are four possible resonance states
with I J P = 00+, among which the state with energy
range between 6825 − 6975 MeV is close to the reported
state X (6900). Combining the above analysis, the observed
X (6900) is possible to be a compact resonance state with
I J P = 00+ in present calculation. Besides, another three
resonance states with energies 6205 − 6270 MeV, 7140 −
7170 MeV, and 7210 − 7260 MeV are also possible to
be existent. For the I J P = 01+ system, two resonance
states are obtained, with energies 6740 ∼ 7150 MeV
and 7250 − 7280 MeV. For the I J P = 02+ system,
there is only one resonance state, the energy range of
which is 6725 − 7050 MeV. We suggest the experimental
tests to check the existence of all these possible resonance
states.
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4 Summary

In this work, we systematically investigate the low-lying full-
heavy systems bbb̄b̄ and ccc̄c̄ in two quark models ChQM
and QDCSM with three different sets of parameters. Two
structures, meson–meson and diquark–antidiquark, are con-
sidered. The dynamic bound-state calculation is carried out
to search for any bound state in the full-heavy systems. To
explore the effect of the multi-channel coupling, both the
single channel and the channel coupling calculation are per-
formed. Meanwhile, an adiabatic calculation of the effective
potentials is added to study the interactions of the systems
and a stabilization calculation is carried out to find any res-
onance state.

The numerical results show that: (1) For the full-beauty
bbb̄b̄ systems, there is no any bound state or resonance state
in two structures in ChQM. While in QDCSM, the wide
resonances are possible in the diquark–antidiquark struc-
ture, and the resonance energies are 19122 − 19344 MeV
for I J P = 00+, 19184 − 19354 MeV for I J P = 01+,
and 19236 − 19374 MeV for I J P = 02+, respectively.
(2) For the full-charm ccc̄c̄ systems, there are four possi-
ble resonance states with I J P = 00+, and the energy ranges
are 6205 − 6270 MeV, 6825 − 6975 MeV, 7140 − 7170
MeV, and 7210 − 7260 MeV, respectively. The reported
state X (6900) can be explained as a compact resonance state
with I J P = 00+ in present calculation. Besides, we also
obtain two resonance states with I J P = 01+ and energies
6740 − 7150 MeV and 7250 − 7280 MeV, and a resonance
state with I J P = 02+ and energy 6725 ∼ 7050 MeV. All
these full-heavy resonance states are worth searching in the
future experiments. (3) The effective potentials show that
for most channels, the interaction between two mesons are
repulsive, that’s why it is difficult for these states to form
bound states. The contribution of each interaction term to the
potential of the system shows that the kinetic energy term pro-
vides attractive interactions, while the Coulomb term and the
color-magnetic term provide repulsion, which decrease the
attraction of the kinetic energy term, and make the total weak
attraction or repulsion of the system. (4) By comparing the
results of two quark models, the energy of the meson–meson
configuration is almost the same in ChQM and QDCSM,
because the σ meson exchange of the ChQM is inopera-
tive and the quark delocalization of QDCSM is close to 0 in
the systems of full-heavy quarks. In the diquark–antidiquark
configuration, the energy of QDCSM is smaller than that of
ChQM, due to the color octet symmetry of the diquark and
antidiquark, which makes the quark delocalization work in
QDCSM, and leads to lower energy in this model. Never-
theless, the conclusions are consistent in these two quark
models.

We study the full-heavy tetraquarks in two structures in
this work. To find out more bound states or resonance states,

we will explore the systems with other structures and do the
coupling of the different structures. In addition, to confirm the
existence of the full-heavy resonances, the study of the scat-
tering process of the corresponding open channels is needed
in future work.

Acknowledgements This work is supported partly by the National
Science Foundation of China under Contract Nos. 11675080, 11775118
and 11535005.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The data have
been illustrated in the figures and are not necessary to be deposited.
Data may be made available upon request.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. M. Gell-Mann, Phys. Lett. 8, 214–215 (1964)
2. G. Zweig, CERN-TH-412
3. R.L. Jaffe, Phys. Rev. D 15, 267 (1977)
4. R.L. Jaffe, Phys. Rev. D 15, 281 (1977)
5. S.K. Choi et al., Belle Collaboration. Phys. Rev. Lett. 91, 262001

(2003)
6. V. Khachatryan et al., CMS Collaboration. JHEP 1705, 013 (2017)
7. S. Durgut, Search for Exotic Mesons at CMS, 2018 (http://

meetings.aps.org/Meeting/APR18/Session/U09.6)
8. R. Aaij et al., LHCb Collaboration. JHEP 1810, 086 (2018)
9. R. Aaij et al., LHCb Collaboration. Phys. Lett. B 707, 52 (2012)

10. R. Aaij et al., LHCb Collaboration. JHEP 1706, 047 (2017)
11. V. Khachatryan et al., CMS Collaboration. JHEP 1409, 094 (2014)
12. K. Abe et al., Belle Collaboration. Phys. Rev. Lett. 89, 142001

(2002)
13. R. Aaij et al., [LHCb Collaboration], arXiv:2006.16957
14. Y. Iwasaki, Prog. Theor. Phys. 54, 492 (1975)
15. K.T. Chao, Z. Phys. C 7, 317 (1981)
16. L. Heller, J.A. Tjon, Phys. Rev. D 32, 755 (1985)
17. R.J. Lloyd, J.P. Vary, Phys. Rev. D 70, 014009 (2004)
18. A.V. Berezhnoy, A.V. Luchinsky, A.A. Novoselov, Phys. Rev. D

86, 034004 (2012)
19. V.R. Debastiani, F.S. Navarra, Chin. Phys. C 43(1), 013105 (2019)
20. Y. Bai, S. Lu, J. Osborne, Phys. Lett. B 798, 134930 (2019)
21. A. Esposito, A.D. Polosa, Eur. Phys. J. C 78(9), 782 (2018)
22. W. Chen, H.X. Chen, X. Liu, T.G. Steele, S.L. Zhu, Phys. Lett. B

773, 247 (2017)
23. J. Wu, Y.R. Liu, K. Chen, X. Liu, S.L. Zhu, Phys. Rev. D 97(9),

094015 (2018)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://meetings.aps.org/Meeting/APR18/Session/U09.6
http://meetings.aps.org/Meeting/APR18/Session/U09.6
http://arxiv.org/abs/2006.16957


1083 Page 12 of 12 Eur. Phys. J. C (2020) 80 :1083

24. M. Karliner, S. Nussinov, J.L. Rosner, Phys. Rev. D 95(3), 034011
(2017)

25. C. Hughes, E. Eichten, C.T.H. Davies, Phys. Rev. D 97(5), 054505
(2018)

26. J.M. Richard, A. Valcarce, J. Vijande, Phys. Rev. D 95(5), 054019
(2017)

27. M.S. Liu, Q. F. L, X. H., Q. ZhaoZhong, Phys. Rev. D 100, (1),
016006 (2019)

28. G.J. Wang, L. Meng, S.L. Zhu, Phys. Rev. D 100(9), 096013 (2019)
29. X. Chen, Eur. Phys. J. A 55(7), 106 (2019)
30. X. Chen,. arXiv:2001.06755 [hep-ph]
31. C. Deng, H. Chen, J. Ping,. arXiv: 2003.05154 [hep-ph]
32. A. Valcarce, H. Garcilazo, F. Fernández, P. Gonzalez, Rep. Prog.

Phys. 68, 965 (2005). and references therein
33. F. Wang, G.H. Wu, L.J. Teng, J.T. Goldman, Phys. Rev. Lett. 69,

2901 (1992)
34. L.Z. Chen, H.R. Pang, H.X. Huang, J.L. Ping, F. Wang, Phys. Rev.

C 76, 014001 (2007)
35. M. Chen, H.X. Huang, J.L. Ping, F. Wang, Phys. Rev. C 83, 015202

(2011)

36. H. Huang, X. Zhu, J. Ping, Phys. Rev. D 97(9), 094019 (2018)
37. H. Huang, C. Deng, J. Ping, F. Wang, Eur. Phys. J. C 76(11), 624

(2016)
38. H.X. Huang, J.L. Ping, Eur. Phys. J. C 79, 556 (2019)
39. J. Vijande, F. Fernandez, A. Valcarce, J. Phys. G 31, 481 (2005)
40. M. Kamimura, Suppl. Prog. Theor. Phys. 62, 236 (1977)
41. H. Huang, P. Xu, J. Ping, F. Wang, Phys. Rev. C 84, 064001 (2011)
42. J. Simon, J. Chem, Phys. 75, 2465 (1981)
43. E. Hiyama, M. Kamimura, A. Hosaka, H. Toki, M. Yahiro, Phys.

Lett. B 633, 237 (2006)
44. E. Hiyama, A. Hosaka, M. Oka, J.-M. Richard, Phys. Rev. C 98,

045208 (2018)

123

http://arxiv.org/abs/2001.06755
http://arxiv.org/abs/2003.05154

	Full-heavy tetraquarks in constituent quark models
	Abstract 
	1 Introduction
	2 Models and wavefunctions
	2.1 The chiral quark model (ChQM)
	2.2 The quark delocalization color screening model (QDCSM)
	2.3 The wave function
	2.3.1 The orbital wave function
	2.3.2 The flavor wave function
	2.3.3 The spin wave function
	2.3.4 The color wave function


	3 Numerical results and discussions
	3.1 Full-beauty tetraquarks bbbarbbarb
	3.2 Full-charm tetraquarks ccbarcbarc

	4 Summary
	Acknowledgements
	References




