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Abstract We consider certain aspects of cosmological
dynamics of a spatially curved Universe in f (T ) gravity.
Local analysis allows us to find conditions for bounces and
for static solutions; these conditions appear to be in general
less restrictive than in general relativity. We also provide a
global analysis of the corresponding cosmological dynamics
in the cases when bounces and static configurations exist, by
constructing phase diagrams. These diagrams indicate that
the fate of a big contracting Universe is not altered signifi-
cantly when bounces become possible, since they appear to
be inaccessible by a sufficiently big Universe.

1 Introduction

Modified gravity can lead to some kinds of cosmological
dynamics which are impossible in general relativity (GR),
at least for the usual matter content of the Universe, like
a perfect fluid with positive energy density. One of well-
known examples is the so-called non-standard singularity
where the scale factor a, the Hubble parameter H and the
matter energy density ρ remain constant, while Ḣ diverges
[1]. Evolution of the Universe cannot be prolonged through
this point.

A non-zero spatial curvature gives even more diversity in
possible dynamical regimes. We should remind the reader
that in GR the influence of the spatial curvature upon the
cosmological dynamics of an isotopic Universe filled with a
perfect fluid is quite easy to explain. The Friedmann equation
contains only three terms:

3

8π
MPl

2
(
H2 + k

a2

)
= ρ,

where k = 0, 1,−1 for zero, positive and negative spatial
curvature, respectively. Qualitative features of the dynam-
ics are determined completely if we know which term (with
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the curvature or the matter energy density) dominates at
the particular epoch. Since the energy density of a per-
fect fluid with the equation of state parameter w falls as
a2/[3(w+1)], the matter energy density dominates at small
a for w > −1/3 and for large a in the opposite case of
w < −1/3. For positive spatial curvature this leads to an
ultimate bounce in the case of w < −1/3 and an ulti-
mate recollapse for w > −1/3. A particular value of the
energy density of matter makes possible a static solution
in the w < −1/3 case which is known to be unstable.
On the contrary, negative spatial curvature does not change
the general evolution of the Universe from Big Bang to an
eternal expansion, and the only difference between the two
cases, w > −1/3 and w < −1/3, is the time location of
the curvature dominated Milne asymptotic a ∝ t , which
occurs near Big Bang for w < −1/3 and at late times for
w > −1/3.

In modified gravity the equations of motion contain more
terms, and the effects of curvature cannot be described so
easily. Moreover, unlike GR where the sign of the cur-
vature term in the equation of motion is fixed by the
sign of the curvature parameter k, the signs of the cur-
vature containing terms in the equations of motion of
modified gravity can be different, resulting in possible
complicated dynamics for a negative spatial curvature as
well.

An interesting example of a cosmological solution in mod-
ified gravity for a curved Universe impossible in GR is a sta-
ble static Universe in f (R) gravity [2] and in Gauss–Bonnet
gravity [3] and massive gravity [4]. Later, similar solutions
have been found in f (T ) gravity for quadratic [5] and expo-
nential functions f (T ) [6].

The f (T ) theory became an area of intense investiga-
tion less than a decade ago. Instead of the metric the fun-
damental objects of this theory are tetrads, and instead of
a torsion free Levi-Civita connection it uses curvature free
connections (see, for example, the Weitzenböck connection
[7]). The equations of motion in GR can be obtained in tor-
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sion language resulting in so-called teleparallel equivalent of
general relativity (TEGR) (see the book of Ref. [8]). Then
f (T ) gravity [9] can be obtained from TEGR in the same
way as f (R) theory generalizes GR. However, in contrast
to the relation between TEGR and GR the dynamical equa-
tions in f (T ) [9–12] and f (R) [13] are different. A nice
feature of the equations of motion in f (T ) gravity is that
they are second-order differential equations in contrast to
fourth-order equations in f (R) gravity. However, the num-
ber of degrees of freedom in f (T ) gravity is still unknown
[14] and is subject to ongoing debates. The reason is the lack
of local Lorentz invariance [15,16] and in general it forces
one to use a particular tetrad in order to get the correct equa-
tions of motion. There are several methods of finding this
so-called “proper” tetrad [17–22]; however, no one seems
to be universal. However, the treatment of a system with
higher symmetries is easier, and the Friedmann–Lemaître–
Robertson–Walker (FLRW) Universe belongs to this class.
It is known that the Cartesian tetrad is the proper one for
a flat FLRW Universe, and the corresponding cosmological
dynamics has been studied in detail, including a comparison
with observations [23–30]. As for a spatially curved Uni-
verse, the correct proper tetrad has been found in [18]. Using
this tetrad it is possible to write down the corresponding equa-
tions of motion. For a detailed analysis of these equations,
see, for example, [31,32].

In the present paper we extend the analysis of the static
Universe provided in [5] to a general power-law f (T ).
Another peculiarity of modified gravity is the possibility of
bounces for a larger range of the equation of state param-
eter w than in GR for the positive spatial curvature, and
bounces in the case of the negative spatial curvature. The exis-
tence of stable static solutions implies bounces (see below);
however, the conditions for the bounce to exist are in gen-
eral softer. Particular forms of bouncing solutions have been
considered earlier for the case of a flat metric. However, a
bounce in a flat Universe requires functions f (T ) either with
f (0) �= 0 [33]—or with d f

dT

∣∣
T=0 diverging [34]. None of

these conditions can be realized for a power-law f (T ) with
integer index. Other possibilities require a theory beyond
f (T ) [35,36]. In the present paper we write down general
conditions for a bouncing spatially curved Universe in power-
law f (T ) gravity and construct the corresponding phase dia-
grams.

The structure of the paper is as follows: in Sect. 2 we
remind the reader of proper tetrads and the equations of
motion for a spatially curved isotropic Universe. In Sect. 3
using these equations we consider static solutions and their
stability, as well as local conditions for a bounce. In Sect. 4
we construct the phase diagrams and discuss some features
of the global dynamics which can be missed in local analysis.
Section 5 provides a summary of the results obtained.

2 The equations of motion

In the present paper we consider the cosmological models in
f (T ) gravity with matter. The action of this theory is

S = 1

2K

∫
e f (T )d4x + Sm, (1)

where e = det(eAμ) = √−g is the determinant, which con-
sists of the tetrad components eAμ , f (T ) is a general differen-
tiable function of the torsion scalar T , Sm is the matter action
and K = 8πG. Here units with h̄ = c = 1 are used.

The line element of a non-flat homogeneous and isotropic
Friedmann–Lemaître–Robertson–Walker Universe is

ds2 = dt2 − �2a2(t)[d(�ψ)2 + sin2(�ψ)(dθ2 + sin2θdϕ2)],
(2)

where a(t) is the scale factor, the parameter � = 1 for a
closed Universe and � = i for an open Universe.

We write down the following diagonal tetrad (see [18],
[31]) which relates to the metric (2):

eA = (dt, a(t)E1, a(t)E2, a(t)E3), (3)

where for � = 1

E1 = − cos θdψ + sin ψ sin θ(cos ψdθ − sin ψ sin θdϕ),

E2 = sin θ cos ϕdψ

− sin ψ[(sin ψ sin ϕ − cos ψ cos θ cos ϕ)dθ

+(cos ψ sin ϕ + sin ψ cos θ cos ϕ) sin θdϕ],
E3 = − sin θ sin ϕdψ

− sin ψ[(sin ψ cos ϕ + cos ψ cos θ sin ϕ)dθ

+(cos ψ cos ϕ − sin ψ cos θ sin ϕ) sin θdϕ] (4)

and for � = i

E1 = cos θdψ + sinh ψ sin θ(− cosh ψdθ + i sinh ψ sin θdϕ),

E2 = − sin θ cos ϕdψ

+ sinh ψ[(i sinh ψ sin ϕ − cosh ψ cos θ cos ϕ)dθ

+(cosh ψ sin ϕ + i sinh ψ cos θ cos ϕ) sin θdϕ],
E3 = sin θ sin ϕdψ

+ sinh ψ[(i sinh ψ cos ϕ + cosh ψ cos θ sin ϕ)dθ

+(cosh ψ cos ϕ − i sinh ψ cos θ sin ϕ) sin θdϕ]. (5)

In what follows we will use the more convenient curvature
parameter k, such that k = 1 for a closed Universe and k =
−1 for an open Universe. The torsion scalar for the chosen
tetrad (3) is

T = −6H2 + 6k

a2 , (6)
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where H ≡ ȧ
a is the Hubble parameter, a dot denotes the

derivative with respect to time. Then the time derivative of
the torsion scalar has the form

Ṫ = −12Ḣ H − 12kH

a2 . (7)

The equations of motion can be found by varying the
action (1) with respect to the chosen tetrad (3) (see [31,32])

12H2 fT + f (T ) = 2Kρ, (8)

4

(
Ḣ + k

a2

)
(12H2 fT T + fT )

− f (T ) − 4 fT (2Ḣ + 3H2) = 2Kwρ, (9)

where ρ is the matter energy density, p is its pressure, the
equation of state is p = wρ where w is a constant. In the
present paper we consider only usual matter, so the equation
of state parameter is bounded within the region of thermody-
namical stability of the matter w ∈ [−1; 1]. Here we denote

fT = d f (T )
dT , fT T = d2 f (T )

dT 2 .
The continuity equation for matter is

ρ̇ + 3H(1 + w)ρ = 0. (10)

For the case of f (T ) = T + f0T N the equations of motion
(8), (9) have the following form:

12H2(1 + N f0T
N−1) + T + f0T

N = 2Kρ, (11)

4

(
Ḣ + k

a2

)
(12H2N (N − 1) f0T

N−2 + 1 + N f0T
N−1)

−T − f0T
N − 4(1 + N f0T

N−1)(2Ḣ + 3H2) = 2Kwρ.

(12)

In the present paper we consider only integer N > 1. Equa-
tion (11) tells us now that a bounce cannot occur in a flat
Universe with ordinary matter, since for the flat metric T = 0
at the point of bounce, and regularity of fT (0) indicates that
the left-hand side of Eq. (11) vanishes at the bounce, which
is incompatible with positivity of ρ.

3 Bouncing solutions and a static Universe

Looking at Eq. (11) we can see two important points. First,
there are curvature-containing terms, originating from the
last term in the right-hand side of (11) which grow faster than
1/a2 near the singularity a = 0. The fastest term is equal to
(6k)N/a2N , and this is the only correction term which does
not vanish at a bounce. Thus, this term drives the bounce
which we study in the present paper. Note that we need both
f (T ) corrections and a spatial curvature k �= 0 for this type
of bounce. The change of the power index from 2 for the
GR curvature term to 2N for the curvature f (T )-corrections
term leads to the following: already in quadratic gravity the
influence of the corrections of the curvature term may over-
come the influence of matter near a singularity for w < 1/3
instead of w < −1/3 in GR, and starting from N = 3 this
property covers the whole allowed range w ∈ [−1; 1]. This
can induce bounces for a wider range of w than in GR; how-
ever, since there are also other terms in (11), this possibility
is not satisfied automatically and needs further analysis. Sec-
ond, the sign of the fastest growing curvature term is equal
to kN , so it is the same for positive and negative curvature if
N is even. This means that we can expect bouncing solutions
in quadratic gravity even for k = −1. Motivated by these
qualitative considerations, we start our analysis by analytical
methods. In the next section we present results of numerical
investigations.

We can express Ḣ from the equation of motion (12) for
the model f (T ) = T + f0T N :

4Ḣ
(

12H2N (N − 1) f0T
N−2 − N f0T

N−1 − 1
)

= T

+ f0T
N + 12H2(1 + N f0T

N−1)

−4
k

a2

(
12H2N (N − 1) f0T

N−2 + N f0T
N−1 + 1

)
+ 2Kwρ.

(13)

Taking into account (6) and (11) we find

Ḣ =
K
2 (w + 1)ρ − k

a2

[
12H2N (N − 1) f0

(
−6H2 + 6k

a2

)N−2 + N f0
(
−6H2 + 6k

a2

)N−1 + 1

]

12H2N (N − 1) f0
(
−6H2 + 6k

a2

)N−2 − N f0
(
−6H2 + 6k

a2

)N−1 − 1
. (14)
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From this equation we can finally exclude ρ using (11)

Ḣ =
1
4 (w + 1)

[
6H2 + 12H2N f0

(
−6H2 + 6k

a2

)N−1 + 6k
a2 + f0

(
−6H2 + 6k

a2

)N
]

12H2N (N − 1) f0
(
−6H2 + 6k

a2

)N−2 − N f0
(
−6H2 + 6k

a2

)N−1 − 1
−

− k

a2

12H2N (N − 1) f0
(
−6H2 + 6k

a2

)N−2 + N f0
(
−6H2 + 6k

a2

)N−1 + 1

12H2N (N − 1) f0
(
−6H2 + 6k

a2

)N−2 − N f0
(
−6H2 + 6k

a2

)N−1 − 1
. (15)

The equation for ȧ is obviously

ȧ = aH. (16)

The dynamical system (15), (16) has one stationary point
with the following coordinates:

a = a0 =
√√√√

6k

(
f0(2N − 3(w + 1))

3w + 1

) 1
N−1

, H = 0.

It follows from the expression for the coordinate a0 that this
point exists for

6k

(
f0(2N − 3(w + 1))

3w + 1

) 1
N−1 ≥ 0

⇒
[

f0(2N−3(w+1))
3w+1 ≥ 0 for k = 1,

f0(2N−3(w+1))
3w+1 ≤ 0 for k = −1, N is even.

(17)

We substitute the coordinates of the fixed point H = 0,
a = a0 to the constraint equation (11) and taking into account
positivity of the matter energy density ρ ≥ 0 it is easy to get

6k

a0
2

[
1 + f0

(
6k

a0
2

)N−1
]

= 2Kρ ≥ 0

⇒
⎡
⎢⎣ f0

(
6k
a0

2

)N−1 ≥ −1 for k = 1,

f0
(

6k
a0

2

)N−1 ≤ −1 for k = −1,

⇒
[

3w+1
2N−3(w+1)

≥ −1 for k = 1,
3w+1

2N−3(w+1)
≤ −1 for k = −1,

⇒
[

w < 2N−3
3 , for k = 1,

w > 2N−3
3 , for k = −1.

(18)

Uniting conditions (17), (18) we find finally that there are
three different cases for which the static cosmological solu-
tion exists:

1. k = 1, f0 > 0, w ∈ (− 1
3 ; 2N−3

3

)
,

2. k = 1, f0 < 0, w ∈ [−1;− 1
3

)
,

3. k = −1, N is even, f0 > 0, w ∈ ( 2N−3
3 ; 1

]
.

Note that the negative curvature case is realized only for
N = 2 with w ∈ (1/3; 1]. Formally, similar solutions can
exist for other even power indices, however, this requires an
exotic matter with w > 1.

The eigenvalues for the Jacobian matrix associated with
the system (15), (16) in this critical point are

λ1,2 = ±
√

2

6

√√√√√√−
(

2N − 3(w + 1)
)
(3w + 1)

w + 1

⎡
⎣ 3w + 1

f0
(

2N − 3(w + 1)
)

⎤
⎦

1
N−1

.

(19)

From this expression we can see that the obtained critical
point is either a center (for the cases (1) and (3)) or a saddle
(for the case (2)). In the case of a center the static solution is
stable. However, due to the properties of a center fixed point
the nearby trajectories do not converge to the static solution,
but rotate around it, realizing oscillating solutions. The ques-
tion of how close to the static solution should a trajectory be
to be trapped into infinite oscillations cannot be solved in a
local analysis and requires numerical investigations, which
are described in the following section.

Now we find the conditions of the existence of a bounce
substituting H = 0 to (11), (15). Noticing that T = −6H2 +
6k
a2 = 6k

a2 for H = 0 we have

6k

a2

[
1 + f0

(
6k

a2

)N−1
]

= 2Kρ, (20)

Ḣ = k

a2

⎡
⎢⎢⎣

−3w − 1 + f0
(

6k
a2

)N−1(
(2N − 3(w + 1)

)

2

(
N f0

(
6k
a2

)N−1 + 1

)
⎤
⎥⎥⎦ . (21)

Applying the conditions Ḣ > 0 and ρ ≥ 0 to (20), (21) we
see that the bounces exist for

1. k = 1, −1 ≤ f0
(

6k
a2

)N−1
< − 1

N , w ∈ [−1; 1], where

f0 < 0 is allowed.

2. k = 1, 3w+1
2N−3(w+1)

< f0
(

6k
a2

)N−1
, w ∈ [−1; 2N−3

3

)
,

where (a) f0 > 0 for w ≥ − 1
3 and (b) f0 can be positive

as well as negative for w < − 1
3 .
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Fig. 1 The phase portraits are plotted for N = 2, f0 = 1
3 , k = 1, w = 0 (left) and w = 1/3 (right). The star denotes the stationary point. The

dotted regions correspond to ρ < 0 in the constraint equation (11)

3. k = −1, f0
(

6k
a2

)N−1
< 3w+1

2N−3(w+1)
, w ∈ ( 2N−3

3 ; 1
]
,

where (a) f0 > 0 for even N and (b) f0 < 0 for odd N .

We can see that for the positive spatial curvature bounces
exist in a larger range of w than the range where a static
solution (stable or unstable) exists. In the case of a negative
spatial curvature the conditions on the equation of state for
bounce and static solutions to exist coincide for even N . As
for the case of odd N , it always requires an exotic matter
with w > 1 and is not considered in the present paper.

4 Numerical investigations

We integrate numerically the system of three first-order dif-
ferential equations: (14), (16) and ρ̇ = −3H(w + 1)ρ. The
constraint (11) is checked at each step of the integration.

The case N = 2 and positive f0 is shown in Fig. 1. The left
panel corresponds to the case ofw = 0 when stable stationary
solution exists. In the vicinity of this solution trajectories
move around it. Note, however, that this happens only for
nearby trajectories, and the fate of trajectories outside of this
basin is different. If a trajectory starts from a rather big scale
factor, instead of bouncing due to the presence of an 1/a4

term, it meets a non-standard singularity. In the non-standard
singularity Ḣ diverges, while H and a are finite, so in the
a(H) plot it corresponds to the sudden disappearance of the
phase trajectory. This means that the possibility of a bounce
is not realized for a contracting Universe that is big enough
initially.

The right panel of Fig. 1 presents the situation for w =
1/3 when the stationary solution does not exist. Bouncing
solutions disappeared as well. However, this does not change

much the fate of a contracting large Universe, which still ends
its evolution in a non-standard singularity.

Negative f0 leads to instability of the stationary solution
if it exists (Fig. 2, left panel, w = −0.5). A contracting
Universe either experiences a bounce or falls into a standard
singularity. The right panel represents the phase portrait with-
out the stationary solution (w = 0). Since the conditions for
a bounce are less restricted than the conditions for the sta-
tionary solution to exist, bounces are still possible. However,
all trajectories with bounces begin and end in a non-standard
singularity, and the fate for a big enough contracting Universe
is unique—a standard singularity.

The two following plots show examples with an odd N .
The stationary solution exists for N = 3, f0 > 0, w > −1/3
(Fig. 3, right panel). A big contracting Universe ultimately
falls into a standard singularity. An example of a phase por-
trait without stationary solutions is shown in the left panel.

Negative f0 leads either to an unstable stationary solution
(Fig. 4, left panel) or to dynamics without stationary solutions
(Fig. 4, right panel). In the former case a big enough Uni-
verse can either go through a bounce or meet a non-standard
singularity, in the latter case a non-standard singularity is the
unique possibility.

The phase diagram for the case of N = 2 and a negative
spatial curvature is presented in Fig. 5. It is easy to see from
(11) that the maximum value of the scale factor at the point
H = 0 is equal to a2

max = 6 f0. Larger values of the scale
factor cannot correspond to its extremum. The allowed zone
in the (a, H) plane is divided into three separate regions. Any
big contracting Universe ends its evolution in a non-standard
singularity, and we have now a simple criterion for a “big”
Universe: a > amax .
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Fig. 2 The phase portraits are plotted for N = 2, f0 = − 1
3 , k = 1, w = −0.5 (left) and w = 0 (right). The star denotes the stationary point. The

dotted regions correspond to ρ < 0 in the constraint equation (11)

Fig. 3 The phase portraits are plotted for N = 3, f0 = 1
5 , k = 1, w = −0.5 (left) and w = 0 (right). The star denotes the stationary point. The

dotted regions correspond to ρ < 0 in the constraint equation (11)

5 Conclusions

In the present paper we have considered some peculiarities
of a spatially curved isotropic Universe in f (T ) gravity. The
function f (T ) has been chosen in the form f (T ) = T +
f0T N ; the results obtained crucially depend on the parity of
N and the sign of f0. One of the most interesting features of
the dynamics is the existence of a stable static solution. For
positive spatial curvature it exists for a rather wide interval of
the equation of state parameter w, and for N > 3 it covers the
whole thermodynamically possible interval of decelerating
expansion w ∈ (1/3; 1]. Moreover, for even N and positive
f0 the stable static solution exists for a negatively curved
Universe also; in this case the matter should be stiffer than
ultra-relativistic matter.

The conditions for possible bouncing solutions appear to
be much wider than the condition w < −1/3 in GR. The
stable static solution implies bounces, because nearby tra-
jectories rotate around it, experiencing one bounce and one
recollapse point per period. For a positive curvature bounces
exist for a wider range of w than the static solutions. For
negative spatial curvature with an even N the two conditions
are the same. An odd N with negative spatial curvature needs
an exotic matter with w > 1 for bounce.

Global analysis with numerical integration of the equa-
tions of motion and constructing phase portraits show, how-
ever, that the significance of bounce solutions is less than
may be thought using the results of local analysis only. All
phase portraits show a common feature: any trajectory going
through a bounce driven by a correction term then experi-
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Fig. 4 The phase portraits are plotted for N = 3, f0 = − 1
5 , k = 1, w = −0.5 (left) and w = 0 (right). The star denotes the stationary point. The

dotted regions correspond to ρ < 0 in the constraint equation (11)

Fig. 5 Two parts of the phase
portrait are plotted for N = 2,
f0 = 1

3 , k = −1, w = 0.5. The
star denotes the stationary point.
The dotted zones correspond to
ρ < 0 in the constraint equation
(11)

ences either recollapse or a non-standard singularity rather
soon. For values of the coupling constant f0 of the order of
unity, studied in the present paper, the maximum value of the
scale factor is of the same order of magnitude as the scale
factor in the bounce point. On the other side, this means that
a contracting Universe with large enough initial scale fac-
tor can go through a bounce only if w lies within the GR
allowed interval w < −1/3. For stiffer matter bouncing tra-
jectories cannot reach the low-curvature regime of a relatively
big Universe. Further studies are needed to correctly quantify
this qualitative result and determine how the maximum value
of the scale factor after a bounce depends on f0. Currently,
it seems highly unlikely that new bounce solutions can be

important for the future of our “big” Universe if it starts at
some time to contract.

For the negative curvature case the structure of the phase
space is different and allows for a simple analytical expres-
sion of the maximal scale factor after bounce. The phase
source is divided into three disconnected zones, one zone
in the small scale factor range where trajectories move
around static solution, and two symmetric zones in the large
scale factor range where evolution of the scale factor is
monotonous. Since all bounces are located in the first zone,
a Universe large enough to be located in the second zone
cannot experience any bounce. The maximum scale factor of
the first zone is amax = √

6 f0, giving an upper bound for the
scale factors of bouncing trajectories.
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