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Abstract Cosmological evolution and particle creation in
R2-modified gravity are considered for the case of the dom-
inant decay of the scalaron into a pair of gauge bosons due
to conformal anomaly. It is shown that in the process of ther-
malization superheavy dark matter with the coupling strength
typical for the GUT SUSY can be created. Such dark matter
would have the proper cosmological density if the particle
mass is close to 1012 GeV.

1 Introduction

The most popular and natural hypothesis that dark matter
consists of the lightest supersymmetric particles (LSP) some-
what lost its popularity since no manifestation of supersym-
metry (SUSY) was observed at LHC [1]. The LHC data sig-
nificantly restricted parameter space open for SUSY. Though
strictly speaking low energy SUSY, around 1 TeV, is not
excluded and no direct limits from below on the LSP mass
were presented, see [2], still a study of higher energy SUSY
and heavier LSPs can be of interest.

Different mechanisms of LSP production in cosmology
are summarized in Ref. [3]. If they behave as the the usual
WIMPs, then their frozen number density is governed by the
Zeldovich equation [4], see also [5,6]. This equation was
first derived by Zeldovich [4] and later rederived in detail
in several textbook, see e.g. [7,8]. According to them the
number density of thermal relics can be estimated as

nX

nγ

≈ 1

mPlmXσannv
, (1.1)
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where mX is the mass of would-be dark matter particles X
and nXand nγ are the contemporary number densities of X-
particles and CMB photons respectively, mPl = 1.2 · 1019

GeV is the Planck mass, and σv is the product of the annihi-
lation cross-section of X X̄ by their center of mass velocity.
This result is valid for a simple order of magnitude esti-
mates with some numerical and logarithmic factor of order
10 neglected.

For S-wave annihilation

σannv = α2/m2
X (1.2)

In what follows we assume that α ≈ 0.01, which is typical
for SUSY. If the coupling is different and/or the annihila-
tion is enhanced or suppressed, the result would be evidently
changed. Anyhow the presented expressions are the conven-
tional ones for the estimates of usual WIMPs number and
energy densities.

Though there exist other mechanisms of LSP produc-
tion/annihilation, which may be realized in cosmology, nev-
ertheless a study of alternative cosmological models for LSPs
as viable dark matter candidate can be of interest.

Our results obtained in Ref. [9] as well as in the present
paper do not demand full supersymmetry and are valid for
any massive stable particle with the coupling strength typical
to that in supersymmetry. So in what follows we will not use
the abbreviation LSP for these particles but instead call them
X -particles.

In our recent work [9], we have shown that in modified
R+R2 cosmology the relative density of LSP can be consid-
erably smaller than that predicted in the standard scenario.
This opens the window for the lightest supersymmetric par-
ticle with the mass about 1000 TeV to be a viable dark matter
candidate. The frozen number density of massive relics is cal-
culated in terms of the present day density of photons of the
cosmic microwave background radiation, see e.g. Ref. [10].
The relative decrease of the LSP density in R2-cosmology
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is related to an efficient particle production by the oscillat-
ing curvature scalar after freezing of the LSP production and
annihilation, as it is shown in our paper [11]. Consequently,
the number density of CMB photons rises and the ratio of
the frozen number density of LSP to the number density of
photons drops down.

Production of dark matter particles by the scalaron decay
in a different aspect was considered also in Ref. [12].

According to our work [11], the cosmological evolution
in R + R2 theory is considerably different from the stan-
dard one, based on the classical General Relativity (GR).
In modified gravity the cosmological evolution can be cat-
egorized into the following four epochs. At first, there was
the exponential expansion (Starobinsky inflation [13]), when
the curvature scalar R(t) (called scalaron) was very large and
was slowly decreasing down to zero. The next epoch began
when R(t) dropped down to zero and started to oscillate,
periodically changing sign. The oscillations of R led to par-
ticle production and this epoch can be called Big Bang. Next,
there was the transition period from the scalaron domination
to the relativistic matter domination. Finally, after scalaron
had decayed completely, we arrived to the standard cosmol-
ogy which is governed by General Relativity.

The frozen density of massive species strongly depends
upon the probability of particle production by R(t). In our
previous papers [9,11], we considered the decays into min-
imally coupled massless scalar particles and into massive
fermions or conformally coupled scalars. However, as it
is argued in Ref. [14], the production of massless gauge
bosons due to conformal anomaly may be significant. We
avoided this problem by assuming a version of supersym-
metric model, where conformal anomaly is absent. Here we
clear out this restriction and consider freezing of massive
species in the theory where the particle production by oscil-
lating curvature predominantly proceeds through anomalous
coupling to gauge bosons.

The paper is organized as follows. In Sect. 2 we summa-
rize our results on cosmological evolution in R2-gravity and
present the known theoretical estimates of the variation of
the coupling constants with changing momentum transfer. In
Sect. 3 an estimate of the cosmological number density of X -
particles created by direct decay of the scalaron is presented.
It is shown that X -particles energy density would have the
proper for DM value if their mass is rather small, MX ∼ 107

GeV. However, as shown in Sect. 4, in this case the X -particle
production by thermal processes in plasma, in turn, would be
unacceptably strong. To avoid this crunch we assume that X -
particles are Majorana fermions because in this case their
direct production by the scalaron is forbidden. According
to the calculations in Sect. 4 the cosmological density of
X -particles would be equal to the observed density of DM,
ρDM ≈ 1 kev/cm3, if MX ∼ 1010 GeV. In Sect. 5 possible
manifestations of X -particles in cosmic rays are considered.

In conclusion, the results are discussed and compared to the
other cases studied earlier.

2 Cosmological evolution in R2 gravity

This section contains a condensed summary of the main
results of our works [9,11]. The action of the theory has
the form:

Stot = −m2
Pl

16π

∫
d4x

√−g

(
R − R2

6M2
R

)
+ Sm , (2.1)

where mPl = 1.2 ·1019 GeV is the Planck mass, Sm is a mat-
ter action. Here g is the determinant of the metric tensor gμν

taken with the signature convention (+,−,−,−). The Rie-
mann tensor describing the curvature of space-time is deter-
mined according to Rα

μβν = ∂β
α
μν + . . ., Rμν = Rα

μαν ,
and R = gμνRμν . We use here the natural system of units
h̄ = c = kB = 1. As we see in what follows, MR is the
mass of the scalaron field. The spectrum of the temperature
fluctuations of the cosmic microwave background radiation
(CMB) demands [12,15]:

MR = 3 · 1013 GeV. (2.2)

We consider homogeneous and isotropic matter distribu-
tion with the linear equation of state:

P = wρ, (2.3)

where w is usually a constant parameter. For non-relativistic
matter w = 0, for relativistic matter w = 1/3, and for the
vacuum-like state w = −1.

Equation of motion for the curvature which follows from
action (2.1) has the form:

R̈ − �R

a2 + (3H + 
/2)Ṙ + M2
R R = −8πM2

R

m2
Pl

(1 − 3w)ρ,

(2.4)

where H = ȧ/a is the Hubble parameter and 
 is the total
scalaron decay rate, which is determined by the dominant
decay channel. See discussion and the list of references in
our works [9,11]. Note that our definition of 
 in the present
paper differs by factor 2 from that used in our earlier works.

The appearance of the damping term, 
 Ṙ, in this equation
is a result of the back-reaction of particle production by oscil-
lating curvature on the curvature field. This equation has been
derived in one-loop approximation in several papers [16–18].
The resulting impact of particle production on the evolution
of R is described by non-local in time equation, which for
harmonic oscillations of the source is reduced to simple liquid
friction term, as given above in Eq. (2.4). It is noteworthy that
the quantum average of the energy-momentum tensor over
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vacuum or in external (gravitational, as in our case) field does
not have the same value of w as for real fields, for example,
vacuum expectation value of massless fields has w = −1
instead of w = 1/3.

We assume that the scalaron field is homogeneous R =
R(t), neglecting small perturbations generated in the course
of inflation. After inflation is over, the scalaron field starts to
oscillate as

R(t) = 4MR cos(MRt + θ)

t
, (2.5)

where θ is a constant phase determined by initial condi-
tions. This and the subsequent equations are valid in the limit
MRt � 1, but 
t � 1.

The Hubble parameter is similar to that at the matter dom-
inated stage (MD), but with fast oscillations around the MD
value:

H(t) = 2

3t
[1 + sin(MRt + θ)] . (2.6)

The cosmological energy density of matter at this period
depends upon the decay width of the scalaron, which in turn
depends upon the dominant decay channel.

If there exists scalar particle minimally coupled to gravity,
the decay width of scalaron into massless scalars would be:


S = M3
R

24m2
Pl

. (2.7)

In this case, the energy density of predominantly relativistic
matter is equal to:

ρS(t) = M3
R

120π t
≈ 2.7 · 10−3 M3

R

t
. (2.8)

If there are several species of massless scalars, the expres-
sions (2.7) and (2.8) should be multiplied by gS , where gS
denotes the number of species. For massive scalar with the
mass ms the width of two-body decay would be somewhat
suppressed due to the phase space factor proportional to√

1 − 4m2
s/M

2
R .

If scalaron predominantly decays into fermions or confor-
mally coupled scalars the decay width vanishes in the limit
of massless final state particles and is equal to [12]:


 f = MRm2
f

24m2
Pl

, (2.9)

where m f is the mass of fermion or conformally coupled
scalar. The width is dominated by the heaviest final particle.
The corresponding matter density is:

ρ f (t) = MRm2
f

120π t
. (2.10)

Now let us turn to the scalaron decay induced by the
conformal anomaly. Production of massless gauge bosons
by conformally flat gravitational field was first studied in

Refs. [19,20] and applied to the problem of heating in R2-
inflation in Ref. [14]. The scalaron decay width for this chan-
nel is equal to:


an = β2
1α2N

96π2

M3
R

m2
Pl

, (2.11)

where β1 is the first coefficient of the beta-function, N is
the rank of the gauge group, and α is the gauge coupling
constant. We take β2

1 = 49, N = 8. The coupling con-
stant α at very high energies depends upon the theory and is,
strictly speaking, unknown. The evolution of α in the mini-
mal standard model (MSM) is presented in Fig. 1, left panel,
and the same in the minimal standard supersymmetric model
(MSSM) with supersymmetry at TeV scale is presented in the
right panel. We can conclude that at the scalaron mass scale,
Q = 3 · 1013 GeV, α3 ≈ 0.025 in MSM, while in MSSM it
is α3 ≈ 0.04. At Q = 1010 GeV they are α3 ≈ 0.033 for
MSM and α3 ≈ 0.05 for MSSM.

The values of the running coupling constants are known
to depend upon the particle spectrum. In the case of MSM we
assumed that there exists only already known set of particles,
while in MSSM there is some freedom depending on the
explicit form of the SUSY model. However, the variation of
the couplings related to this uncertainty does lead to a strong
variation of our order of magnitude estimate of the allowed
value of the mass of dark matter particles.

Since, according to our results presented below, super-
symmetry may possibly be realized at energies about 1012–
1013 GeV, the running of couplings according to MSM with-
out inclusion of SUSY particles is probably correct below the
SUSY scale. Recall that for particles produced at the scalaron
decay Q = 3 · 1013 GeV, while at the universe heating tem-
perature after the complete decay of the scalaron it is near
1010 GeV.

So numerically the decay width is:


an = 2.6 · 10−4
( α

0.025

)2 M3
R

m2
Pl

. (2.12)

Correspondingly the energy density of matter created by the
decay into this channel would be:

ρan = β2
1α2N

4π2

M3
R

120π t
≈ 1.65·10−5

( α

0.025

)2 M3
R

t
. (2.13)

It is instructive to compare the rate of the energy trans-
ferred to matter produced in three different cases of the
scalaron decay into minimally coupled scalars, fermions, and
gauge bosons due to conformal anomaly with the energy
density of the scalaron. To this end we need to define the
energy density of the oscillating scalar curvature. The first
term of action (2.1) in the Jordan frame in the high fre-
quency limit can be rewritten in terms of the cosmological
scale factor a(t) in the way analogous to the derivation of the
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Fig. 1 Evolution of the coupling constants of U (1), SU (2) and and
SU (3) (color) groups as function of the momentum transfer [21]

Friedmann equations performed in Ref. [22]. For high fre-
quency oscillations and large value of MRt we have found the
solutions [11]

H = 2

3t
[1 + sin(MRt + θ)] , R = −4MR cos(MRt + θ)

t
.

(2.14)

Curvature scalar is related to the Hubble parameter according
to:

R = −6Ḣ − 12H2 → −6Ḣ . (2.15)

The last relation is valid in high frequency limit and for the
oscillating parts of H and R which presumably give dominant
contribution to the energy density.

Keeping this in mind we can rewrite action (2.1) as:

S(a) = 6m2
Pl

16πM2
R

∫
d4xa3

[
M2

R(Ḣ + 2H2) + Ḣ2
]

= 3m2
Pl

4πM2
R

∫
d4x a3

[
−M2

RH
2

2
+ Ḣ2

2

]
. (2.16)

The last equality is obtained through integration by parts.
Varying over the scalar field H we obtain the equation of

motion with the left hand side:

Ḧ + M2
RH = r.h.s., (2.17)

which is exactly the same as the r.h.s. of Eq. (2.4). This
equation has the oscillating solution multiplied by a slow
function of time, such as the presented above solution H ∼
sin(MRt + θ)/t .

Now we need to introduce a canonically normalized scalar
field  linearly connected with H for which the kinetic term
in the Lagrangian is equal to (∂)2/2:

 =
√

3

4π

mPl

MR
H. (2.18)

According to the standard prescription the energy density of
the scalar field  is

ρ = ̇2 + M2
R2

2
. (2.19)

Since, according to Eq. (2.15), in high frequency limit R =
−6Ḣ ∼ MR cos(MRt), Eq. (2.19) can be identically rewrit-
ten in terms of R as

ρR = m2
Pl(Ṙ

2 + M2
R R

2)

96πM4
R

= m2
Pl

6π t2 , (2.20)

where expression (2.5) has been used. This result coincides
with the expression for the total cosmological energy density
in spatially flat, matter dominated universe. This agreement
confirms the validity of our approach.

The presented equations are valid if the energy density of
matter remains smaller than the energy density of the scalaron
until it decays. Comparing Eqs. (2.8), (2.10), and (2.13) with
(2.20) we find that in all the cases tcr
 = 5/6, where tcr is the
time when the matter energy density, formally taken, is equal
to the scalaron energy density. So the used above equations
are not unreasonable. The scalaron completely decays at t =
1/
 (up to log-correction) and the cosmology turns into the
usual Friedmann one governed by the equations of General
Relativity (GR). Before that moment the universe expansion
was dominated by the scalaron.

If the primeval plasma is thermalized, the following rela-
tion between the cosmological time and the temperature is

123



Eur. Phys. J. C (2020) 80 :1047 Page 5 of 11 1047

valid:

ρan = 2.6 · 10−2α2
R
M3

R

t
= π2g∗

30
T 4, (2.21)

where subindex R at αR means that the coupling is taken
at the energies equal to the scalaron mass, since the energy
influx to the plasma is supplied by the scalaron decay, and
g∗ ≈ 100 is the number of relativistic species. Consequently,

tT 4 = 0.78

π2g∗
α2
RM

3
R ≡ C ≡ C0M

3
R (2.22)

with C0 = 5 · 10−7(αR/0.025)2.
Thermal equilibrium is established if the reaction rate is

larger than the Hubble expansion rate H = 2/(3t). The reac-
tion rate is determined by the cross-section of two-body reac-
tions between relativistic particles. The typical value of this
cross-section at high energies, E � m, is [23]:

σrel = 4πβα2

s

(
ln

s

4m2 + 1
)

, (2.23)

where β ∼ 10 is the number of the open reaction channels
and s = (p1+p2)

2 = 4E2 is the total energy of the scattering
particles in their center-of-mass frame, where E is the energy
of an individual particle.

Hence the reaction rate is


rel ≡ ṅ

n
= 〈σrelvnrel〉, (2.24)

where angular brackets mean averaging over thermal bath
with temperature T , nrel ≈ 0.1g∗T 3 (we do not distinguish
between bosons and fermions in the expression), v = 1 is
the particle velocity in the center-of-mass system.

We perform thermal averaging naively taking E = T in all
expressions so s → 4T 2, instead ofm2 we substitute the par-
ticle thermal mass in plasma, i.e. m2 → 4παT 2/3 [24–26].
Correspondingly we arrive at the following thermal equilib-
rium condition:

3

2
t
rel = 0.15πα2βg∗

(
ln

3

4πα
+ 1

)
T t > 1. (2.25)

Using Eq. (2.22), we find that equilibrium is established
at the temperatures below

Teq =
(

0.15πα2βg∗C0

)1/3
MR = 9.2 · 10−3MR . (2.26)

Here we took αR = 0.025 and α = 0.033.
The time corresponding to this temperature is equal to

teq = C/T 4
eq ≈ 70M−1

R , (2.27)

where C is defined in Eq. (2.22). Hence MRteq � 1, which
is sufficiently long time for efficient particle production.

Another essential temperature for our consideration, is the
temperature of the universe heating, when scalaron essen-
tially decayed and the expansion regime turned to the con-

ventional GR one. This temperature is determined by the
scalaron energy density at the moment t = 1/
an :

ρR = m2
Pl


2
an

6π
= π2g∗

30
T 4
h , (2.28)

so

Th = 3.2 · 10−3
√
MR/mPl MR = 5.1 · 10−6MR . (2.29)

3 X-particle production through the scalaron decay

There are two possible channels to produce massive stable
X-particles: first, directly through the scalaron decay into a
pair of X X̄ and another by inverse annihilation of relativistic
particles in plasma.

Firstly, let us consider the scalaron decay. The probability
of the scalaron decay into a pair of fermions is determined by
decay width (2.9) with the substitution MX instead of m f :


X = MRM2
X

24m2
Pl

. (3.1)

The branching ratio of this decay is equal to:

BR(R → X X̄) = 
X


an
≈ 1.6 · 102

(
MX

MR

)2

. (3.2)

The number density of X-particles created by the scalaron
decay only, but not by inverse annihilation of relativistic par-
ticles in plasma, is governed by the equation:

ṅX + 3HnX = 
XnR, (3.3)

where 
X is given by Eq. (3.1), nR = ρR/MR , and ρR is
defined in Eq. (2.20). So Eq. (3.3) turns into

ṅX + 3HnX = 1

24

M2
X

6π t2 . (3.4)

It is solved as

nX = 1

144π

M2
X

t
. (3.5)

The equations presented above are valid if the inverse decay
of the scalaron can be neglected. This approximation is true
if the produced particles are quickly thermalized down to the
temperatures much smaller than the scalaron mass.

We are interested in the ratio of nX to the number density
of relativistic species at the moment of the complete scalaron
decay when the temperature dropped down to Th (2.29) and
after which the universe came to the conventional Friedmann
cosmology and the ratio nX/nrel remained constant to the
present time. This ratio is equal to:

F ≡ nX

nrel
|T=Th =

[
0.04M2

X

6π th

]
×

[
π2g∗T 4

h

90Th

]−1
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= 2.3 · 10−3
(

0.025

αR

)2 (
MX

MR

)2

. (3.6)

Consequently, the energy density of X -particles in the present
day universe would be:

ρ
(0)
X = 412/cm−3MX F = ρDM ≈ 1keV/cm3. (3.7)

The last approximate equality in the r.h.s. is the condition
that the energy density of X-particles is equal to the observed
energy density of dark matter.

From this condition it follows that MX ≈ 107 GeV. For
larger masses ρ

(0)
X would be unacceptably larger than ρDM .

On the other hand, for such a small, or smaller MX , the prob-
ability of X-particle production through the inverse annihila-
tion would be too strong and would again lead to very large
energy density of X -particles, see the following section.

A possible way out of this “catch-22” is to find a mecha-
nism to suppress the scalaron decay into a pair of X-particles.
And it does exist. If X-particles are Majorana fermions, then
in this case particles and antiparticles are identical and so they
must be in antisymmetric state. Thus the decay of a scalar
field, scalaron, into a pair of identical fermions is forbidden
since the scalaron can produce a pair of identical particles in
symmetric state only.

4 Production of X-particles in thermal plasma

Here we turn to the X-production through the inverse anni-
hilation of relativistic particles in the thermal plasma. The
number density nX is governed by the Zeldovich equation:

ṅX + 3HnX = 〈σannv〉
(
n2
eq − n2

X

)
, (4.1)

where 〈σannv〉 is the thermally averaged annihilation cross-
section of X-particles and neq is their equilibrium number
density.

This equation was originally derived by Zeldovich in
1965 [4], and in 1977 it was applied to freezing of massive
stable neutrinos in the papers [5,6]. After that it was unjustly
named as Lee-Weinberg equation.

The thermally averaged annihilation cross-section of non-
relativistic X-particles, which enters Eq. (4.1), for our case
can be taken as

〈σannv〉 = πα2βann

M2
X

T

MX
, (4.2)

where the last factor came from thermal averaging of the
velocity squared of X-particles, equal to 〈v2〉 = T/MX ,
which appears because the annihilation of Majorana fermions
proceeds in P-wave. We take the coupling constant at the
energy scale around MX equal to α = 0.033 and the number
of the annihilation channels βann = 10. This expression is
only an order of magnitude. The exact form depends upon

particle spins, the form of the interaction, and may contain
the statistical factor 1/n!, if there participate n identical par-
ticles. In what follows we neglect these subtleties.

The equilibrium distribution of non-relativistic X-particles
has the form:

neq = gs

(
MXT

2π

)3/2

exp

(
−MX

T

)

= gs M
3
X (2πy)−3/2 exp(−y), (4.3)

where y = MX/T and gs is the number of spin states of
X-particles. The non-relativistic approximation is justified if
MX > Teq ≈ MR/100 = 3 · 1011GeV, see Eq. (2.26).

Equation (4.1) will be solved with the initial condition
nX (tin) = 0. This condition is essentially different from the
solution of this equation in the canonical case, when it is
assumed that initially nX = neq and in the course of the
evolution nX becomes much larger than neq , reaching the so
called frozen density. As we see in what follows, for certain
values of the parameters a similar situation can be realized,
when nX approaches the equilibrium value and freezes at
much larger value. The other limit when nX always remains
smaller than neq is also possible.

For better insight into the problem we first make simple
analytic estimates of the solution when nX � neq and after
that solve exact Eq. (4.1) numerically.

In the limit nX � neq Eq. (4.1) is trivially integrated:

nX0(y) = 4πα2βanng2
s

(2π)3

C0M3
R

y8

∫ y

yin
dy1y

7
1e

−2y1

= 5 · 10−7 α2βanng2
s

2π2

( αR

0.025

)2
M3

R

∫ 1

yin/y
dzz7e−2zy

(4.4)

where the subindex “0” means that the solution is valid for
nX � neq , y = MX/T and we have used Eq. (2.22) and the
expression for C0 below this equation.

For the initial temperature we take Tin = 6 · 10−3MR ,
according to Eq. (2.26), and T f in = Th = 5.1 · 10−6MR

(2.29). Correspondingly yin = 1.7·102MX/MR , and y f in =
2 · 105MX/MR and so y f in/yin ≈ 103.

To check validity of this solution we have to compare
nX0(y) to neq (4.3):

F2(y) ≡ nX0(y)

neq
= 5

√
2 · 10−7 α2βanngs√

π

( αR

0.025

)2
ey y3/2

∫ 1

yin/y
dzz7e−2zy

= 8.7 · 10−9
(
MR

MX

)3

ey y3/2
∫ 1

yin/y
dzz7e−2zy, (4.5)

where we have taken gs = 2, βann = 10 and lastly, according
to the line below Eq. (2.26), α = 0.033 and αR = 0.025.
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Fig. 2 Log of ratio of the calculated number density of X -particles to
the equilibrium number density (4.5) calculated in the limit nX � neq ;
left panel: yin = 0.1 and right panel: yin = 5

The ratio F2(y) is depicted in Figs. 2, 3 as function of y for
different values of yin . The ratio remains smaller than unity
for sufficiently small y < ymax = 50 − 150 depending upon
yin . If y f in < ymax , the assumption nX � neq is justified
and the solution (4.4) is a good approximation to the exact
solution. In the opposite case, when y f in > ymax , we have
to solve Eq. (4.1) numerically.

To solve the Eq. (4.1) it is convenient to introduce the new
function according to:

nX = gs

(
ain
a(t)

)3

M3
X z(t) = gsM

3
X

(
Tin
T

)−8

z, (4.6)

where a(t) is the cosmological scale factor and ain is its
initial value at some time t = tin , when X -particles became
non-relativistic. In terms of z, Eq. (4.1) is reduced to:

ż = 〈σannv〉M3
X

(ain
a

)3 (
z2
eq − z2

)
. (4.7)

Next, let us change the variables from t to y = MX/T .
Evidently ẏ = −y(Ṫ /T ). Using time–temperature relation
(2.22), we find

dz

dt
= M4

X

4C0M3
R y3

dz

dy
. (4.8)

Fig. 3 Log of the ratio of the calculated number density of X -particles
to the equilibrium number density (4.5) calculated in the limit nX �
neq ; left panel: yin = 20 and right panel: yin = 50

Keeping in mind that

(ain
a

)3 =
(
tin
t

)2

=
(
yin
y

)8

, (4.9)

we find finally:

dz

dy
= 4π gsC0α

2βann μ3 y8
in

y6

(
y13

8π3y16
in e

2y
− z2

)
, (4.10)

where μ = MR/MX .
With the chosen above values of αR and α, see the discus-

sion after Eq. (4.2), we find that the value of the coefficient
in the r.h.s. of Eq. (4.10) is 4πgsC0α

2βann = 1.4 · 10−7.
Numerical solution of this equation indicates that z(y)

tends asymptotically at large y to a constant value zasym . The
energy density of X-particles is expressed through zasym as
follows. We assume that below T = Th the ratio of number
density of X-particles to the number density of relativistic
particles remains constant and hence is equal to the ratio
nX/nCMB at the present time, where nCMB = 412/cm3

is the contemporary number density of photons in cosmic
microwave background radiation. The number density of X -
particles is expressed through z according to Eq. (4.6). Thus
the asymptotic ratio of the number densities of X to the num-
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ber density of relativistic particles is

Fasym = nX (Th)

nrel(Th)
=

[
M3

X (yin/yh)
8 zasym

]
·
[
π2g∗T 3

h /90
]−1

.

(4.11)

We assume that yin ≈ 102/μ, y f in = yh = 2 · 105/μ,
according to the discussion after Eq. (4.4), and so y f in/yin ≈
2 · 103. Hence the energy density of X-particles today would
be equal to:

ρ
(0)
X = (412/cm3)MX Fasym = 3 · 109μ−4zasym

keV

cm3 ,

(4.12)

where zasym is the asymptotic value of z(y) at large y but
still smaller than yh . The value of zasym can be found from
the numerical solution of Eq. (4.10). However, the solution
demonstrates surprising feature: its derivative changes sign
at y � 10, when nX � neq , as it is seen from the value of F2

presented in Figs. 2 and 3. Probably this evidently incorrect
result for z(y) originated from a very small coefficient in
front of the brackets in Eq. (4.10).

The problem can be avoided if we introduce the new func-
tion u(y) according to:

z(y) = u(y)

(2π)3/2y3/2
in exp(yin)

. (4.13)

In terms of u(y) kinetic equation takes the form:

du

dy
= 1.4 · 10−7 μ3 y13/2

in

(2π)3/2y6 exp(yin)

[(
y

yin

)13

e2(yin−y) − u2

]
.

(4.14)

The numerical solution of this equation does not show any
pathological features and may be trusted, so we express
the contemporary energy of dark matter made of stable X -
particles through the asymptotic value of u(y) as

ρ
(0)
X = 3 · 109μ−4uasym

(2π)3/2y3/2
in exp(yin)

keV

cm3 . (4.15)

Remind that yin ≈ 100/μ and presumably μ > 1.
The asymptotic value uasym is found from the numerical

solution of Eq. (4.14) and is depicted in Figs. 4 and 5 for
different values of μ.

The logarithm of the energy density of X -particles (4.15)
with respect to the observed energy density of dark matter
as a function of MX is presented in Fig. 6. If MX ≈ 5 · 1012

GeV, X-particles may be viable candidates for the carriers of
the cosmological dark matter.

Fig. 4 Evolution of u(y) for μ = 100 (left) and μ = 50 (right)

Fig. 5 Evolution of u(y) for μ = 30 (left) and μ = 20 (right)
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Fig. 6 Log of the ratio of the energy density of X -particles (4.15) to the
observed energy density of dark matter as a function of μ = MR/MX

5 Possible observations

This section is outside of the scope of our paper. It contains a
discussion of some rather speculative possibilities of obser-
vation of the products of X-particle slow decay or enhanced
annihilation in ultra high energy cosmic rays. More detailed
study of the phenomena considered below demand separate
work and the effects may be very weak or even non-existing.
So the reader can skip this short section.

There are two possibilities to make X-particles visible:
firstly, due to possible high density of X X̄ -systems and, sec-
ondly, because of hypothetical instability of X -particles.

According to results of this and our previous papers [9,11]
the mass of dark matter particles, with the interaction strength
typical for supersymmetric ones, can be in the range from 106

to 1013 GeV. It is tempting to find if and how they could be
observed, except for their gravitational effects on galactic
and cosmological scales.

The average cosmological energy/mass density of X -
particles in the universe is approximately 1 keV/cm3, while
in galaxies it is about 1 GeV/cm3. So their number densities
should respectively be:

ncosm = 10−12M−1
6 /cm3, ngal = 10−6M−1

6 /cm3, (5.1)

where M6 = MX/(106GeV).
The characteristic annihilation time in a galaxy is:

τ anngal = 1/
[
σannvngal

] ≈ 1037M3
6 s, (5.2)

where we have taken σannv ≈ 10−2/M2
X .

The total energy flux from all annihilations in the Galaxy
of the size Rgal ≈ 10kpc = 1022cm would be

Lgal = ngal E Rgal/τ
ann
gal ≈ 10−15M−3

6 GeV/cm2/s

= 3 · 102M−3
6 GeV/km2/year, (5.3)

with characteristic energy of the order of E ∼ MX .
The annihilation would be strongly enhanced in clus-

ters (clumps) of dark matter [27], especially in neutralino

stars [28]. Based on the latter reference, for the anni-
hilation cross-section σannv = 4 · 10−42M−2

6 cm2 ≈
10−31M−2

6 cm3/s, we can conclude that the observation of
X X̄ -annihilation from neutralino stars is not unrealistic.

Due to their huge mass relic X-particles might form grav-
itationally bound states and then annihilate like positronium.
Instead of fine structure constant α = 1/137 we must use
the gravitational coupling constant αG = (MX/mPl)

2. In
complete analogy with para-positronium decay the lifetime
of such bound state with respect to annihilation would be

τG ∼ (α5
GMX )−1 ≈ 5 · 1023M−11

13 s, (5.4)

where M13 = MX/(1013 GeV).
The flux of ultra-high energy cosmic rays (UHECR) with

energy ∼ 1021eV produced by the population of the bound
states of X X̄ , say, from the sphere of the radius of R = 1
Gpc would be:

F = ngal R f/τG = 2 · 105 f M10
13 cm−2s−1, (5.5)

where f is the fraction of bound states with respect to total
number of X -particles.

Comparing this result with the data presented in Ref. [29]
we can conclude that the flux of the UHECR produced in
the decay of X X̄ bound states would agree with the data if
f ∼ 10−11.

Calculation of f is subject to many uncertainties and it is
not the aim of the present work. It will be done elsewhere.

X-particle would be observable if they are unstable. Heavy
X -particles would decay through formation of virtual black
holes, according to the Zeldovich mechanism [30,31]. If
X-particles are composite states of three fundamental con-
stituents, as proton made of three quarks, their life-time with
respect to virtual BH stimulated decay would be

τX,BH ∼ m4
Pl

M5
X

∼ 10−13s

(
1013GeV

MX

)5

. (5.6)

To make the time τX,BH larger than the universe age tU ≈
4·1017 s we need MX < 107 GeV. In this case the products of
the decays of X-particles with such masses could be observ-
able in the flux of the cosmic rays with energy somewhat
below 107 GeV.

The life-time may be further suppressed if we apply the
conjecture of Ref. [32] which leads to a strong suppression of
the decay through virtual black holes for spinning or electri-
cally charged X-particles. However, this suppression does not
operate for spinless neutral particles. Moreover, it would not
be efficient enough to sufficiently suppress the decay proba-
bility of the superheavy particles of dark matter with masses
of the order of 1013 GeV. The decay rate may be strongly
diminished if X -particles consist of more than three funda-
mental constituents. For example, if X-particles consist of
six fundamental constituents, then the decay life-time would
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be

τ ′
X,BH ∼ m10

Pl

M11
X

∼ 1023s

(
1013GeV

MX

)5

. (5.7)

This life-time is safely above the universe age tU ≈
4 · 1017 s.

6 Conclusion and discussion

There is general agreement that the conventional Friedmann
cosmology is incompatible with the existence of stable par-
ticles having interaction strength typical for supersymmetry
and heavier than several TeV. A possible way to save life
of such particles, we call them here X -particles, may be a
modification of the standard cosmological expansion law in
such a way that the density of such heavy relics would be
significantly reduced. A natural way to realize such reduc-
tion is presented by the popular now Starobinsky inflationary
model [113]. If the epoch of the domination of the curvature
oscillations (the scalaron domination) lasted after freezing
of massive species, their density with respect to the plasma
entropy could be noticeably suppressed by production of
radiation from the scalaron decay.

The concrete range of the allowed mass values depends
upon the dominant decay mode of the scalaron. If the scalaron
is minimally coupled to scalar particles XS , the decay ampli-
tude does not depend upon the scalar particle mass and leads
to too high energy density of X -particles, if MXS � MR .
An acceptably low density of XS can be achieved if MXS �
MR ≈ 3 · 1013 GeV.

If X-scalars are conformally coupled to curvature or X-
particles are fermions, then the probability of the scalaron
decay is proportional to M2

X . For sufficiently small MX the
production of X -particles would be quite weak, so that their
cosmological energy density would be close to the observed
density of dark matter if MX ∼ 106 GeV [11].

There is another complication due to conformal anomaly,
which leads to efficient decay of scalaron into massless or
light gauge bosons. There are some versions of supersym-
metric theories where conformal anomaly is absent, which
were considered in Ref. [11]. In the present work we have not
impose this restriction and studied a model with full strength
conformal anomaly. In this case the thermalization of the cos-
mological plasma started from the creation of gauge bosons
and the reactions between them created all other particle
species.

There are two possible processes through which X -
particles could be produced: direct decay of the scalaron into
a pair of X̄ X and the thermal production of X’s in plasma.
To restrict the density of X -particles produced by the direct
decay the observed value MX should be below 107 GeV. But
in this case the thermal production of X’s would be too strong.

We can resolve this inconsistency if the direct decay of the
scalaron into X-particles is suppressed and due to that a larger
MX is allowed, so the thermal production would not be dan-
gerous. The direct decay can be very strongly suppressed if
X-particles are Majorana fermions, which cannot be created
by a scalar field in the lowest order of perturbation theory. It
opens the possibility for X-particles to make proper amount
of dark matter, if their mass is about 5 · 1012 GeV.

Thus a supersymmetric type of dark matter particles seems
to be possible if their mass is quite high from 106 up to
5 · 1012 GeV, or even higher than the scalaron mass, MR =
3 ·1013 GeV. There is no chance to discover these particles in
accelerator experiments in foreseeable future, but they may
be observable through cosmic rays from their annihilations
in high density clumps of dark matter, or from annihilation
in their gravitationally bound two-body states, or through
the products of their decays, since they naturally should be
unstable.
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