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Abstract Among the higher curvature gravities, the most
extensively studied theory is the so-called Einstein–Gauss–
Bonnet (EGB) gravity, whose Lagrangian contains Einstein
term with the GB combination of quadratic curvature terms,
and the GB term yields nontrivial gravitational dynamics
in D ≥ 5. Recently there has been a surge of interest in
regularizing, a D → 4 limit of, the EGB gravity, and the
resulting regularized 4D EGB gravity valid in 4D. We con-
sider gravitational lensing by Charged black holes in the 4D
EGB gravity theory to calculate the light deflection coeffi-
cients in strong-field limits ā and b̄, while former increases
with increasing GB parameter α and charge q, later decrease.
We also find a decrease in the deflection angle αD , angular
position θ∞ decreases more slowly and impact parameter
for photon orbits um more quickly, but angular separation s
increases more rapidly with α and charge q. We compare our
results with those for analogous black holes in General Rel-
ativity (GR) and also the formalism is applied to discuss the
astrophysical consequences in the case of the supermassive
black holes Sgr A* and M87*.

1 Introduction

General Relativity (GR) not only predicts the existence of
black holes but also a mean to observe them through the
gravitational impact on the electromagnetic radiation mov-
ing in the near vicinity of black holes. The advent of horizon-
scale observations of astrophysical black holes [1–4] offer an
unprecedented opportunity to understand the intricate details
of photon geodesics in the black hole spacetimes [5,6], which
has become of physical relevance in present-day astronomy.
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Photons passing in the gravitational field of a compact astro-
physical object get to deviate from their original path and
the phenomenon is known as the gravitational lensing [7–
9]. Though the theory of gravitational lensing was primar-
ily developed in the weak-field thin-lens approximation for
small deflection angles [10–13], but in black hole space-
times, where photons can travel close to the gravitational
radius, a full treatment of lensing theory valid even in strong-
field gravity regime is required. Darwin [9] led the study of
strong gravitational lensing theory, and later Virbhadra and
Ellis [14] numerically calculated the deflection angle due to
the Schwarzschild black hole in an asymptotically flat back-
ground. Using an alternative formulation, Frittelli, Kling and
Newman [15] analytically obtained an exact lens equation. A
significant interest in the strong gravitational lensing devel-
oped by the Bozza et al. [16], who gave a general and sys-
tematic investigation of light bending in the strong-gravity
region, and exploiting the source-lens-observer geometry
obtained the analytical expressions for the source’s images
positions.

One of the generic features of strong gravitational lensing
is the logarithmic divergence of the deflection angle in the
impact parameter and the existence of relativistic images pro-
duced due to multiple winding of light around the black hole
before emanating in observer’s direction [17]. The strong
gravitational lensing relevance for predicting the strong-field
features of gravity, testing and comparing various theories
of gravity in the strong-field regime, estimating black hole
parameters, and deducing nature of any matter distributions
in black hole background has resulted in a vast, compre-
hensive literature [18–42]. Also, the gravitational lensing for
various modifications of Schwarzschild geometry arising due
to modified gravities, e.g., regular black holes [43,44], mas-
sive gravity black holes [45], f (R) black holes [46,47] and
Einstein–Gauss–Bonnet (EGB) gravity models [48,49] have
been investigated.
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EGB gravity theory is a natural extension of GR to higher
dimensions D ≥ 5, in which Lagrangian density admits
quadratic corrections constructed from the curvature tensors
invariants [50,51]. The EGB gravity, which naturally appears
in the low-energy limit of string theory [52], preserves the
degrees of freedom and is free from gravitational instabil-
ities and thereby leads to the ghost-free nontrivial gravita-
tional self-interactions [53]. Due to much broader theoretical
setup and consistency with the available astrophysical data,
the EGB gravity is subject of intense research in varieties of
context over the past decades [54–66].

The Gauss–Bonnet (GB) correction to the Einstein–
Hilbert action is a topological invariant in D = 4 and there-
fore does not make any contribution to the gravitational
dynamics. This issue of 4D regularization of EGB gravity is
revived recently by Glavan and Lin [67], who by re-scaling
the GB coupling parameter as α → α/(D − 4) defined the
4D theory as the limit of D → 4 at the level of field’s equa-
tion. Tomozawa [68] earlier proposed this kind of regulariza-
tion as quantum corrections to Einstein gravity, and they also
found the spherically symmetric black hole solution. Later
Cognola et al. [69] gave a simplified approach for Tomozawa
[68] formulation, which mimic quantum corrections due to a
GB invariant within a classical Lagrangian formalism. Fur-
ther, the static and spherically symmetric black hole solution
[67–69] of 4D EGB gravity is identical as those found in
semi-classical Einstein’s equations with conformal anomaly
[70,71], regularized Lovelock gravity [72,73], and the Horn-
deski scalar–tensor theory [74].

Hence, the 4D EGB gravity witnessed significant atten-
tions that includes finding black hole solutions and investigat-
ing their properties [75,84,85], Vaidya-like solution [86,87],
black holes coupled with magnetic charge [88–92], and also
rotating black holes [93,94]. Other probes include gravita-
tional lensing [95–97], black hole shadows, [93,94,98,99],
derivation of regularized field equations [100], Morris-
Thorne-like wormholes [101], and black hole thermody-
namics [102,103]. Nonetheless, several questions [104–108]
have been raised on the procedure adapted in [67], and also
some remedies have been suggested to overcome [72,74,105,
109–112]. However, it turns out that the spherically symmet-
ric 4D black hole solution found in [67,69] remains valid
for these regularized theories [72,74,100,105,109], but may
not beyond spherical symmetry [105]. It was argued in [67],
without an explicit proof, that a physical observer could never
reach the curvature singularity of 4D EGB black hole given
the repulsive effect of gravity at short distances. However,
later considering the geodesics equations, this claim was
refuted by Arrechea et al. [112]. The infalling observer start-
ing at rest will reach the singularity with zero velocity as
attractive and repulsive effects compensate each other along
the trajectory of the observer [112]. In this paper, we would
not address the issues of validity of the 4D regularization pro-

cedure or an entirely consistent theory in four dimensions. We
will be investigating the static spherically symmetric black
hole solution, which is seemingly identical in 4D EGB reg-
ularized approaches.

Motivated by this, we consider the gravitational lensing by
a Charged black hole in regularized 4D EGB gravity. Fol-
lowing the prescription of Bozza et al. [16], we determine
the strong deflection coefficients and the resulting deflection
angle, which becomes unboundedly large for smaller impact
parameter values. We investigate the effect of charge on posi-
tions and magnifications of the source’s relativistic images.
We also obtained the corrections in the deflection angle due
to the GB coupling parameter in the supermassive black hole
contexts.

The rest of the paper is organized as follows. In the Sect. 2,
we discuss the static spherically symmetric Charged black
hole in 4D EGB gravity. Formalism for gravitational bend-
ing of light in strong-field limit is setup in Sect. 3, whereas
strong-lensing observables, numerical estimations of deflec-
tion angle, and image positions and magnifications are pre-
sented in Sect. 4. Lensing by supermassive black holes Sgr
A* and M87* is discussed in Sect. 5. Finally, we summarize
our main findings in Sect. 6.

2 Charged black holes in 4D EGB gravity

The EGB gravity action with re-scaled coupling constant
α/(D − 4) and minimally coupled electromagnetic field in
D dimensional spacetime reads [84]

S = 1

2

∫
dDx

√−g[R + α

D − 4
G − FμνF

μν], (1)

with G is the GB term defined by

G = R2 − 4RμνR
μν + Rμνρσ R

μνρσ , (2)

g is the determinant of metric tensor gμν , R is the Ricci
scalar, and Fμν = ∂μAν − ∂ν Aμ is the Maxwell tensor with
Aμ being the gauge potential. On varying the action (1) with
respect to the metric tensor gμν , we obtain the field equations

Gμν + α

D − 4
Hμν = Tμν ≡ 2

(
Fμσ Fν

σ − 1

4
gμνFαβF

αβ
)
,

(3)

where Gμν = Rμν − 1
2 Rgμν is the Einstein’s tensor, and Hμν

is the Lanczos tensor [50] and is given by

Hμν = 2(RRμν − 2Rμσ R
σ
ν − 2RμσνρR

σρ − Rμσρβ R
σρβ
ν )

−1

2
gμνG , (4)
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and Tμν is the energy-momentum tensor for the electromag-
netic field. Considering a static and spherically symmetric
D-dimensional metric anstaz

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2d	2

D−2, (5)

and where d	D−2 is the metric of a (D − 2)-dimensional
spherical surface. Solving the field equations (3), in the limit
D → 4, yields a solution [84]

f±(r) = 1 + r2

2α

⎛
⎝1 ±

√
1 + 4α

(
2M

r3 − Q2

r4

)⎞
⎠ . (6)

Here, M and Q can be identified, respectively, as the mass and
charge parameters of the black hole. In the limit of Q = 0,
metric (5) with (6) corresponds to the static 4D EGB black
hole [67]. The metric (5) is not singularity free as the cur-
vature invariants diverge at r = 0. A freely-falling test par-
ticle with zero angular momentum falls into the singularity
within a finite proper time, indeed the effective potential iden-
tically vanishes for the radially moving photon (cf. Eq. 13).
In addition, it has also been proven for uncharged 4D EGB
black hole that central curvature singularity can be reached
by radial freely-falling observers within a finite proper time
[112]. The Equation (6) corresponds to the two branches of
solutions depending on the choice of “±”, such that at large
distances Eq. (6) reduces to

f−(r) = 1 − 2M

r
+ Q2

r2 + O
(

1

r4

)
,

f+(r) = 1 + 2M

r
− Q2

r2 + r2

α
+ O

(
1

r4

)
. (7)

In the vanishing limit of α only -ve branch smoothly recov-
ers the Reissner–Nordstrom black hole [84]. Thus, we will
limit our discussions for -ve branch only. The effect of GB
coupling parameter faded at large distances, as the Charged
black holes in 4D EGB gravity (6) smoothly retrieve the
Reissner–Nordstrom black hole (α = 0). However, one can
expect considerable departure in a strong-field regime where
usually full features of GB corrections come in to play. The
Charged black holes in 4D EGB gravity are characterized
uniquely by mass M , charge Q, and GB parameter α.

To begin a discussion on the strong gravitational lensing,
we adimensionlise the Charged black hole metric of EGB
gravity (5) in terms of Schwarzschild radius 2M by defining
x = r/2M , T = t/2M , α̃ = α/M2, and q = Q/2M . Then
we have

ds̃2 = (2M)−2ds2 = −A(x)dT 2 + 1

A(x)
dx2

+ C(x)(dθ2 + sin2 θ dφ2), (8)

Fig. 1 The parameter space (q, α̃) for the existence of black hole hori-
zons; black solid line corresponds to the values of parameters for which
extremal black hole exists

where

A(x) = 1+2x2

α̃

⎛
⎝1 ±

√
1 + α̃

(
1

x3 − q2

x4

)⎞
⎠ , C(x) = x2.

(9)

It is clear that metric (8) possess a coordinate singularity at

A(x) = 0 ⇒ 4α̃x2 − 4α̃x + α̃(α̃ + 4q2) = 0, (10)

which admits up to two real positive roots given by

x± = 1

2

(
1 ±

√
1 − 4q2 − α̃

)
. (11)

The two roots x± correspond to the radii of black hole event
(outer) horizon (x+) and Cauchy (inner) horizon (x−). It is
clear from Eq. (11) that for the existence of black hole, the
allowed values for α̃ are given by

α̃ ≤ 1 − 4q2 for 0 ≤ q ≤ 0.5. (12)

The GB coupling parameter is related with the inverse string
tension and hence is a positive entity. For a given value of q,
there always exists an extremal value of α̃ = α̃e = 1 − 4q2,
for which black hole possess degenerate horizons, i.e., x− =
x+ = xe, such that α̃ < α̃e leads to two distinct horizons and
α̃ > α̃e leads to no-horizons (cf. Figs. 1 and 2). Similarly, one

can find the extremal value of qe = √
1 − α̃/2, for a given

value of α̃. In Fig. 1, the parameter space (q, α̃) is shown,
the black curve comprises the extremal values of the param-
eters which lead to the existence of extremal black holes.
The behaviour of horizon radii with GB coupling parameter
α̃ and black hole charge q is shown in Fig. 3. Event horizon
radius decreases whereas Cauchy horizon radius increases
with increasing q or α̃, such that Charged black holes of 4D
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Fig. 2 (Upper panel) Plot showing the horizons for various values of GB coupling parameter α̃ and fixed values of q. (Lower panel) Plot showing
the horizons for different values of q and fixed α̃. The black solid lines correspond to the extremal black holes
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Fig. 3 The behavior of event horizon radii x+ (solid black line), Cauchy horizon radii x− (dashed red line), and photon sphere radii xm (dashed
blue line) with α̃ and q
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EGB gravity always possess smaller event horizon as com-
pared to Schwarzschild and Reissner–Nordstrom black holes.
The bounds on the GB parameter have also been obtained in
the context of gravitational instability [75–83,99,113] and
with the aid of recent M87* black hole shadow observations
[93,94].

3 Light deflection angle

In this section, we investigate the strong gravitational lensing
in the Charged black holes of 4D EGB gravity to compute the
deflection angles, location of relativistic images, their magni-
fications and the effect of α̃ and q on them. We consider that
light source S and observer O are sufficiently far from the
black hole L , which acts as a lens, and they are nearly aligned.
The light ray emanating from the source travel in a straight
path towards the black and only when it encounters the black
hole gravitational field it suffers from the deflection (cf. Fig.
4). The amount of deflection suffered by light depends on
the impact parameter u and distance of minimum approach
x0, at which light suffers deviation and starts outward jour-
ney toward the observer [114]. Consider the propagation of
light on the equatorial plane (θ = π/2), as due to spherical
symmetry, the whole trajectory of the photon is limited on
the same plane. The projection of photon four-momentum
along the Killing vectors of isometries is conserved quanti-
ties, namely the energy E = −pμξ

μ

(t) and angular momen-

tum L = pμξ
μ

(φ) are constant along the geodesics, where ξ
μ

(t)

and ξ
μ

(φ) are, respectively, the Killing vectors due to time-
translational and rotational invariance [115].

Photons follow the null geodesics of metric (8), ds̃2 = 0,
which yields

(
dx

dτ

)2

≡ ẋ2 = E2 − L2A(x)

C(x)
, (13)

where τ is the affine parameter along the geodesics. Photons
traversing close to the black hole, experience radial turning
points ẋ = 0 and follows the unstable circular orbits, whose
radii xm can be obtained from

A′(x)
A(x)

= C ′(x)
C(x)

, (14)

which reduces to

4x4 − 9x2 + (24q2 + 4α̃)x − 4q2α̃ − 16q4 = 0 (15)

Here prime corresponds to the derivative with respect to the x
and the Eq. (15) admits at least one positive solution and then
the largest real root is defined as the radius of the unstable cir-
cular photon orbits (cf. Fig. 3). A small radial perturbations
drive these photons into the black hole or toward spatial infin-
ity [115]. Due to spherical symmetry, these orbits generate

Fig. 4 Schematic for geometrical configuration of gravitational lens-
ing

a photon sphere around the black hole. The radii of photon
orbits for Charged black holes of 4D EGB gravity decrease
with increasing q and α̃ (cf. Fig. 3).

Further, at the distance of minimum approach, we have
[114]

dx

dτ
= 0, ⇒ u ≡ L

E =
√
C(x0)

A(x0)
. (16)

Following the method developed by Bozza [17], the total
deflection angle suffered by the light in its journey from
source to observer is given by

αD(x0) = I (x0) − π, (17)

where

I (x0) = 2
∫ ∞

x0

dφ

dx
dx =

∫ ∞

x0

2 dx
√
A(x)C(x)

√
C(x)A(x0)
C(x0)A(x) − 1

,

(18)

The deflection angle increases as distance of minimum
approach x0 decreases and shows divergence as it approaches
the photon sphere xm [17]. In the strong deflection limit, we
can expand the deflection angle near the photon sphere, for
the purpose we define a new variable z as [17]

z = A(x) − A(x0)

1 − A(x0)
, (19)
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the integral (17) can be re-written as

I (x0) =
∫ 1

0
R(z, x0) f (z, x0)dz, (20)

with the functions

R(z, x0) = 2
√
C(x0)(1 − A(x0))

C(x)A′(x)
, (21)

f (z, x0) = 1√
A(x0) − A(x)

C(x)C(x0)

, (22)

where x = A−1[(1 − A(x0))z + A(x0)]. Making a Taylor
series expansion of the function in Eq. (22), we get

f0(z, x0) = 1√
φ(x0)z + γ (x0)z2

(23)

where

φ(x0) = 1 − A(x0)

A′(x0)C(x0)

[
C ′(x0)A(x0) − A′(x0)C(x0)

]
, (24)

γ (x0) = (1 − A(x0))
2

2A′(x0)3C(x0)2

[
2C(x0)C

′(x0)A
′(x0)

2

+ A(x0)A
′(x0)C(x0)C

′′(x0) − C(x0)C
′(x0)

A(x0)A
′′(x0) − 2C ′(x0)

2A(x0)A
′(x0)

]
. (25)

The integrand term f (z, x0) diverges for x0 → xm lead-
ing to diverging deflection angle in Eq. (20). Therefore we
made Taylor series expansion to identify this diverging term
and order of divergence, so that we can subtract this term
from I (x0) in Eq. (20) to get the regular term IR(x0) in the
strong-field regime. R(z, x0) is regular for all values of z,
however, for x0 = xm , we have φ(x0) = 0 and f0 ≈ 1/z,
which diverge as z → 0. Following the above definitions,
the diverging part in the integral Eq. (20) can be identified as
[17]

ID(x0) =
∫ 1

0
R(0, xm) f0(z, x0)dz, (26)

whereas the regular part IR(x0) is

IR(x0) = I (x0) − ID(x0)

=
∫ 1

0

(
R(z, x0) f (z, x0) − R(0, xm) f0(z, x0)

)
dz.

(27)

such that ID(x0) has logarithmic divergence and IR(x0) is
regular with divergence subtracted from the complete integral
(20). The deflection angle can be written in terms of x0 as
[17]

αD(x0) = −a log
( x0

xm
− 1

)
+ b + O(x0 − xm), (28)

where

a = R(0, xm)√
γ (xm)

, (29)

b = −π + IR(xm) + a log

(
2(1 − A(xm)

A′(xm).xm

)
, (30)

The Eq. (28) is coordinate dependent, however, it can be
written in terms of coordinate independent variable, impact
parameter u, as follows

αD(u) = −ā log
( u

um
− 1

)
+ b̄ + O(u − um), (31)

where

ā = a

2
, b̄ = −π + IR(xm) + ā log

(2γ (xm)

A(xm)

)
, (32)

We obtain the strong deflection coefficients as

ā = 4
(
(xm − q2)α̃ − x4

m(c1 − 1)
)

(c1 − 1)(−α̃ + 4x3
m(c1 − 1))Pm

,

b̄ = −π + IR(xm) + ā log (2δ) , (33)

Pm = 1√
c3

1

(
α̃ − 2x2

m(c1 − 1)
)
(

4x6
mc1 + x2

m α̃(−9 + 4xmc1)

− 4q2xm(2x3
m − 4α̃ + xm α̃c1) − 8q4α̃

)1/2
, (34)

δ = (c1 − 1)2

4x2
m A(xm)

P2
m, (35)

c1 =
√

1 + (xm − q2)ã

x4
0

where ā and b̄ are called the strong deflection limit coeffi-
cients. In Fig. 5, we plotted the impact parameter um for the
photons moving on the unstable circular orbits around black
hole as a functions of charge parameter q and GB coupling
parameter α̃. It is clear that um decrease with q and α̃. The
behavior of lensing coefficients are shown in Fig. 6, which in
the limits of α̃ → 0 and q = 0, smoothly retain the values for
the Schwarzschild black hole, viz., ā = 1 and b̄ = −0.4002
[16,17]. Coefficient ā increases whereas b̄ decreases with
increasing q or α. The resulting deflection angle αD(u) is
shown as a function of impact parameter u for various values
of q and α̃ in Fig. 7. For a fixed value of u, deflection angle
decreases with increasing q or α̃, therefore, the deflection
angle is higher for Schwarzschild and Reissner–Nordstrom
black holes than those for the Charged black holes of 4D EGB
gravity. Figure 7 infers that the αD(u) increases as impact
parameter u approaches the um and becomes unboundedly
large for u = um .
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Fig. 5 Plot showing the impact parameter um for photon circular orbits with q and α̃

Fig. 6 Plot showing the behavior of strong lensing coefficients ā and b̄ as a functions of α̃ (Left Panel) and q (Right Panel)

4 Strong lensing observables

The deflection angle obtained in Eq. (31) is directly related
to the positions and magnification of the relativistic images,
which is given by lens equation [39–41]

DOS tan β = DOL sin θ − DLS sin(α − θ)

cos(α − θ)
], (36)

where θ and β, respectively, are the angular separations of
image and source from the black hole as shown in Fig. 4. The
DLS is the distance between the source and black hole and
the distances from the observer to the source and black hole
are respectively DOS and DOL ; all distances are expressed in
terms of the Schwarzschild radius xs = Rs/2M . For nearly
perfect alignment of source, black hole and observer, viz.

small values of θ and β, Eq. (36) reduces to the following
form [39–41]

β = θ − DLS

DOS
�αn . (37)

In case of strong lensing, photons complete multiple circu-
lar orbits around black hole before escaping toward observer,
therefore αD can be replaced by 2nπ +�αn in Eq. (36), with
n ∈ N and 0 < �αn � 1.

Now, making a Taylor series expansion of the deflection
angle about (θ0

n ) to the first order, as

αD(θ) = αD(θ0
n ) + ∂αD(θ)

∂θ

∣∣∣∣
θ0
n

(θ − θ0
n ) + O(θ − θ0

n ), (38)
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Fig. 7 Plot showing the variation of deflection as a functions impact parameter u for different values of α̃ and q. The points on the horizontal axis
correspond to the impact parameter u = um at which deflection angle diverges

Fig. 8 The outermost relativistic Einstein ring as seen in the observers
sky. The blue ring corresponds for Sgr A* and orange for the M87*

Using the deflection angle Eq. (31), Eq. (38) reduces to

�αn = − āDOL

umen
�θn . (39)

The angular separation between the lens and nth relativistic
images now can be written as

θn 
 θ0
n + �θn, (40)

where

θ0
n = um

DOL
(1 + en),

�θn = DOS

DLS

umen
DOLā

(β − θ0
n ),

en = eb̄−2nπ/ā, (41)

where θ0
n corresponds to the angular separation when pho-

ton winds completely 2nπ around the black hole and �θn
corresponds to the part exceeding 2nπ .

4.1 Einstein ring

It was demonstrated that a source in front of the lens could
yield relativistic images and Einstein rings [116] or gravita-
tional field gives rise to an Einstein ring when the source, lens
and observer are perfectly aligned. However, it is sufficient
that just one point of the source is perfectly aligned to build
a full relativistic Einstein ring [117]. Thus for the particular
configuration of source, lens and the observer being aligned
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Table 1 Estimates for lensing
observables and strong lensing
coefficients for the supermassive
black holes Sgr A* an M87* for
different values of q and α̃.
Rs = 2GM/c2 is the
Schwarzschild radius

Parameters Sgr A* M87* Lensing Coefficients
α̃ q θ∞ (μas) s (μas) rmag θ∞ (μas) s (μas) rmag ā b̄ um/Rs

0.00 0.00 26.327 0.0329 6.825 19.782 0.02468 6.825 1.000 -0.4004 2.597

0.00 0.10 26.151 0.0338 6.792 19.649 0.02527 6.792 1.004 -0.4004 2.580

0.00 0.20 25.602 0.0366 6.689 19.236 0.02743 6.689 1.019 -0.4004 2.526

0.00 0.30 24.617 0.0430 6.483 18.497 0.03234 6.483 1.052 -0.4004 2.429

0.00 0.40 23.032 0.0594 6.072 17.306 0.04456 6.072 1.123 -0.4142 2.272

0.00 0.50 20.263 0.1425 4.823 15.228 0.10655 4.823 1.414 -0.7375 1.999

0.40 0.00 25.482 0.0555 6.138 19.145 0.0417 6.138 1.111 -0.5263 2.514

0.40 0.20 24.667 0.0659 5.909 18.533 0.0495 5.909 1.154 -0.555 2.434

0.40 0.30 23.527 0.0875 5.519 17.676 0.0657 5.519 1.236 -0.6310 2.321

0.40 0.38 22.032 0.1405 4.805 16.553 0.1056 4.805 1.419 -0.8926 2.174

0.70 0.00 24.725 0.0901 5.473 18.576 0.0677 5.473 1.246 -0.7145 2.439

0.70 0.10 24.504 0.0955 5.389 18.410 0.0717 5.389 1.265 -0.7380 2.417

0.70 0.20 23.798 0.1168 5.092 17.880 0.0877 5.092 1.339 -0.8395 2.348

0.70 0.27 22.419 0.1553 4.637 17.227 0.1167 4.637 1.471 -1.0638 2.262

(such that β = 0), the Eq. (40) reduces to

θ E
n =

(
1 − DOS

DLS

umen
DOLā

)
θ0
n , (42)

and give radii of the Einstein rings. For a particular case
when the lens is at exactly midway between the source and
the observer, Eq. (42) yields

θ E
n =

(
1 − 2umen

DOLā

) (
um
DOL

(1 + en)

)
. (43)

Since DOL � um , the Eq. (43) yields

θ E
n = um

DOL
(1 + en) , (44)

which gives the radius of the nth relativistic Einstein ring.
Note that n = 1 represents the outermost ring, and as n
increases, the radius of the ring decreases. Also, it can be con-
veniently determined from Eq. (44) that radius of the Einstein
ring increases with the mass of the black hole and decreases
as the distance between the observer and lens increases. In
the Fig. 8, we depict the outermost Einstein rings for Sgr A*
and M87* black holes.

Similarly, magnification of images is another good source
of information, which is defined as the ratio between the solid
angles subtended by the image and the source, and for small
angles, it is given by [17]

μn =
(

β

θ

dβ

dθ

∣∣∣∣
θ0
n

)−1

. (45)

Using Eqs. (37) and (41), the magnification (45) becomes:

μn = 1

β

(
θn

0 + DOS

DLS

umen
DOLā

(β − θn
0)

)(
DOS

DLS

umen
DOLā

)
,

(46)

which can be simplified further by making Taylor series
expansion, thus the magnification of nth image on both the
sides is given by [17]

μn = 1

β

[
um
DOL

(1 + en)

(
DOS

DLS

umen
DOLā

)]
. (47)

Thus magnification decreases exponentially with winding
number n and the higher-order images become fainter. In
order to relate the results obtained analytically with observa-
tions, Bozza defined the following observables [17]

θ∞ = um
DOL

, (48)

s = θ1 − θ∞, (49)

rmag = μ1∑ ∞
n=2μn

. (50)

where um can be written as

um = xm√
1 − 2x2

m
α̃

(c1 − 1)

. (51)

Since the outermost relativistic image is the brightest, the
quantity s is the angular separation between the outermost
image from the remaining bunch of relativistic images, rmag

is the ratio of the received flux between the first image and all
the others images clustered at θ∞. For a nearly perfect align-
ment of source, black hole and observer, these observables
can be simplified to [17]

s = θ∞(e
b̄−2π
ā ), (52)

r = e
2π
ā . (53)
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Fig. 9 Plots showing the behavior of strong lensing observables θ∞, s, and rmag as a function α̃ (Left panel) and q (Right panel) for Sgr A* black
hole

Once these strong lensing observables are known from obser-
vations, one can estimate the strong lensing coefficients ā and
b̄ and compare with the theoretically calculated values.

5 Lensing by supermassive black holes

For numerical estimation of strong lensing observables, we
consider realistic cases of supermassive black holes Sgr A*
and M87*, respectively, at the center of our galaxy Milky
Way and nearby galaxy M87. Taking their masses M and dis-
tances from earth DOL as, M = 4.3 × 106M� and DOL =
8.35×103 pc for Sgr A* [118], and M = (6.5±0.7)×109M�
and DOL = (16.8 ± 0.8) Mpc for M87* [2–4], we have tab-
ulated the observables for various values of q and α̃ in Table

(1). We compared the results with those for the Schwarzschild
(α̃ = 0, q = 0) and Reissner–Nordstrom black holes
(α̃ = 0). It is worth to notice that, for Charged black holes
of 4D EGB gravity, the angular separation between images
are higher whereas their magnification are lower than those
for the Schwarzschild and Reissner–Nordstrom black holes.
Furthermore, for fixed values of parameters, Sgr A* black
hole causes the larger angular separation between relativis-
tic images than the M87* black hole, e.g., for α̃ = 0.40
and q = 0.20, s = 0.0639μas for Sgr A* black hole and
s = 0.0495μas for M87* black hole. Charged black holes
of 4D EGB gravity cause the larger separation s and smaller
magnification rmag as compared to the uncharged black hole
of 4D EGB gravity (q = 0) (cf. Table 1). Lensing coeffi-
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Fig. 10 Plots showing the behavior of strong lensing observables θ∞, s, and rmag as a function α̃ (Left panel) and q (Right panel) for M87* black
hole

cients ā increases whereas b̄ decreases with increasing q or
α̃ (cf. Table 1 and Fig. 6).

We plotted lensing observables θ∞, s, and rmag against α̃

and q for the Sgr A* and M87* black holes, respectively, in
Figs. 9 and 10. For a given value of DOL , the limiting value
of angular position θ∞ is smaller than Schwarzschild case
and decreases with q or α̃. On the other hand the separation
between the images s, for the Charged black holes of 4D
EGB gravity is larger than the Schwarzschild black hole and
it further increases with q or α̃. However, the relative magni-
fication rmag decrease with increasing q or α̃. So images are
far away from the black hole and thereby less packed than in
the Schwarzschild case.

6 Conclusion

The regularized 4D EGB gravity proposed in [67–69] is char-
acterized by the non-trivial contribution of the GB quadratic
term to the gravitational dynamics in 4D spacetime. Thereby,
this 4D EGB gravity with quadratic-curvatures bypasses the
Lovelock’s theorem and yields the diffeomorphism invari-
ance and second-order equations of motion. It is shown by
Glavan and Lin [67] that the 4D EGB gravity possesses only
the degrees of freedom of a massless graviton and thus free
from the instabilities. Further, static and spherically symmet-
ric black hole solutions of this 4D EGB gravity are also valid
in other theories of gravity [70–72,74,105].
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With this motivation, we have analysed the strong gravi-
tational lensing of light due to static spherically symmetric
Charged black holes to 4D EGB gravity which besides the
mass M , also depends on two parameters q and α̃. We have
examined the effects of q and α̃, in a strong-field observation,
to the lensing observables due to Charged black holes to 4D
EGB gravity and compared with those due to Schwarzschild
and Reissner–Nordstrom black holes of GR. We have numer-
ically calculated the strong lensing coefficients ā and b̄, and
lensing observables θ∞, s, rmag, um as functions of α̃ and q
for relativistic images. In turn, we have applied our results
to the supermassive black holes, Sgr A* and M87*, at the
centre of galaxies. Interestingly, we find that, ā increases
when we increase q and α̃ whereas b̄ and deflection angle
αD decrease, and observe the diverging behavior of deflec-
tion angle αD when u → um . Besides, for a fixed value of
impact parameter, Charged black holes to 4D EGB gravity
cause a smaller deflection angle as compared to their GR
counterparts.

We have also estimated some properties of relativistic
images, the variations of θ∞, s, and rmag, as functions of α̃

and q are depicted in the Figs. 9 and 10. We have shown that
the angular position of outermost relativistic images θ∞ and
relative magnification of images rmag are decreasing function
of both q and α̃, but they decrease more sharply with q (cf.
Figs. 9 and 10), while angular separation between images
s increases with both q and α̃. To conclude, we find that
Charged black holes to 4D EGB gravity cause higher angu-
lar separation between images but lower magnification than
those for the Schwarzschild and Reissner–Nordstrom black
holes.

The results presented here are the generalization of previ-
ous discussions, on the black holes in GR viz. Schwarzschild
and Reissner–Nordstrom black holes and black holes to 4D
EGB gravity, and they are encompassed, respectively in the
limits, α̃, q → 0, α̃ → 0, and q → 0.
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