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Abstract In this paper, the holographic p-wave superfluid
model with charged complex vector field is studied in dRGT
massive gravity beyond the probe limit. The stability of p-
wave and p + ip solutions are compared in the grand canoni-
cal ensemble. The p-wave solution always get lower value of
grand potential than the p + ip solution, showing that the holo-
graphic system still favors an anisotropic (p-wave) solution
even with considering a massive gravity theory in bulk. In
the holographic superconductor models with dRGT massive
gravity in bulk, a key scaling symmetry is found to be vio-
lated by fixing the reference metric parameter c0. Therefore,
in order to get the dependence of condensate and grand poten-
tial on temperature, different values of horizon radius should
be considered in numerical work. With a special choice of
model parameters, we further study the dependence of crit-
ical back-reaction strength on the graviton mass parameter,
beyond which the superfluid phase transition become first
order. We also give the dependence of critical temperature
on the back reaction strength b and graviton mass parameter
m2.

1 Introduction

The AdS/CFT correspondence [1–3] provides a novel way to
study the strongly coupled systems. One successful applica-
tion is the so called holographic superconductor [4,5], which
mimic the superconductor phase transition with a sponta-
neously emerged charged hair in the bulk black hole space-
time. Various different matter fields as well as gravitational
theories are considered to build different holographic super-
conductor and superfluid models [6], in order to realize var-
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ious superconducting phenomenons and to check some uni-
versal laws [7].

Superfluid with p-wave pairing has also been realized
holographically. In the early study [8], an SU(2) gauge field
is introduced and the three generators are used to realize the
electro-magnetic vector potential and the condensed vector
orders respectively, with the non-Abelian coupling between
the generators act as the U(1) charged coupling. The quasi
normal modes are also calculated and it turns out that the
p-wave solution is stable while p + ip solution is unstable.
When back reaction is turned on and becomes large enough,
the p-wave phase transition becomes first order [9]. Later in
Ref. [10], the p-wave phases are realized in holographic mode
with five-dimensional gauged supergravities in bulk. Analyt-
ical methods are also applied to study the critical behavior of
the holographic p-wave model [11]. Recent studies [12–24]
reconsidered the holographic p-wave model with a charged
massive vector (also called Proca field) in bulk and get more
interesting phase transition phenomenon. Some efforts are
made to compare the two typical p-wave models. For exam-
ple, in Ref. [16], it is found that in the study of p-wave phase
transitions the massive vector holographic p-wave model
with m2

p = 0 repeat the same results of that in the SU(2)
model. In Ref. [17], the authors compared the two p-wave
models when the dark matter sector is involved in the bulk
gravity theory.

Lessons on superfluid Helium-3 tell us that the superfluid
phases with p-wave pairing exhibit various spatial symme-
try [25]. Therefore it is interesting to study possible new
phases in holographic p-wave model. Previous studies [8,26]
already imply that p + ip solutions can be realized in both the
two typical holographic p-wave models. However, the p + ip
solution in the SU(2) p-wave model is unstable even in the
probe limit. This is because the non-Abelien coupling term
between the p and ip components raises the thermodynamic
potential of the p + ip solution with respect to the p-wave
solution. In the massive vector p-wave model, the p-wave
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and p + ip solution get the same value of grand potential and
thus form a degenerate state in probe limit [26]. However,
when back-reaction on the metric is turned on, the p + ip
solution always get a larger value of grand potential than the
p-wave solution which is more stable [26]. In order to study
the properties such as conductivity and chiral magnetic effect
in the p + ip phase, it would be necessary to get stable p + ip
solution at first. A possible approach is extending this study
in more general theories of gravity. This can also help us
to understand whether the spacetime favors isotropy (p + ip
solution) or anisotropy(p-wave solution) in various theories
of gravity.

Recently, a ghost free gravity theory with massive gravi-
ton is proposed in Ref. [27]. The holographic dual of this
massive gravity theory show translational symmetry break-
ing effects [28]. The holographic superconductor model with
s-wave paring also has been studied in this massive grav-
ity theory [29], giving a finite value of conductivity at zero
frequency. Since the massive gravity theory has non-trivial
effects in the holographic study, it would be interesting to
study the problems of competition between p-wave and p +
ip orders as well as the conductivity in the p + ip solution,
before which building a stable p + ip solution is necessary.
Some other interesting studies on dRGT massive gravity can
be found in Refs. [30–37].

In this paper, we study the p-wave and p + ip solutions
in a holographic model with charged complex vector field in
dRGT massive gravity. We choose the massive vector model
instead of the SU(2) model, because the p + ip solution in
the SU(2) model is even unstable in probe limit and is more
difficult to become stable when back reaction is turned on.
We work in the grand canonical ensemble and compare the
grand potential of the two solutions with considering the
back-reaction of matter fields on metric. We also show the
effect of graviton mass on this system. The rest of the paper
is organized as follows. In Sect. 2 we give the set up of the
new p-wave model in the massive gravity. In Sect. 3 we show
the results of the stability problem between p-wave and p +
ip solutions as well as the effect of graviton mass parameter.
Finally, we conclude the main results in this paper and give
some discussions in Sect. 4.

2 The holographic p-wave model from massive gravity

In this section, we give details of the setup of holographic
p-wave model with charged complex vector field in massive
gravity. We also give the expression for condensate as well
as grand potential of the p-wave and p + ip solutions.

2.1 The model setup

The action can be expressed as

S = SG + SM , (1)

SG = 1

2κ2
g

∫
d4x

√−g

(
R − 2Λ + m2

4∑
i

ciUi

)
, (2)

SM = 1

q2

∫
d4x

√−g

(
−1

4
FμνF

μν − 1

2
ρ†

μνρ
μν − m2

pρ
†
μρμ

)
.

(3)

The total action of this system can be divided into the gravity
part and the matter part. Equation (2) is the expression for
gravity part, in which the last term is the mass term for gravi-
ton. The ci are constants and Ui are symmetric polynomials
of the eigenvalues of the 4 × 4 matrix Kμ

ν = √
gμα fαν

U1 = [K],
U2 = [K]2 − [K2],
U3 = [K]3 − 3[K][K2] + 2[K3],
U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4].

(4)

The square brackets denote the trace [K] = Kμ
μ.

The action of the matter part (3) includes the U(1) gauge
field Aμ as well as the massive complex vector field ρμ

charged under Aμ [12,13]. The field strength of these two
fields are Fμν = ∇μAν − ∇ν Aμ and ρμν = Dμρν − Dνρμ

respectively, where Dμ = ∇μ − i Aμ. The superscript “†”
means complex conjugate, and mp is the mass for the vec-
tor field and controls the conformal dimension of the p-wave
order.

The equations of motion for this coupled system can be
expressed as those for the matter fields

∇νFνμ = i(ρνρ†
νμ − ρν†ρνμ), (5)

Dνρνμ − m2
pρμ = 0, (6)

and the Einstein equations for the metric

Rμν − 1

2
(R − 2Λ)gμν + m2Xμν = b2Tμν, (7)

whereb = κg/q characterizes the strength of back reaction of
the matter fields on the background geometry and the tensor
Xμν is

Xμν = − c1

2
(U1gμν − Kμν) − c2

2

(U2gμν − 2U1Kμν + 2K2
μν

)

− c3

2

(U3gμν − 3U2Kμν + 6U1K2
μν − 6K3

μν

)

− c4

2

(U4gμν − 4U3Kμν + 12U2K2
μν − 24U1K3

μν + 24K4
μν

)
.

(8)
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Tμν is the stress-energy tensor of the matter sector

Tμν =
(

−1

4
Fa

μνF
aμν − 1

2
ρ

†
μν|ρ

μν − m2
pρ

†
μΨ μ

)
gμν

+FμλF
λ
ν + ρ

†
μλρ

λ
ν + ρ

†
νλρ

λ
μ + m2

p

(
ρ†

μρν + ρ†
νρμ

)
.

(9)

If the matter fields are turned off, the massive gravity
action admits analytical solutions in the form [28]

ds2 = gμνdx
μdxν

= −N (r)dt2 + 1

N (r)
dr2 + r2hi j dx

i dx j

= −N (r)dt2 + 1

N (r)
dr2 + r2

L2 (dx2 + dy2), (10)

N (r) = c2
0c2m

2 + 1

2
c0c1m

2r − 2M0

L2r
+ r2

L2 , (11)

while the reference metric fμν is taken as

fμν = diag
(

0, 0, c2
0hi j

)
. (12)

We wish to study the p-wave and vip solutions dual to
superfluid phases where the U(1) symmetry is spontaneously
broken. Therefore we take the ansatz for matter fields as

At = φ(r), ρx = Ψx (r), ρy = iΨy(r). (13)

A metric ansatz [9,16] consistent with this matter ansatz can
be given as

ds2 = −N (r)σ (r)2dt2 + 1

N (r)
dr2

+ r2

L2

(
1

f (r)2 dx
2 + f (r)2dy2

)
, (14)

with

N (r) = c2
0c2m

2 + 1

2
c0c1m

2r − 2M(r)

L2r
+ r2

L2 . (15)

We still take the same style of reference metric fμν (12),
where the expression for hi j change to be

hi j dx
i dx j = 1

L2

(
1

f (r)2 dx
2 + f (r)2dy2

)
. (16)

With the above matter and metric ansatz, we can get the
full equations of motion as

M ′(r) = b2L4φ(r)2

2N (r)σ (r)2

(
f (r)2Ψx (r)

2 + Ψy(r)2

f (r)2

)

+1

2
b2L4N (r)

(
f (r)2Ψ ′

x (r)
2 + Ψ ′

y(r)
2

f (r)2

)

+1

2
b2L4m2

p

(
f (r)2Ψx (r)

2 + Ψy(r)2

f (r)2

)

+b2L2r2φ′(r)2

4σ(r)2 + L2r2N (r) f ′(r)2

2 f (r)2 , (17)

σ ′(r) = b2L2φ(r)2

r N (r)2σ(r)

(
f (r)2Ψx (r)

2 + Ψy(r)2

f (r)2

)

+b2L2σ(r)

r

(
f (r)2Ψ ′

x (r)
2 + Ψ ′

y(r)
2

f (r)2

)

+rσ(r) f ′(r)2

f (r)2 , (18)

f ′′(r) = −b2L2 f (r)φ(r)2

r2N (r)2σ(r)2

(
f (r)2Ψx (r)

2 − Ψy(r)2

f (r)2

)

+b2L2 f (r)

r2

(
f (r)2Ψ ′

x (r)
2 − Ψ ′

y(r)
2

f (r)2

)

+b2L2m2
p f (r)

r2N (r)

(
f (r)2Ψx (r)

2 − Ψy(r)2

f (r)2

)

+ f ′(r)2

f (r)
− f ′(r)N ′(r)

N (r)
− f ′(r)σ ′(r)

σ (r)
− 2 f ′(r)

r
,

(19)

φ′′(r) =
(

σ ′(r)
σ (r)

− 2

r

)
φ′(r)

+ 2L2

r2N (r)

(
f (r)2Ψx (r)

2 + Ψy(r)2

f (r)2

)
φ(r), (20)

Ψ ′′
x (r) = −

(
N ′(r)
N (r)

+ σ ′(r)
σ (r)

+ 2 f ′(r)
f (r)

)
Ψ ′
x (r)

−
(

φ(r)2

N (r)2σ(r)2 − m2
p

N (r)

)
Ψx (r), (21)

Ψ ′′
y (r) = −

(
N ′(r)
N (r)

+ σ ′(r)
σ (r)

− 2 f ′(r)
f (r)

)
Ψ ′
y(r)

−
(

φ(r)2

N (r)2σ(r)2 − m2
p

N (r)

)
Ψy(r). (22)

We also need to specify boundary conditions in order to
solve this set of equations numerically, both on the horizon
and on the r → ∞ boundary of bulk AdS black brane space-
time. The boundary behaviors near horizon can be expressed
as

M(r) = 1

2
+ Mh1(r − rh) + · · · (23)

σ(r) = σh0 + σh1(r − rh) + · · · (24)

f (r) = fh0 + fh1(r − rh) + · · · (25)

φ(r) = φh1(r − rh) + φh2(r − rh)
2 + · · · (26)

Ψx (r) = Ψxh0 + Ψxh1(r − rh) + · · · (27)

Ψy(r) = Ψyh0 + Ψyh1(r − rh) + · · · (28)

Where the independent parameters are

(σh0, fh0, φh1, Ψxh0, Ψyh0). (29)
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The expansions near the r → ∞ boundary are

M(r) = Mb0 + Mb1

r
+ · · · (30)

σ(r) = σb0 + σb1

r
+ · · · (31)

f (r) = fb0 + fh1

r
+ · · · (32)

φ(r) = μ − ρ

r
+ · · · (33)

Ψx (r) = Ψx−
rΔ− + Ψx+

rΔ+ + · · · (34)

Ψy(r) = Ψy−
rΔ− + Ψy+

rΔ+ + · · · , (35)

where

Δ± =
(

1 ±
√

1 + 4m2
pL

2
)

/2 (36)

are the conformal dimensions of the source and expectation
value of the dual vector operator. In this study, some con-
straints on the boundary coefficients (Ψx− = 0, Ψy− =
0, σb0 = 1, fb0 = 1) are introduced to confirm the solu-
tions to be asymptotically AdS and dual to a source free
condensed phase.

The above knowledge tell us that with the constraints
from boundary, we can get a set of solutions characterized
by one parameter μ. There are also parameters including
(L , b, m, mp, c0, c1, c2) which should be fixed before the
numerical work.

There are several scaling symmetries in this model

1. Ψx → λ2Ψx , Ψy → λ2Ψy, φ → λ2φ, N → λ2N ,

mp → λmp, L → λ−1L , b → λ−1b, m → λm; (37)

2. Ψx → λΨx , Ψy → λΨy, φ → λφ, N → λ2N ,

M → λ3M, r → λr, c0 → λc0; (38)

3. φ → λφ, σ → λσ ; (39)

4. Ψx → λ−1Ψx , Ψy → λΨy, f → λ f ; (40)

5. c0 → λc0, c1 → λ−1c1, c2 → λ−2c2; (41)

6. c0 → λc0, c1 → λc1, m → λ−1m. (42)

The first four symmetries are similar to those scaling sym-
metries in previous study in system without graviton mass
term, and the last two only involve the parameters in gravi-
ton mass term. It is the second scaling symmetry Eq. (38)
that usually be used to get the varying values of tempera-
ture of the condensed solutions after solving these equations
with a fixed value of horizon radius. However, in the massive
gravity case this scaling symmetry involves the parameter
c0, therefore the value of c0 changes with temperature if we
use the same trick. To get solutions with the fixed value of
c0 and varying temperature, we apply a different numerical
treatment in which we fix the chemical potential μ while the

horizon radius rh can be tuned to get different values of tem-
perature with fixed value of c0. This numerical treatment is
more general than using the usual trick.

2.2 Condensates of p-wave and p + ip soluitions

With the standard shooting method and our new numerical
treatment, we can get solutions dual to the ordinary p-wave
states and the p + ip one respectively. In the p-wave solu-
tion we have (Ψx = Ψp(r), Ψy(r) = 0(or equivalently
Ψx = 0, Ψy(r) = Ψp(r)), and in the p + ip solution we
have Ψx (r) = Ψy(r) = Ψpip(r). According to the AdS/CFT
dictionary, the condensed value of the orders are equal to Ψx+
and Ψy+ respectively. In order to better comparing the con-
densed value of the two different solutions, an expression of
condensed value applicable for both the two solutions is [26]

Ψ+ =
√

Ψ 2
x+ + Ψ 2

y+ . (43)

One can calculate the energy momentum tensor of the mat-
ter fields to confirm that the p-wave solution is anisotropic
while the p + ip solution is isotropic (in AdS4) [26]. In this
sense, the stability relation between the two solutions also
give some insights of the favor of the gravitational theory
between isotropy and anisotropy.

The temperature of the boundary system is dual to the
Hawking temperature of the bulk black brane

T = N ′(rh)σ (rh)

4π

= 3σh0rh
4π

− b2φ2
h1

8πσh0rh
+ c0c1m2σh0

4π
+ c2

0c2m2σh0

4πrh

−b2m2
pσh0

4πrh

(
f 2
h0Ψ

2
xh0 + Ψ 2

yh0

f 2
h0

)
. (44)

As we have explained in the previous section, the sec-
ond scaling symmetry Eq. (38) involve the parameter c0 and
we can not easily get the condensed solutions with varying
temperature by using the scaling trick. In order to solve this
problem, we explore new numerical technic to get solutions
with a varying horizon radius rh and fixed value of chemical
potential μ = 3.

We can draw condensed value of the both solution with
respect to temperature T once we fixed a set of values
(L , b, m, mp, c0, c1, c2) and solved the equations of
motion numerically. In this work we focus on the effect of
graviton mass, we set L = 1 and c0 = c1 = −2c2 = 1
for simplicity [29–31]. With such a choice of parameters, the
numerical work involving the metric tensor will be simplified
a lot.

If we take probe limit b → 0, because the symmetry
between the equations of motion for Ψx and Ψy , the p-wave
and p + ip solutions will have the same value of critical tem-
perature, condensate as well as grand potential [26]. If we go
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beyond the probe limit with finite value of b, the degenerate
p-wave and p + ip solutions will still have the same values
of critical temperature, but the condensate and grand poten-
tial curves of the two solutions will be split gradually away
from the critical point. In Einstein gravity, the p-wave solu-
tion always have a lower grand potential, the p + ip solution
only could be stable when the p-wave solution does not exist
in that region.

2.3 Grand potential of p-wave and p + ip soluitions

We wish to study the stability problem between the p wave
and p + ip solutions in this massive gravity setup, and it is
necessary to calculate the grand potential of this system. We
work in the grand canonical ensemble and the grand potential
is given by the Euclidean on-shell action.

Ω = T SE . (45)

Besides the bulk action (1), a Gibbons–Hawking term

SGH = − 1

κ2
g

∫
Σ

d3x
√−γ K . (46)

as well as a counter term

Sct = − 1

κ2
g

∫
Σ

d3x
√−γ

(
2

L
+ 1

2
R[γ ]

+1

4
m2L

(
c1U1 − 1

16
L2m2c2

1U2
1 + 2c2U2

))
, (47)

where Σ denotes the boundary hyper surface at r → ∞ and
R[γ ] is the Ricci scalar of the induced metric γμν on Σ ,
should also be included [38]. Therefore

SE = (
S + SGH + Sct

)
Euclidean . (48)

With our metric and matter ansatz (13, 14), the expression
for the grand potential density Ω is

κ2
gV2Ω =

∫ ∞

rh

(
c2

0c2m2σ(r)

L2 + c0c1m2rσ(r)

2L2

)
dr

−r N (r)σ (r)

L2

∣∣∣∣
r=∞

+√
N (r)

(
r2√N (r)σ (r)

)′

L2

∣∣∣∣
r=∞

+√
N (r)σ (r)

(
c0c1m2r − 2c2

0c2m2

2L

+c2
0c

2
1m

4L

16
− 2r2

L3

) ∣∣∣∣
r=∞

, (49)

where V2 = ∫
dxdy is the volume of the boundary system.

The terms in the first line are the contribution from bulk
action, the term in the second line is from the Gibbons-
Hawking term and the last line show the contribution from

boundary counter terms. Both the bulk integration term and
the boundary terms are divergent, but the sum of the two is
convergent. We take the boundary term into the integration
to get a convergent result in our numerical work

κ2
gV2Ω =

∫ ∞

rh

(
c2

0c2m2σ(r)

L2 + c0c1m2rσ(r)

2L2

)
dr

+
∫ ∞

rh

[
− r N (r)σ (r)

L2

+√
N (r)

(
r2√N (r)σ (r)

)′

L2

+√
N (r)σ (r)

(
c0c1m2r − 2c2

0c2m2

2L

+c2
0c

2
1m

4L

16
− 2r2

L3

)]′
dr

+
[
−r N (r)σ (r)

L2 + √
N (r)

(
r2√N (r)σ (r)

)′

L2

+√
N (r)σ (r)

(
c0c1m2r − 2c2

0c2m2

2L

+c2
0c

2
1m

4L

16
− 2r2

L3

)] ∣∣∣∣
r=rh

. (50)

The final expression is

κ2
g V2Ω =

∫ ∞

rh

(
N (r)σ (r)

L2 − 4r
√
N (r)σ (r)

L3 + 2rσ(r)N ′(r)
L2

+3r N (r)σ ′(r)
L2 + r2σ(r)N ′(r)

L3
√
N (r)

+ 2r2√N (r)σ ′(r)
L3

+2r2N ′(r)σ ′(r)
2L2 + r2σ(r)N ′′(r)

2L2 + r2N (r)σ ′′(r)
L2

c2
0c2m2σ(r)

L2 + c0c1m2rσ(r)

2L2

−c0c1m2√N (r)σ (r)

2L
− c0c1m2r

√
N (r)σ ′(r)

2L

−c0c1m2rσ(r)N ′(r)
4L

√
N (r)

− c2
0c2m2√N (r)σ ′(r)

L

−c2
0c2m2σ(r)N ′(r)

2L
√
N (r)

+ c2
0c

2
1m

2L
√
N (r)σ ′(r)

16

+c2
0c

2
1m

2Lσ(r)N ′(r)
32

√
N (r)

)
dr + r2σ(r)N ′(r)

2L2

∣∣∣∣
r=rh

.

(51)

With the above formulas in hand, we studied the compe-
tition between the p-wave and p + ip solutions as well as
the phase structure of this holographic system. We show our
main results in the next section.
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3 Competition between the two solutions and the
influence of m2 on Tc

We get the two solutions numerically and compared the grand
potential of the two. Unfortunately, the p + ip solution still
failed to win the competition with the choice of parameters
we considered. The figures of temperature dependence of
condensate value as well as grand potential are qualitatively
the same to the results in Einstein gravity [26]. Therefore we
only show a typical case, in which the p-wave solution is a
first order phase transition while the p + ip one is still second
order, with m2 = 0.3 and b = 0.68 in Fig. 1.

We can see from Fig. 1 that the p-wave and p + ip solutions
share the same critical point, which can be explained by the
degeneration of the two solutions in probe limit [26]. The p-
wave solution with a first order phase transition has a larger
value of phase transition temperature. We can also see from
the right plot of free energy curves that the one with a first
order phase transition get lower value of free energy than the
one with second order phase transition.

Although we failed to find stable p + ip solutions, we still
wish to find some qualitative estimation of the stability rela-
tion between the two solutions. One useful signal of stability
can be taken as the critical back reaction strength bc, beyond
which the phase transition is first order. From the condensate
and grand potential curves in Fig. 1 and in Ref. [26], we can
see that the phase transition of the more stable p-wave solu-
tion change from second order to first order at a lower critical
value of back reaction strength. We denote this critical value
of back reaction strength for the p-wave and p + ip solutions
as bc−p and bc−pip respectively. Between the two solutions
sharing the same critical point, the more stable one always
get a lower value of bc. Therefore the stability relation of
the two solutions can be concretely shown from the value of
bc−p and bc−pip.

In this paper, we focus on the influence of m2 on the sta-
bility relation of the two solutions as well as phase structure.
We show these results in the following sections.

3.1 bc−p v.s. bc−pip

In this section, we give the dependence of bc−p and bc−pip

on the value of m2. This will show a qualitative stability
relation between the two solutions, and help to confirm that
the p-wave solution is always more stable.

We have set μ = 3 and L = 1, c0 = c1 = −2c2 = 1,
and consider two typical values 0 and −3/16 for m2

p as
in Refs. [12,26]. The massive vector p-wave model with
m2

p = 0 can repeat the same p-wave phase transition as
the SU(2) p-wave model [16], while with m2

p = −3/16,
a typical zeroth order phase transition occur in the low tem-
perature region [12]. As we choose the same values of m2

p

as in Ref. [26], it is convenient to compare our results in
massive gravity with previous study in Einstein gravity. To
show the influence of graviton mass on the stability relation,
we varying the value of the graviton mass parameter m2 and
draw the two curves of bc−p and bc−pip in Fig. 2, where the
left plot show the case of m2

p = 0 and the right plot show
the one with m2

p = −3/16. The solid blue line denote the
bc − m2 relation for the p-wave solution and the dashed red
line denote the relation for p + ip solution. The points on each
line indicate the location of the minimum.

At the beginning, we only consider positive values of m2.
We can see that in both the two cases (m2

p = 0 and m2
p =

−3/16), the value of bc for the two solutions all increase
monotonically when the value of m2 is increasing. To study
the trend of the stability relation of the two solutions, we
further draw the ratio bc−pip/bc−p versusm2 curves in Fig. 3.
The solid orange line is for the case with m2

p = 0 and the
dashed purple line for the case with m2

p = −3/16, with the
two points on each line indicating the minimum.

We can see that for positive values of m2, the ratio
bc−pip/bc−p is larger than 1 and is monotonically increasing
function of m2. Therefore if we further decrease the value of
m2 to some negative value, it is possible that bc−pip/bc−p

becomes less than 1, which is a signal of a stable p + ip solu-
tion. In order to exclude this possibility, we extend our results
to include negative values of m2 and complete the left part
of the curves in Figs. 2 and 3. We can see that for both the
two cases (m2

p = 0 and m2
p − 3/16), bc−p, bc−pip and the

ratio bc−pip/bc−p all get a minimum at some negative value
of m2. Especially, the minimum of the ratio bc−pip/bc−p is
still larger than 1, indicating that it is not likely to make the
p + ip solution win the competition against the p-wave one
by tuning m2.

The validity of negative value of m2 can be understood
from the following two aspects. On one side, the mass of the
fields in AdS can get negative value above the B-F bound,
such a bound may also be available for the graviton mass.
On the other side, the minus sign of m2 can be equivalently
moved to the parameters c1 and c2. Thus the same results can
be get from effectively considering positive value of m2 and
c1 = −2c2 = −1.

3.2 Critical temperature

Because the p-wave solution always win the competition, the
phase structure of this system is rather simple. It only include
the normal phase in high temperature region and the p-wave
phase in low temperature region. Another feature is that the
phase transition becomes first order when the back reaction is
strong enough. When the phase transition becomes first order,
the phase transition point get a higher temperature than the
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Fig. 1 Then condensate (left plot) and grand potential (right plot)
curves for the p-wave and p + ip solutions with m2 = 0.3 and b = 0.68.
We use solid blue line to denote the curves for p-wave solution and the

dashed red line for the p + ip solution. The solid black line denote the
grand potential curve for the normal solution without any condensate

Fig. 2 bc − m2 relations for m2
p = 0 (left plot) and m2

p = −3/16 (right plot). The solid blue line denote the bc − m2 relation for the p-wave
solution and the dashed red line denote the relation for p + ip solution, with the points on each line indicating the location of the minimum

Fig. 3 bc−pip/bc−p−m2 relations. The solid orange line is for the case
with m2

p = 0 and the dashed purple line for the case with m2
p = −3/16,

with the two points on each line indicating the minimum

“critical point” where the condensate emerge from the norm
phase.

We studied the impact of graviton mass parameter m2

on the critical temperature of p-wave condensate only for

m2
p = 0, because the other case m2

p = −3/16 involve 0th
order phase transitions at lower temperature, which make it
complicated to get the phase diagram and is not the focus of
this work. Because the back reaction strength also affect the
critical temperature, we start from the probe limit b = 0 and
draw the relation of m2 − Tc in the left plot of Fig. 4. This
plot is also a 2D phase diagram in probe limit.

We can see from this plot that the critical temperature
get a maximum at a positive value of m2 = 1.30. To under
stand this non-monotonic behavior, we can see the formula
Eq. (44) for temperature. In probe limit, only the first term
proportional to rh and two terms proportional to m2 left in
that formula. We confirmed that when m2 is increasing, the
value of rh and the first term in Eq. (44) for the critical point
decrease monotonically. However, the increasing of m2 has
an effect of increasing the critical temperature through the
two terms in Eq. (44). As a result, the final dependence of Tc
on m2 show a non-monotonic behavior combining the above
two effects.
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Fig. 4 m2 − Tc relation at probe limit (left plot) and b − Tc relations
(right plot) in the case m2

p = 0. In the left plot, we show the Tc − m2

relation of the p-wave phase when back reaction can be neglected, while
in the right plot we show the b − Tc curves for the critical points with

five values of m2. The dashed black horizontal line in the left figure
indicate the maximum critical temperature at m2 = 1.30. In both the
two plots, the five colors {red, orange, green, blue, purple} are used to
denote five values of m2: {-2.6, -1.3, 0.01, 1.3, 2.6}

To get more information away from the probe limit, we
choose five values of m2 and show the b − Tc curves in
the right plot of Fig. 4. We use {Red, Orange, Green, Blue,
Purple} to denote the lines with m2 = {−2.6,−1.3, 0.01,

1.3, 2.6} respectively. We also mark the five points with the
selected value of m2 in the left plot with the same color
assignment. In the right plot of Fig. 4, the solid lines are all
real boundary of the p-wave phase, therefore the five solid
lines also describe 2D slices of the phase diagram at different
values of m2. The dashed lines denote the “critical point” of
the first order phase transition, and has a temperature lower
than the real phase transition point.

Because of the non-monotonic effect of m2, the relation
of the five colored lines are complicated. In general, we can
see that all these lines show a decreasing of critical temper-
ature when the back reaction strength is increasing. The one
with a larger value of m2 has more decreasing of critical
temperature, which can be attributed to the last two terms in
Eq. (44).

4 Conclusions and discussions

In this paper, we studied the complex vector p-wave mode
within dRGT massive gravity. We considered the full back
reaction and study the competition between the p-wave and
p + ip solutions, and find that the p-wave solution still always
win the competition. We also compare the value of critical
back reaction strength, beyond which the phase transition
become first order, to show a qualitative stability relation. We
also give the value of critical temperature at different values
of graviton mass parameter m2 and back reaction strength b.

In the case of dRGT massive gravity, a key scaling sym-
metry involve the parameter c0, therefore one can not use the
scaling trick to easily get dependence of temperature with a
fixed value of c0. To solve this problem, we take varying value
of rh in our numerical work to get the varying temperature
directly, which is a more general numerical treatment.

Since the p + ip solution still failed to win the competi-
tion against the p-wave one, we can continue exploring this
competition in new setups. With in this study, we find that
the ratio bc−pip/bc−p can be a convenient signal to be used
in future study.

When we finished the draft of this work, a similar sub-
ject was treated in Ref. [39], which focus on the analytical
study of the p-wave superconductor phase transition in mas-
sive gravity in probe limit. The authors get the analytical
expressions for the critical temperature, condensate of the p-
wave order as well as the difference of free energy between
normal solution and the p-wave solution. They also show
the influence of the massive gravity parameters on the above
quantities. Compared to that work, we go beyond probe limit
and studied the competition between the p-wave and p + ip
solutions with numerical method, while focusing on the case
c0 = c1 = −2c2 = 1.
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