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Abstract The changes a (negative) tidal charge causes at
the phenomenon of superradiance which occurs around rotat-
ing black holes are investigated. This is made by comput-
ing the amplification factors of massless scalar waves being
scattered by the black hole. It is shown that the increase of
the tidal-charge intensity leads to a considerable enhance-
ment of energy extraction from near-extreme black holes.
Such improvement results from the fact that extreme black
holes with more negative tidal charges spin faster. Maximum
amplification decreases with the increase of the tidal charge
intensity if the angular momentum of the black hole per unit
mass is fixed. The tidal charge may also change crucially the
superradiance phenomenon of massless scalar waves causing
maximum amplification to occur for m > 1 differently from
the case of Kerr black holes.

1 Introduction

A couple of decades ago it has been proposed the existence of
black holes with tidal charge [1] in the context of the Randall–
Sundrum brane-world scenario [2,3]. This charge results
from the influence of the fifth dimension in our 4-dimensional
observed universe, the brane. The exclusive effect of the tidal
charge on the black hole physics has been quantified in sev-
eral researches based on the study of static black holes [4–
9], among which our works treating about wave scattering
from such black holes [8,9]. In these papers we have shown
that black holes endowed with more intense (negative) tidal
charges1 present bigger absorption cross sections, while their
scattering spectra in the near-forward direction is not easily
distinguishable from that of Schwarzschild black holes. This

1 We consider only black holes with negative tidal charges since these,
as argued in Ref. [1], are physically more natural than the ones with
positive tidal charges.

a e-mail: ednilton@ufpa.br (corresponding author)

leads to the conclusion that the tidal charge interferes con-
siderably in the dynamics near the black hole, but with an
influence which can be neglected in the far region.

When the tidal charge is combined with other properties,
as angular momentum and electric charge [10], the black hole
presents novel configuration compared with black holes pre-
dicted within General Relativity. Specially in the case of elec-
trically neutral rotating black holes, the tidal charge modifies
the limit of angular momentum such black holes can acquire
allowing them to spin faster than extreme Kerr black holes.
Also, some of these black holes possess a bigger ergoregion,
what could allow more energy extraction from them than
from Kerr black holes. Indeed, it has been recently shown
that a negative tidal charge increases the efficiency of energy
extraction from the black hole via the Penrose process [11].
Still concerning about rotating black holes, the tidal charge
has also important implications to astrophysics, as it may
alters the radii size of ISCO [10,12,13] and of the shadow
cast by the black hole [6,14–16].

The existence of an ergoregion allows energy extraction
from a rotating black hole via the Penrose process [17] or
superradiance (see Ref. [18] for a review). The latter occurs
when a bosonic wave is scattered by the black hole. If the
wave has a specific set of properties, then it can emerge from
such scattering with more energy than it came in. It’s worth
mentioning that rotational superradiance is not an exclusivity
of black holes, but the first experimental observation of this
phenomenon in laboratory has been recently performed in
a draining vortex [19], an analog [20,21] of rotating black
holes.

The increase on the intensity of a (negative) tidal charge
makes the ergoregion expand. This indicates that the presence
of the tidal charge on rotating black holes alters quantitatively
the process of superradiance. However, the increase of the
ergoregion is not enough to lead us to conclude that maximum
amplification of a scattered wave will get enhanced in the
same sense. The size of the event horizon plays also an impor-
tant role in the quantity of energy which can be extracted from
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the black hole. Once the tidal charge also changes the event
horizon size, the increase of the tidal-charge intensity may
result in an increase or decrease of maximum amplification
obtained in the scattering process.

In this work we compute the amplification factors of
massless scalar waves which are scattered by rotating black
holes with tidal charge. We show that the tidal charge acts
to enhance considerably the efficiency of the superradiance
of near-extreme black holes. On the other hand, maximum
amplification gets suppressed by the increase of the tidal-
charge intensity if we consider black holes of fixed angular
momentum/mass ratio. We present and compare both low-
frequency approximation and numeric results for the ampli-
fication factors showing they are in excellent agreement.

This paper is divided as follows: in Sect. 2 we briefly
review the main properties of rotating black holes with tidal
charge; in Sect. 3 we present the equations of the massless
scalar waves around the considered black holes as well as
an analytic approach which allows us to obtain amplifica-
tion factors at low frequencies; Sect. 4 provides a selection
of results obtained numerically, and also their comparisons
with the low-frequency approximation; our conclusions are
presented in Sect. 5. We work with units c = G = h̄ = 1.

2 Black hole description

The line element of rotating black holes with tidal charge in
Boyer–Lindquist coordinates is [10]:

ds2 =
(

1 − 2Mr − β

ρ2

)
dt2 + 2a

2Mr − β

ρ2 sin2 θ dtdφ

−ρ2

Δ
dr2 − ρ2dθ2

−
(
r2 + a2 + 2Mr − β

ρ2 a2 sin2 θ

)
sin2 θ dφ2, (1)

where

Δ = r2 − 2Mr + a2 + β,

ρ2 = r2 + a2 cos2 θ,

M is the mass of the black hole, and a is the ratio between its
angular momentum and mass. The parameter β ≡ qM2 may
be negative in the context of the Randall–Sundrum brane-
world scenario. However, if 0 < β ≤ M2 − a2, the met-
ric above represents the Kerr–Newman solution [22], which
describes the spacetime around electrically charged rotating
black holes. The roots of Δ are:

r± = M ±
√
M2 − a2 − β, (2)

with r+ determining the event horizon position. From this
we can see that naked singularities occur if a2 > M2 − β,

Fig. 1 Size difference between the ergosurface and the event hori-
zon at the black hole equator. This illustrates that although ergoregion
increases with the tidal-charge intensity, the space between the ergosur-
face and the event horizon of black holes with tidal charge is smaller
than that of Kerr black holes with same angular momentum

and extreme black holes have ac = √
M2 − β. For nega-

tive values of β, extreme black holes have higher angular
momentum as higher is the value of |β|.

The ergoregion of rotating black holes with tidal charge
is limited by the surface located at:

rergo(θ) = M +
√
M2 − a2 cos2 θ − β. (3)

Since β < 0, rotating black holes with tidal charge have an
ergoregion bigger then Kerr black holes with same angular
momentum. A bigger ergoregion is not enough to determine
if more energy can be extracted from the black hole. The key
feature for superradiance of rotating black holes is the space
between the ergosurface and the event horizon.

In Fig. 1 we show how the size difference between the
ergoregion and the event horizon at the black hole equator
changes with the angular momentum for black holes with
different tidal charges. Although the increase of the tidal-
charge intensity induces an increase of the ergoregion, the
event horizon increases faster in the same sense, resulting
in a reduction of space between the event horizon and the
ergosurface for black holes with same a. On the other hand,
if a is allowed to increase, then the space between the event
horizon and the ergosurface may be bigger in the cases of
near-extreme black holes with tidal charge than in the case
of extreme Kerr black holes. To make this clearer, let us
express the size difference between the ergosurface and the
event horizon at the equator of extreme black holes. This is:

rergo(π/2) − r+ =
√
M2 − β, (4)

which evidently increases with the increase of −β.
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Another important property of rotating black holes is the
angular velocity at their event horizon:

ΩH ≡ a

r2+ + a2
. (5)

This angular velocity plays an important role in the phe-
nomenon of superradiance as its value determines, together
with the azimuthal quantum number, the maximum fre-
quency a wave must have to get amplified in the scatter-
ing. We note that the angular velocity at the event horizon
of extreme black holes is ΩHc = √

M2 − β/(2M2 − β),
meaning that extreme rotating black holes with tidal charge
have smaller angular velocities, although they have higher
angular momentum than Kerr black holes of same mass.

3 Massless scalar field

3.1 Wave equations

Here we use the model of the massless scalar field to study the
effect of the tidal charge on superradiance. This field obeys
the Klein–Gordon equation given by:

1√−g
∂μ

(√−ggμν∂νΦ
) = 0. (6)

A separation of variables is possible for this equation if
we assume:

Φ = Rωlm(r)√
r2 + a2

Sωlm(θ)ei(mφ−ωt).

The functions Sωlm are the oblate spheroidal harmonics [23],
which obey the equation:

d

dx

(
(1 − x2)

dSωlm

dx

)

+
[
(aω)2x2 − m2

1 − x2 + λlm

]
Sωlm = 0, (7)

where x = cos θ , and λlm are the eigenvalues of the Sωlm .
The radial equation resulting from the variable separation

can be put in the form:

d2

dr2∗
Rωlm + [ω2 − Vωlm(r)]Rωlm = 0, (8)

where r∗ is the tortoise coordinate, defined as

d

dr∗
= Δ

r2 + a2

d

dr
,

and

Vωlm(r) = − 1

(r2 + a2)2 [m2a2 − Δ(λlm + ω2a2)

+2maω(β − 2Mr)] + Δ
Δ + 2r(r − M)

(r2 + a2)3

Fig. 2 Effective potential in terms of the tortoise coordinate for black
holes with q = 0,−0.5,−1 and modes with l = 1 and Mω = 0.1. Top-
left considering a = 0.99M andm = −1. Top-right for a = 0.99M and
m = 0.Bottom-left for a = 0.99M andm = 1.Bottom-right comparing
the cases of near-extreme black holes (a = 0.99ac) and m = 1

− 3r2Δ2

(r2 + a2)4 . (9)

Examples of the effective potential Vωlm(r) for modes with
l = 1 and Mω = 0.1 are presented in Fig. 2. We see that a
more negative tidal charge makes the maximum value of the
effective potential to decrease if a is fixed or if we compare
near-extreme black holes.

Analytic solutions to the radial equation can be easily
found in the near-horizon region and far from the black hole.
Considering we are dealing with a scattering problem of a
wave incoming from infinity, for r � r+ we have:

Rωlm ∼ T e−iω̃r∗ , (10)

where ω̃ = ω −mΩH and T is the transmitted amplitude at
the event horizon. For r → ∞:

Rωlm ∼ I e−iωr∗ + Reiωr∗ , (11)

where I and R are the incident and reflected amplitudes
at infinity. The reflection and transmission rates are given
respectively by |R|2/|I |2 and |T |2/|I |2. These rates are
related to each other by:

|R|2
|I |2 = 1 − ω̃

ω

|T |2
|I |2 . (12)
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The greybody factors, which measure the ratio between
absorbed and incident fluxes, are:

γlm = 1 − |R|2
|I |2 . (13)

The fact that ω̃ < 0 when ω < mΩH leads the reflection
coefficient to be higher than unity in such regime, i.e., the
wave gets amplified in the scattering process. In this regime
γlm < 0, and we describe the phenomenon of superradiance
in terms of the amplification factor:

Zlm = |R|2
|I |2 − 1. (14)

The reflection coefficient is obtained by using the asymp-
totic matching technique, which relies on comparing the solu-
tion of the radial equation (8) with its asymptotic approxima-
tions (10) and (11). Here we evaluate the radial equation both
in the low-frequency regime and numerically to determine the
reflection coefficients. Although asymptotic form (11) is use-
ful to clearly express the scattering process, its improvement
usually helps to reach numeric convergence when applying
the matching technique. One way of improving (11) is, as
done for example in Ref. [24], writing:

Rωlm ∼ I e−iωr∗
N∑
j=0

A j

r j
+ Reiωr∗

N∑
j=0

A∗
j

r j
,

where the coefficients A j are obtained by reinserting the
above expression into the radial equation and N is chosen
according to the desired precision.

An alternative can be obtained by noting that for r 	 r+
(r∗ ∼ r ), the radial equation can be approximated to:

d2

dr2∗
Rωlm +

(
ω2 − a2ω2 + λlm

r2∗

)
Rωlm = 0, (15)

which solution is

Rωlm ≈
√

πωr∗
2

[
(−i)ν+1/2I H (2)

ν (ωr∗)

+ iν+1/2RH (1)
ν (ωr∗)

]
, (16)

where H (1,2)
ν (·) are the Hankel functions [23], and

ν =
√

λlm + a2ω2 + 1/4.

Using the asymptotic expansions

H (1)
ν (x) ∼ √

2/(πx)ei(x−νπ/2−π/4)

and

H (2)
ν (x) ∼ √

2/(πx)e−i(x−νπ/2−π/4),

it is straightforward to show that (16) reduces to (11) for
ωr∗ → ∞. Here we use asymptotic form (16) to compute

the amplification factors both in the low-frequency regime
and numerically.

3.2 Low-frequency approximation

A low-frequency approximation can be found by makingω =
0 in the radial equation, and then matching its solution with
the asymptotic form (16) for ωr∗ � 1. Considering that
λlm ≈ l(l + 1) + O(ω2a2) in the regime ωa � 1 [23],
and that we are dealing with a scattering problem, the low-
frequency solution for Eq. (8) we seek is (ma �= 0):

Rωlm ≈ C1

r+ − r−

(
r − r+
r − r−

)iη √
r2 + a2

×F(−l, l + 1; 2iη + 1;−z), (17)

where F(α, β; γ ; x) are hypergeometric functions [23], η ≡
ma/(r+ − r−), and

z ≡ r − r+
r+ − r−

.

The expansion of (17) in the regime r 	 r+ is:

Rωlm ∼ C1Γ (2iη + 1)

[
(2l)!

l!Γ (2iη + l + 1)

(
r

r+ − r−

)l+1

+ (−1)−l−1l!
2(2l + 1)!Γ (2iη − l)

(
r

r+ − r−

)−l
]

. (18)

On the other hand, using that H (1)
ν (x) = Jν(x) + i Nν(x),

and H (2)
ν = Jν(x) − i Nν(x), where Jν(·) and Nν(·) are the

Bessel and Neumann functions, respectively, we can obtain
that in the regime ωr � 1 (16) reduces to:

Rωlm ∼ [(−i)l+1I + i l+1R]
√

π(ωr)l+1

2l+1(l + 1/2)!
+i[(−i)l+1I − i l+1R]2l(l − 1/2)!√

π(ωr)l
. (19)

Both expressions (18) and (19) describe the wave in the
low-frequency regime in the far region. Matching the corre-
sponding terms, after some manipulation, we can arrive at:∣∣∣∣RI

∣∣∣∣
2

≈
∣∣∣∣1 + X

1 − X

∣∣∣∣
2

, (20)

where

X = i
(−1)l+122l−1

(2l + 1)2

[
l!

(2l)!
]4

×Γ (2iη + l + 1)

Γ (2iη − l)
[ω(r+ − r−)]2l+1. (21)

Approximation above is valid only for ma �= 0.2 For
m = 0, the solution for the radial equation with ω = 0

2 Although the low-frequency solution we present here is similar to the
one presented in Ref. [18] it includes scattering in the cases β �= 0,
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is different of (17). However, since we focus on superra-
diance, which occurs only for m > 0, an analysis in the
low-frequency regime for m = 0 reveals irrelevant here.
Nevertheless, this low-frequency approximation is also valid
for non-superradiant scattering with m < 0, so that we also
compare it with our results for the greybody factors. As we
see in the next section, this approximation excellently agrees
with the numeric results for Mω � 0.01.

4 Numeric results

Since the analytic results for the reflection coefficients pre-
sented in the previous section are only valid for small fre-
quencies, our main results are computed numerically. First
we find the oblate spheroidal harmonics eigenvalues λlm
numerically [25,26], and then insert them in the radial equa-
tion (8). The radial equation is evaluated via fourth-fifth order
Runge–Kutta method with boundary conditions given by the
near-horizon solution (10) at r = (1 + ε)r+ (ε � 1). The
resulting solution is matched with the far-region solution (16)
in terms of the Hankel functions for r 	 r+ in order to find
the appropriate coefficients. Precision of our results has been
verified by comparing them with the low-frequency approxi-
mation (20), and by monitoring if flux conservation (12) was
maintained apart from a small tolerated error upon numerical
evaluation of the radial equation.

4.1 Superradiant regime

We start by confronting our numeric results against the low-
frequency approximation (20) in Fig. 3 for the cases q =
0,−0.5 with a = 0.5M and l = m = 1, and for q = −1
with a = 0.99ac and l = m = 1, 2. We see that agreement is
excellent regarding ωM � 0.01. Such good agreement can
be considered as a consistency check and precision test of
our numeric results. Although graphs in Fig. 3 correspond
to a very small part of the parameter space in which the
low-frequency approximation is valid, we have made similar
comparisons for other randomly chosen sets (q, a) obtaining
similar agreements to the ones presented here.

Figure 4 shows the amplification factor of massless scalar
waves scattered by Kerr black holes and by rotating black
holes with tidal charges q = −0.5,−1 for a/M = 0.50,
0.90, 0.99, and l = m = 1, 2. We see that the efficiency of
energy extraction from black holes with more intense tidal
charges gets suppressed if the ratio a/M is fixed. This is in
accordance with the fact that the space between the event
horizon and the ergosurface shrinks with the increase of −q

Footnote 2 continued
which is not covered by the former. We have verified that both approx-
imations agree for β = 0,ma �= 0.

Fig. 3 A sample of comparisons between the numeric and analytic
results obtained in the low-frequency regime. Similar agreement has
been found for other choices of the set (q, a)

for black holes of same a/M . We emphasize the fact that
in this figure a is in units of the black hole mass, and that
ac/M = 1, 1.225, 1.414 for q = 0,−0.5,−1 respectively.
Therefore, when a/M is constant, a/ac decreases with the
increase of −q.

In Fig. 5 we show the amplification factors for near-
extreme black holes, a = 0.99ac, with q = 0,−0.5,−1
considering modes l = m = 1, 2. Oppositely to what hap-
pens in the case of fixed a/M (Fig. 4), now the increase of −q
causes maximum amplification to be considerably enhanced.
This is a consequence of the fact that extreme black holes
with tidal charge can spin faster than Kerr black holes so
that ac/M increases considerably with the increase of −q.
Moreover, when a is allowed to increase, the event horizon
shrinks leaving more space between it and the ergosurface, as
illustrated in Fig. 1. We also note that, after reaching a max-
imum, Zlm → 0 for smaller frequencies once −q increases
indicating that superradiance efficiency increases despite the
fact MΩH decreases.

The analysis of Fig. 5 suggests maximum amplification
of modes l = m = 2 increases faster than the one of modes
l = m = 1 as the value of −q increases. In Fig. 6 we show
superradiance evolution for l = m = 1 and l = m = 2
considering black holes with q = 0,−1.0,−2.0,−2.5. As
the value of −q increases, superradiance for l = m = 2
enhances considerably so that maximum amplification in this
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Fig. 4 Amplification factors for black holes with q = 0,−0.5,−1 for a = 0.5M (left), a = 0.90M (center) and a = 0.99M (right). The
considered modes are l = m = 1 (top) and l = m = 2 (bottom)

Fig. 5 Amplification factors for a = 0.99ac in the cases q =
0,−0.5,−1 for l = m = 1 (top) and l = m = 2 (bottom). In terms
of the black hole mass a/ac = 0.99 means a/M ≈ 1.21, 1.40 for
q = −0.5,−1 respectively

case exceeds the one of modes l = m = 1 for q around −2.
Once the values q can assume have no limit in the negative
branch, theoretically, we wonder if maximum amplification

Fig. 6 Amplification factors for near-extreme black holes with q =
0,−1.0,−2.0,−2.5 and modes l = m = 1, 2. Grid lines help us to
visualize that maximum amplification in the cases q = −2.0,−2.5
occurs for l = m = 2 instead of l = m = 1

could be due to modes l = m > 2 for higher values of −q.
Figure 7 proves this indeed happens indicating that the value
ofm for which maximum amplification occurs increases with
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Fig. 7 Amplification factors for q = −5, a = 0.99ac and modes
l = m = 1, 2, 3. Grid lines help us to verify that in such case maximum
amplification occurs for l = m = 3

−q. There we present amplification factors for l = m =
1, 2, 3 considering near-extreme black holes with q = −5.

4.2 Non-superradiant regime

Although our analysis focuses on the superradiant regime,
our computations can be straightforwardly applied to obtain
the greybody factors of non-superradiant modes. Such com-
putation may help to elucidate the physics behind rotating
black holes with tidal charge and show that the validity of
approximation (20) extends to the non-superradiant regime.
This approximation is compared with numeric results in
Fig. 8 for a random selection of the parameters q, a with
l = −m = 1. Similarly to the case of superradiant scatter-
ing, the agreement is excellent in the regime of validity of
Eq. (20). We have also confronted this analytic expression
against other numeric results with similar agreement to the
ones illustrated in Fig. 8.

In Fig. 9 we show the greybody factors for the first non-
superradiant modes, l = 0, 1, 2, for a/M = 0.5, 0.99 and
q = 0,−0.5,−1. We see that the effect of increasing −q
on the scattering of such modes is to shift their absorption to
lower frequencies. This can be understood via the classical
analysis of absorption, where the key feature is the criti-
cal impact parameter, Dc. Particles in geodesics which have
impact parameter D < Dc are absorbed (γlm → 1), while the
ones in geodesics with D > Dc are scattered back to infinity
(γlm → 0). In the high-frequency limit, the impact parameter
is related to l and ω through D ∼ (l + 1/2)/ω [27]. It has
been shown that the increase of −q results in a increase of Dc

considering static cases [5,8]. Therefore, the increase of −q
results in a transition between scattered to absorbed modes
at lower values of ω considering fixed values of l. This anal-
ysis not only supports the observed in Fig. 9, but also sheds

Fig. 8 Sample of comparisons between greybody factors obtained ana-
lytically in the low-frequency regime and numerically

light on the reason why maximum amplification occurs for
smaller frequencies in Figs. 5 and 6 once −q increases.

5 Final remarks

We have inferred the influence of a (negative) tidal charge
on the phenomenon of superradiance which occurs around
rotating black holes by solving the problem of massless scalar
waves being scattered by them. Considering black holes with
fixed angular momentum per unit mass, the increase of the
tidal-charge intensity, −q, results in a decrease of amplifica-
tion of the scattered wave (Fig. 4). This is related to the fact
that a tidal charge acts to increase the event horizon of the
black hole leaving less space between it and the ergosurface.

On the other hand, an increase of the tidal-charge inten-
sity results in an enhancement of amplification obtained via
the scattering of massless scalar waves around near-extreme
rotating black holes (Fig. 5). This accomplishment is only
possible, however, because more negative tidal charges allow
black holes to spin faster than extreme Kerr black holes [10].

We have also shown that superradiance efficiency around
near-extreme black holes increases despite the fact that
the angular velocity at the event horizon decreases with
the increase of −q. This is only possible because maxi-
mum amplification is shifted to smaller frequencies as −q
increases (Figs. 4, 5, 6), similarly to what happens with the
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Fig. 9 Greybody factors describing the scattering of massless scalar waves by rotating black holes with tidal charge computed numerically for
a/M = 0.50, 0.99, q = 0,−0.5,−1, and l = 0, 1, 2

greybody factors for non-superradiant modes (Fig. 9). One
way of understanding such behavior can be done by making
use of the semiclassical relation D ∼ (l + 1/2)/ω. Once
ergoregion increases with −q, waves with higher impact
parameter can access it, causing superradiance to occur for
smaller frequencies if we consider fixed values of l.

The shift of amplification/greybody factors to smaller fre-
quencies can also be understood with the analysis of the
effective potential. As shown in Fig. 2, its maximum value
decreases with the increase of −q when we compare both
black holes of same angular momentum per unit mass and
near-extreme black holes. This causes the greybody factors of
non-superradiant modes for black holes with more negative
tidal charges to be higher for fixed values of frequency indi-
cating an increase of the absorption rate (Fig. 9). Similarly,
the amplification factors tend to increase initially with the
decrease of the effective potential, but they reach their max-
imum values at frequencies a little smaller than mΩH , and
then tend to zero as ω → mΩH . Therefore, despite the fact
black holes with more negative tidal charges tend to absorb as
well as to amplificate more, maximum amplification is con-
strained by the value of mΩH . Once ΩH tends to decrease
with the increase of −q, black holes with more negative tidal
charges present maximum amplifications which are smaller

if a is fixed (Fig. 4), but higher if we compare near-extreme
black holes (Figs. 5, 6).

It is well known that maximum amplification is achieved
for l = m = 1 in the scattering of massless scalar waves
by Kerr black holes [18]. Considering this, the tidal charge
imposes a crucial change at superradiance, once it may lead
maximum amplification to be obtained from modes l = m =
2, 3 (Figs. 6, 7). Although our analysis has been done for q ≥
−5, it indicates that the increase of −q can lead maximum
amplification to be obtained even for higher values of m.

We provided an analytical description for the reflection
coefficients valid at low frequencies [Eq. (20)]. This approx-
imation fits our numeric results for both superradiant and
non-superradiant modes with ma �= 0 once Mω � 0.01
(Figs. 3, 8). This agreement shows our results are consistent
and it allowed us to use the analytical result to calibrate the
precision in our numeric computations.
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