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Abstract We show that there are two or more procedures
to generalize the known four-dimensional transformation,
aiming to generate cylindrically rotating charged exact solu-
tions, to higher dimensional spacetimes . In the one proce-
dure, presented in Eur. Phys. J. C (2019) 79:668, one uses a
non-trivial, non-diagonal, Minkowskian metric η̄i j to derive
complicated rotating solutions. In the other procedure, dis-
cussed in this work, one selects a diagonal Minkowskian
metric ηi j to derive much simpler and appealing rotating
solutions. We also show that if (gμν, ηi j ) is a rotating solu-
tion then (ḡμν, η̄i j ) is a rotating solution too with similar
geometrical properties, provided η̄i j and ηi j are related by a
symmetric matrix R: η̄i j = ηik Rk j .

1 Preliminaries

In this work we will use the notation of [1] with a slight
difference. Instead of taking f (T ) = T + αT 2 with α < 0
we will take f (T ) = T − αT 2 with α > 0.

Another different choice, which will be made clearer later,
is the signature of the N -dimensional Minkowski spacetime:
(+,−,−,−, . . .). Most of the other notations will be almost
similar to that of [1].

As a first comment we state that there are some sign mis-
takes in the definition of Kαμν of [1]. We use the following
definitions:1

1 Sαμν may be given in a more compact form as:

Sαμν = 1

4
(T νμα + T αμα − Tμνα) − 1

2
gανT σμ

σ + 1

2
gαμT σν

σ .

a e-mail: azreg@baskent.edu.tr (corresponding author)

T α
μν = eb

α(∂μe
b
ν − ∂νe

b
μ),

Kαμν = 1

2
(Tμαν + Tναμ − Tαμν),

Sαμν = 1

2
(Kμνα − gανT σμ

σ + gαμT σν
σ ),

T = TαμνS
αμν. (1)

It is obvious from these definitions that the global sign of
T would depend on the signature of the metric. For a static
metric with signature (+,−,−,−, . . .)

ds2 = A(r)dt2 − 1

B(r)
dr2 − r2

(
n∑

i=1

dφ2
i +

N−n−2∑
i=1

dz2
i

l2

)
,

(2)

where n is the number of angular coordinates, N is the dimen-
sion of spacetime and l is related to the cosmological constant
by

� = − (N − 1)(N − 2)

2l2
< 0. (3)

We obtain

T = + (N − 2)A′B
r A

+ (N − 2)(N − 3)B

r2 . (4)

Had we reversed the signature of the metric we would obtain
the same expression with the two ‘+’ sings changed to ‘−’
sings. A second comment is also in order: The expression of
T given in [1] has an extra factor 2 in the term including A′.

A final comment: The last term in Eq. (14) of [1] should
have the opposite global sign. Using our metric-signature
choice, Eq. (14) of [1] takes the form
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ds2 = A(r)

(
	dt −

n∑
i=1

ωidφi

)2

− dr2

B(r)
− r2

N−n−2∑
i=1

dz2
i

l2

− r2

l4

n∑
i=1

(ωidt − 	l2dφi )
2 − r2

l2

n∑
i< j

(ωidφ j − ω jdφi )
2,

(5)

where (ω1, ω2, . . . , ωn) are the rotation n parameters,
(φ1, φ2, . . . , φn) are the n angular coordinates and 	 =√

1 + �n
i=1(ω

2
i / l

2). Note that the last term, −(r2/ l2)∑n
i< j (ωidφ j − ω jdφi )

2, vanishes identically if the space-
time has only one angular coordinate.

The field equations of Maxwell- f (T ) gravity are given in
Eq. (3) of [1], which we rewrite here for convenience

Iμ
ν ≡ Sμ

ρν∂ρT fT T + [
e−1eaμ∂ρ

(
eea

αSα
ρν

) − T α
λμSα

νλ
]
fT

− δν
μ

4

(
f + (N − 1)(N − 2)

l2

)
+ κ

2
T(em) μ

ν = 0,

∂ν

(√|g|Fμν
)

= 0, (6)

where e ≡ √|g| and T(em) μ
ν = FμαFνα − 1

4δμ
νFαβFαβ ,

with Fαβ = ∂αAβ−∂β Aα , is the energy-momentum tensor of
the electromagnetic field. Here the ratio (N−1)(N−2)/ l2 is
proportional to the cosmological constant � (3). It is obvious
from the shape of Eq. (6) that we are dealing with a spin-
zero (pure tetrad) f (T ) gravity. The general field equations
including spin connection terms are provided in [2]

A particular charged static solution to the field equa-
tions (6) with f (T ) = T − αT 2 and α = −1/(24�) > 0
has been determined [3] and is given by Eqs. (8) of [1]

A(r) = r2

6(N − 1)(N − 2)α
− m

rN−3 + 3(N − 3)q2

(N − 2)r2(N−3)

+ 2
√

6α(N − 3)3q3

(2N − 5)(N − 2)r3N−8 ,

B(r) = A(r)

[
1 +

√
6α(N − 3)q

r N−2

]−2

,

�(r) = q

r N−3 +
√

6α(N − 3)2q2

(2N − 5)r2N−5
, (7)

where we have replaced �eff by 1/[6(N −1)(N −2)α]. Note
that since α > 0 we have �eff > 0.

2 Generating cylindrically rotating charged exact
solutions

Consider the following substitution where a denotes a rota-
tion parameter

dt →
√

1 + a2

l2
dt−adφ, dφ →

√
1 + a2

l2
dφ− a

l2
dt.

(8)

There is no claim whatsoever in Refs. [4,5] that the substitu-
tion (8) is a shortcut or a trick for generating rotating solutions
from static ones, however, some authors have applied the
substitution (8) as a procedure to generate their supposed-
to-be rotating solutions. In this work we present a general
comment on the transformation (8) and its generalization to
higher dimensions.

Our starting point is the expression of the tetrad eiμ
in terms of the static metric (A(r), B(r)), the n rota-
tion parameters denoted by (ω1, ω2, . . . , ωn) instead of

(a1, a2, . . . , an), and the constant 	 =
√

1 + �n
i=1(ω

2
i / l

2).

The tetrad expression eiμ is given in Eq. (12) of [1]. However,
in order to evaluate eiμ from eiμ, using the expression eiμ =
ηi j gμνe j ν , we need an expression for the Minkowskian met-
ric ηi j . The authors of Ref. [1] did not provide any expres-
sion for ηi j they used in their work. An anonymous referee
claimed that it is the non-diagonal form of ηi j , as given in
Eq. (44) of Ref. [8] and Eq. (41) of Ref. [9], that has been used
in [1] and that it is the only valid form of ηi j to be used. In this
work we will use two different expressions for ηi j and we
shall show that the statement of the referee does not hold true
by constructing a new cylindrically rotating charged solution
using a diagonal expression for ηi j .

For N = 4 we have checked that the proposed rotat-
ing solution in [1] satisfies the field equations (6) with
κ = −2 taking a diagonal Minkowskian metric ηi j =
diag(1, −1, −1, −1).

From now on we restrict ourselves to N = 5 and consider
the cases 1) n = 1 and 2) n = 2.

2.1 Case (1) N = 5, n = 1

In this case the coordinates are denoted by (t, r, φ, z1, z2).
The tetrad expression (12) of [1] reduces to

(eiμ) =

⎛
⎜⎜⎜⎜⎜⎝

	
√
A(r) 0 −ω

√
A(r) 0 0

0 1√
B(r)

0 0 0
ωr
l2

0 −	r 0 0
0 0 0 r

l 0
0 0 0 0 r

l

⎞
⎟⎟⎟⎟⎟⎠ . (9)
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This is not a proper tetrad as the associated spin connection
does not vanish [2,6]. To evaluate the associated spin con-
nection we refer to [2,6]. Using the terminology of these
references, the reference tetrad ei(r)μ is, in this case, given
by (9) upon setting m = q = 0 (absence of gravity and mat-
ter) and N = 5. We find that the nonvanishing components
of the spin connection ωa

bμ are [the Latin indexes (a, b) in
ωa

bμ run from 1→5]: ω1
2t = ω2

1t = 	r/(72α), ω1
2φ =

ω2
1φ = −ωr/(72α), ω2

3t = ω3
2t = −ωr/(6

√
2αl2),

ω2
3φ = ω3

2φ = −	r/(6
√

2αl2), ω2
4z1 = ω4

2z1 =
ω2

5z2 = ω5
2z2 = −r/(6

√
2αl). This fact results in viola-

tion of local Lorentz invariance.
Taking a diagonal Minkowskian metricηi j = diag(1, −1,

−1, −1, −1), the corresponding metric gμν = ηi j eiμe j ν
reads

ds2 = A(r)(	dt − ωdφ)2 − dr2

B(r)

− r2

l4

(
ωdt − 	l2dφ

)2 − r2dz2
1

l2
− r2dz2

2

l2
, (10)

which is the same as the metric suggest in Eq. (14) of [1];
in this case (N = 5, n = 1) the last term in Eq. (14) of [1]
vanishes identically.

Now, we evaluate T upon substituting (9) and (10) into (1)
and the resulting expression is identical to (4) taking N = 5.

On substituting (9), (10) and (4) into the field equations (6)
and using the static solution (7) we noticed that all the field
equations are satisfied.

2.2 Case (2) N = 5, n = 2

In this case the coordinates are denoted by (t, r, φ1, φ2, z).
The tetrad expression (12) of [1] reduces to

(eiμ) =

⎛
⎜⎜⎜⎜⎜⎝

	
√
A(r) 0 −ω1

√
A(r) −ω2

√
A(r) 0

0 1√
B(r)

0 0 0
ω1r
l2

0 −	r 0 0
ω2r
l2

0 0 −	r 0
0 0 0 0 r

l

⎞
⎟⎟⎟⎟⎟⎠ .

(11)

In order to proof that Eq. (14) of Ref. [1], which is
Eq. (5) of this work (including the global sign correction
we made), is a rotating solution one needs an expression for
the Minkowskian matrix ηi j by which one can evaluate eiμ

from eiμ (11), then evaluate all the tensors needed in the field
equations (6). We divide this case into two sub-cases a) ηi j
diagonal and b) ηi j non-diagonal.

2.2.1 Case (a) ηi j diagonal

If ηi j = diag(1, −1, −1, −1, −1), the corresponding met-
ric gμν = ηi j eiμe j ν takes the form

ds2 = A(r)(	dt − ω1dφ1 − ω2dφ2)
2 − dr2

B(r)

− r2dz2

l2
− r2

l4

2∑
i=1

(ωidt − 	l2dφi )
2. (12)

This metric has been directly derived from the vielbein (11)
and ηi j = diag(1, −1, −1, −1, −1). It is different from
the rotating metric suggested in Eq. (14) of [1], which is
Eq. (5) of this work. The difference resides in the last term
in Eq. (5) which, in this case (N = 5, n = 2), reduces to
−(r2/ l2)(ω1dφ2 − ω2dφ1)

2.
Knowing the metric we evaluate eiμ by eiμ = ηi j gμνe j ν .

Next, we evaluate T upon substituting (11) and (12) into (1)
and the resulting expression is identical to (4) taking N = 5.

Now, on substituting (11), (12) and (4) into the field equa-
tions (6) and using the static solution (7) we noticed that all
the field equations are satisfied.

We have thus obtained a new rotating solution given
by (12), which we rewrite for convenience

ds2 = A(r)

(
	dt −

2∑
i=1

ωidφi

)2

− dr2

B(r)

− r2dz2

l2
− r2

l4

2∑
i=1

(ωidt − 	l2dφi )
2. (13)

This is a solution to the field equations (6) with eiμ
given by (11), ηi j = diag(1, −1, −1, −1, −1), 	 =√

1 + �2
i=1(ω

2
i / l

2), Aμdxμ = �(r)(	dt − �2
i=1ωidφi ),

and the r -functions (A, B, �) are given in (7).

2.2.2 Case (b) ηi j non-diagonal

The authors of Ref. [1] did not provide an expression
for the Minkowskian metric ηi j they used in their work.
In our first version of this work we assumed ηi j =
diag(1, −1, −1, −1, −1) and we reached the conclusion
that the metric (5) is not a solution to the field equa-
tions (6). However, an anonymous referee claimed that a cor-
rect expression for ηi j would be the matrix (44) of Ref. [8],
which is also the matrix (41) of Ref. [9]. The rightmost col-
umn and the bottom line of that matrix have a common
element, which is −1, and the rest of the elements of the
rightmost column and the bottom line are 0. In the case
of five-dimensional spacetime with 2 angular coordinates
(N = 5, n = 2), matrix (44) of Ref. [8], or matrix (41)
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of Ref. [9], takes the following form using the notation and
signature of this work (The authors of Refs. [8,9] claim that
the metric [14], which is matrix (44) of Ref. [8] and matrix
(41) of Ref. [9], is the ‘Minkowskian metric in cylindrical
coordinates’. This is very confusing, for the Minkowskian
metric in cylindrical coordinates depends on the radial coor-
dinate r while the metric [14] is constant and does not depend
on r )

ηi j =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 −1 0 0 0

0 0 −1 − ω2
2

l2	2
ω1ω2
l2	2 0

0 0 ω1ω2
l2	2 −1 − ω2

1
l2	2 0

0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (14)

With this ηi j matrix and the expression of eiμ given in (11),
the formula gμν = ηi j eiμe j ν yields the metric (5). It is
straightforward to show that the metric (5), which we rewrite
for convenience

ds2 = A(r)

(
	dt −

2∑
i=1

ωidφi

)2

− dr2

B(r)
− r2dz2

l2

− r2

l4

2∑
i=1

(ωidt − 	l2dφi )
2 − r2

l2
(ω1dφ2 − ω2dφ1)

2,

(15)

is a solution to the field equations (6) with eiμ given by (11),

ηi j given by (14), 	 =
√

1 + �2
i=1(ω

2
i / l

2), Aμdxμ =
�(r)(	dt −�2

i=1ωidφi ), and the r -functions (A, B, �) are
given in (7).

It is also straightforward to show that T , upon substitut-
ing (11) and (15) into (1), has the same expression as in (4)
taking N = 5.

In concluding, there are two cylindrically rotating solu-
tions to the field equations (6). The first solution, derived in
this work (13), is much simpler and is used with a diago-
nal Minkowskian metric ηi j = diag(1, −1, −1, −1, −1).
The second solution (15), derived in Ref. [1] (with the global
sign correction of its last term made in this work), includes
extra terms, −(r2/ l2)

∑n
i< j (ωidφ j − ω jdφi )

2, the number
of which depends on the number n of angular coordinates and
is used with a non-diagonal Minkowskian metric ηi j (14).

It is not clear why the authors of Refs. [1,8,9] used a
non-trivial, non-diagonal, Minkowskian metric (14) that they
claim to be the ‘Minkowskian metric in cylindrical coor-
dinates’. This has nothing to do with cylindrical coordi-
nates! [see (The authors of Refs. [8,9] claim that the met-
ric [14], which is matrix (44) of Ref. [8] and matrix (41) of
Ref. [9], is the ‘Minkowskian metric in cylindrical coordi-
nates’. This is very confusing, for the Minkowskian met-

ric in cylindrical coordinates depends on the radial coor-
dinate r while the metric [14] is constant and does not
depend on r ) for details]. Moreover, such a non-diagonal
Minkowskian metric has led to a more complicated rotat-
ing solution (15). As a consequence, the rotating solutions
derived in [8,9] have the same complicated structure as the
one derived in [1] and they can be simplified on remov-
ing the extra terms ∓(r2/ l2)

∑n
i< j (ωidφ j − ω jdφi )

2 pro-
vided they are used with a diagonal Minkowskian metric
ηi j = ±diag(1, −1, −1, −1, . . . ,−1).

A point to emphasize is that when evaluating the metric
from the formula gμν = ηi j eiμe j ν one has to use ηi j =
±diag(1, −1, −1, −1, . . . ,−1) and not a non-diagonal
expression. The tetrad defined in (11) forms a trivial pseudo-
Cartesian system with metric ηi j = diag(1, −1, −1, −1,

. . . ,−1). Another anonymous referee has supported our
claim.

3 Non-diagonal solutions versus diagonal solutions

From now on, a non-diagonal Minkowskian metric will be
denoted by η̄i j . Let η̄i j and ηi j be a non-diagonal and a
diagonal Minkowskian metrics of dimension N , respectively.
These two metrics may be related by a symmetric matrix R
(Ri j = R ji ) such that η̄i j = ηik Rk j . For instance, η̄i j given
by (14) and ηi j = diag(1, −1, −1, −1, −1) are related by
Ri j = ηik η̄k j :

Ri j =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0

0 0 1 + ω2
2

l2	2 −ω1ω2
l2	2 0

0 0 −ω1ω2
l2	2 1 + ω2

1
l2	2 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (16)

Let ḡμν and gμν be the corresponding spacetime metrics,
respectively.

The purpose of this section is to show that if (gμν, ηi j ) is
a rotating solution then (ḡμν, η̄i j ) is a rotating solution too
with similar geometrical properties. Using ḡμν = η̄i j eiμe j ν
and the fact that ḡμσ ḡσν = δν

μ we obtain

ḡμν = ηik Rk j ei
μe j

ν, (17)

where ηik and Rkj are the inverse matrices of ηik and Rkj ,
respectively. Next, we evaluate ēiμ = η̄i j ḡμνe j ν . Using the
expression (17) of ḡμν and the fact that Ri j is symmetric, we
obtain

ēi
μ = ei

μ, (18)
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which along with the relation ēiμ = eiμ (true by definition
since we are using the same tetrad but different Minkoskian
metrics) imply that all the barred relevant entities entering the
field equations (6) are equal to the non-barred entities. Hence,
if the field equations are satisfied for the non-barred entities,
they are automatically satisfied for the barred entities.

Our solution (13) includes four terms and the solution
derived in Ref. [1], Eq. (15), includes the same four terms

plus the extra term − r2

l2
∑n

i< j (ωidφ j−ω jdφi )
2, which in the

case N = 5, n = 2 takes the form − r2

l2
(ω1dφ2 − ω2dφ1)

2.
It is clear that these two solutions are manifestly different.
Even if they share some similar geometrical and physical
properties they are certainly different solutions because they
cannot be related by a global coordinate transformation.

4 Concluding remarks

We have thus shown that a trivial generalization of the trans-
formation (8) to higher dimensional spacetimes is possi-
ble. By virtue of such a generalization we derived a sim-
ple cylindrically rotating solution of the form (5) with the
last term −(r2/ l2)

∑n
i< j (ωidφ j − ω jdφi )

2 removed. This
newly derived metric along with Aμdxμ = �(r)(	dt −
�n
i=1ωidφi ) is a solution to the field equations (6) provided

the Minkowskian metric is diagonal ηi j = diag(1, −1, −1,

−1, . . . ,−1) with the tetrad given by the expression (12)
of [1]. The r -functions (A, B, �) are given in (7).

Another, non-trivial, generalization of (8) is also possible
yielding a complicated cylindrically rotating solution of the
form (5). This metric along with Aμdxμ = �(r)(	dt −
�n
i=1ωidφi ) is a solution to the field equations (6) provided

the Minkowskian metric is non-diagonal of the general form
given in Eq. (44) of Ref. [8] and Eq. (41) of Ref. [9] with the
tetrad given by the expression (12) of [1]. The r -functions
(A, B, �) are given in (7).

We have also shown that if (gμν, ηi j ) is a rotating solution
with ηi j being diagonal, then (ḡμν, η̄i j ) is another rotating
solution with η̄i j = ηik Rk j being non-diagonal and Ri j is

a symmetric matrix. These two rotating solutions have the
same geometrical properties.
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