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Abstract In the framework of multidimensional f (R)

gravity, we study the possible metrics of compact extra
dimensions assuming that our 4D space has the de Sitter met-
ric. Manifolds described by such metrics could be formed at
the inflationary and even higher energy scales. It is shown
that in the presence of a scalar field, it is possible to obtain
a variety of inhomogeneous metrics in the extra factor space
M2. Each of these metrics leads to a certain value of the 4D
cosmological constant Λ4, and in particular, it is possible
to obtain Λ4 = 0, as is confirmed by numerically obtained
solutions. A nontrivial scalar field distribution in the extra
dimensions is an important feature of this family of metrics.
The obtained solutions are shown to be stable under extra-
dimensional perturbations.

1 Introduction

The idea of extra dimensions is widely used for explanation
of a variety of phenomena, such as the physics beyond the
Standard Model, cosmological scenarios including inflation-
ary models and the origin of the dark components of the Uni-
verse, etc. [1–4]. Sometimes extra dimensions are endowed
with scalar fields and antisymmetric form fields to stabilize
their metric. There are models where the Casimir effect is
taken into account [5,6]. Thus inclusion of extra dimensions
is a promising background for the physics below ∼ 10 TeV.

At the same time, it is usually assumed that the Universe
has been nucleated due to quantum processes at very high
energies [7–10]. The metric of our Universe and the fields
inside the horizon experience strong quantum fluctuations
that could affect their dynamics and their final states at low
energies [11,12], including the shape of extra dimensions.
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In this paper, we study the possible influence of a matter
field on the metric of extra dimensions. Previous results con-
cerning multidimensional gravity with 4D Minkowski fac-
tor space are published in [13–17], where the importance of
inhomogeneous extra dimensions was discussed. In partic-
ular, the scalar field localization on deformed extra space.
Here we extend the same idea to a more general case, the 4D
de Sitter metric with an arbitrary Hubble parameter. Such a
metric is approximately realized at the inflationary stage and
can be valid up to Planck energies.

The models under consideration contain two extra dimen-
sions that form a compact surface of rotation, which in the
general case possesses a conical singularity at a particular
point (“the second center”). The scalar field is to a large
extent concentrated in a neighborhood of this point, showing
a behavior similar to what is observed in many brane-world
models. However, unlike such models, we assume that the
size of extra dimensions is small enough to be invisible in
modern accelerator experiments, i.e., we actually adhere to
the Kaluza–Klein concept of extra dimensions. A narrower
class of models are completely regular, however, it should
be noted that their basic physical properties, including their
4D appearance, are almost indistinguishable from those of
models with conical singularities.

Our study is based on multidimensional f (R) gravity. The
interest in f (R) theories is motivated by inflationary scenar-
ios starting with the work of Starobinsky [18]. Having been
developed 40 years ago on the basis of 4D R2 gravity, this
model remains most promising up to now.

The Einstein gravity has been tested and appears to be
valid at small energies. The energy between zero and 10 TeV
has been studied by various experiments, including those at
the LHC collider. As a result, a deviation from the standard
theory of gravity was not found. At the same time, we do not
know whether it is true at higher energies where the quantum
corrections contribute significantly to a Lagrangian. More-
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over, the choice of the Einstein-Hilbert gravity is doubtful at
sub-planckian energies – the smallness of quantum correc-
tion should be proved in this case.

Any combination of quantities invariant under the general
coordinate transformations may be used in the theory if one
keeps in mind two issues. Firstly, a theory must restore the
Einstein-Hilbert action at low energies. Secondly, any grav-
itational action including the Einstein-Hilbert one is non-
renormalizable and should be considered as an effective the-
ory. The total uncertainty in the choice of the gravitational
Lagrangian is a flaw which is party compensated by new
opportunities provided.

The simplest extension of general relativity is the one con-
taining a function of the Ricci scalar f (R). Some viable f (R)

models in 4D space that satisfy the observational constraints
have been proposed in [19–21]. Such modified gravity can
be responsible for dark energy [22].

Stabilization of the extra space as a pure gravitational
effect in f (R) and more general multidimensional theories
with maximally symmetric extra spaces has been studied in
[23–25], as well as their ability to describe both early and late
inflationary expansion [26–28]. In [15], it was shown that an
f (R) model with inhomogeneous extra space is compatible
with 4D Minkowski or very weakly curved space-times.

The structure of this paper is as follows. In Sect. 2 we
choose the metric and dimensionality of our manifold, the
Lagrangian containing gravity with higher derivatives and
a scalar field and derive the set of classical equations. In
Sect. 3 we discuss the boundary conditions that are neces-
sary in order to obtain a set of solutions and present a number
of numerical solutions obtained under these conditions. Sec-
tion 4 is devoted to a stability study for the obtained solutions.
In Sect. 5 we discuss the 4D properties of these solutions.
Conclusion are made in Sect. 6.

2 Basic equations

We will consider 6D metrics of the general form

ds2 = gμνdx
μdxν − e2α(u)du2 − e2β(u)dϕ2, (1)

where u and ϕ are extra spatial coordinates, and ϕ ∈ [0, 2π)

is assumed to be a polar angle, while the 4D metric tensor
gμν may depend on both 4D coordinates (making it possible
to consider, for example, cosmological or static models) and
the “radial” fifth coordinate u. The extra factor space M2

parametrized by (u, ϕ) is thus a surface of rotation, which
can be compact if the circular radius r(u) ≡ eβ(u) tends to
zero at two boundary values of u. The 6-dimensional metric
is chosen as the simplest nontrivial metric suitable for our
purposes.

In such space-times, we consider a theory with the action

S =
∫

d6x
√|g6|

[
m4

D

2
f (R) + 1

2
gABφ,Aφ,B − V (φ)

]
,

A, B = 0, . . . , 5. (2)

where g6 = det(gAB), f (R) and V (φ) are some functions
(to be chosen later) of the 6D scalar curvature R and the
scalar field φ, respectively. Variation of (2) with respect to φ

and gAB leads to the field equations

�φ + Vφ = 0, where �φ = ∇A∇ Aφ, Vφ = dV/dφ,

(3)

−1

2
δBA f (R) +

[
RB
A + ∇A∇B − δBA�

]
fR = − 1

m2
D

T B
A ,

fR = d f/dR, (4)

and the stress-energy tensor of the scalar field φ = φ(y)
reads

T B
A [φ] = φ,Aφ,B − 1

2δBAφ,Cφ,C + δBAV . (5)

Before writing the particular equations to be solved, it is
helpful to present brief expressions for the Ricci tensor com-
ponents RA

B assuming a general diagonal metric in arbitrary
dimensions,

ds2 =
∑
A

ηA e2bA(X)(dx A)2, A = 0, . . . , D − 1, (6)

where bA(X) are arbitrary functions of x A, and ηA = ±1.
Then for the diagonal components of RA

B we have

RM
M =

∑
A �=M

⎛
⎝�AbM + �MbA − ηM e−2bM bA,M

∑
B �=A,M

bB,M

⎞
⎠ ,

(7)

where no summing is assumed over an underlined index,

bA,B = ∂BbA, �M f (X) = 1√
g
∂M

(√
ggMM∂M f (X)

)

for an arbitrary function f (X), and g = | det(gMN )|. The
off-diagonal components of the Ricci tensor are more con-
veniently written with lower indices, namely,

RMN =
∑

A �=M,N

(
bA,MN + bA,MbA,N − bM,NbA,M − bN ,MbA,N

)
.

(8)

In the present study, we consider a cosmological (de Sitter)
metric in 4D space-time and the extra dimensions using the
Gaussian u coordinate (length along the coordinate axis of
x4 = u), so that the metric (1) takes the form

ds2 = dt2 − e2Htδi j dx
i dx j − du2 − r(u)2dϕ2,

i, j = 1, 2, 3, (9)
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where H = const is the Hubble constant. Accordingly, in
terms of (6) we now have

b0 = 0, bi = Ht, b4 = 0, b5 = ln r(u), (10)

and the expressions for RA
B are greatly simplified: the only

nonzero components of RA
B and the scalar R are (the prime

stands for d/du)

Rt
t = R

i
i = 3H2, Ru

u = Rϕ
ϕ = −r ′′

r
, (11)

R = 12H2 − 2r ′′

r
, (12)

Assuming φ = φ(u), Eq. (3) and noncoinciding equations
from (4) may be written as

φ′′ + φ′ r ′

r
= Vφ, (13)

−1

2
f (R) + 3H2 fR + f ′′

R + r ′

r
f ′
R

= m−2
D

(
−φ′2

2
− V

)
, (14)

−1

2
f (R) − r ′′

r
fR + r ′

r
f ′
R = m−2

D

(
φ′2

2
− V

)
, (15)

−1

2
f (R) − r ′′

r
fR + f ′′

R = m−2
D

(
−φ′2

2
− V

)
, (16)

where f ′
R = d fR/du, etc.

3 Models with inhomogeneous extra space

3.1 Equations and boundary conditions

In our calculations, in order to avoid dealing with third- and
fourth-order derivatives, it will be convenient, within the
same set of equations, to use the Ricci scalar R(u) as one
more unknown function. in addition to r(u) and φ(u). As
three independent equations for this system, we can take, for
example, (13), (12) and a combination of (16) and (12):

φ′′ + φ′ r ′

r
= Vφ, (17)

R = 12H2 − 2
r ′′

r
, (18)

−1

2
f (R) + f ′′

R +
(
R

2
− 6H2

)
fR

= m−2
D

(
−φ′2

2
− V

)
, (19)

resolved with respect to the higher derivatives φ′′, r ′′, R′′.
We will also use the combination (15) + (16) – (14) – fR ·
(12), which leads to

− f (R)

2
+ (R − 15H2) fR = m−2

D

(
φ′2

2
− V

)
, (20)

and contains lower-order derivatives, as a restriction on the
solutions of the coupled second order differential equations.

As boundary conditions, we use the requirement of u = 0
being a regular center on the (u, φ) surface and the corre-
sponding requirements for φ and R:

r(0) = 0, r ′(0) = 1 (21)

φ(0) = φ0, φ′(0) = 0, R(0) = R0, (22)

where all quantities with the index 0 are constants. These
initial parameters are related by the condition following from
Eq. (20),

− f (R0)

2
+ (R0 − 15H2) fR(R0) = −m−2

D V (φ0). (23)

This means that for given f (R) the quantity R0 is related to
H and φ0, so that any two of these three parameters are free.

We also have from (19) and (21) for u → 0

R′(0) = 0, lim
u→0

φ′

r
= φ′′

0 , r ′′(0) = 0. (24)

We will seek solutions for u > 0 in which the circular
radius r → 0 at some u = umax, which provides compact-
ness of the extra space parametrized by u and ϕ.

The total energy on the (u, ϕ) surface for a specific solu-
tion is

ρ(φ0) = 2π

∫ umax

0
du r(u)

[
φ′2

2
+ V

]
, (25)

it may be interpreted as the energy density of the scalar field
stored in the extra dimensions. This energy density depends
on the parameter φ0 expressing the boundary scalar field
value in M2.

3.2 Pure gravity

Let us first consider the case φ = φ0, in which the scalar
field is distributed uniformly in space and does not depend
on time, and the equations can be solved analytically. In this
case the scalar field potential is constant, V = V0 = V (φ0).

Equation (20) in this case leads to

1

2
f (R) + (15H2 − R) fR = 0, (26)

which means that also R = R0 = const, hence the 2D extra
space is maximally symmetric for any given f (R), and from
(12) it follows

r ′′

r
= 6H2 − R0

2
. (27)

Now, the difference of Eqs. (14)–(16) reduces to

3H2 fR + r ′

r
f ′
R + r ′′

r
fR = 0. (28)
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If we assume that fR(R0) �= 0, and also notice that f ′
R = 0

due to R = const, Eq. (28) reduces to

r ′′

r
= −3H2, (29)

and we also have

R = R0 = 18H2,
f

fR
= 6H2. (30)

Under our conditions at u = 0, the solution of (29) reads

r = 1√
3H

sin
(√

3H u
)

, (31)

and the metric has the form

ds2 = dt2 − e2Htδi j dx
i dx j − 1

3H2 (dθ2 + sin2 θdϕ2),

θ = √
3H u, (32)

the extra space being a 2-sphere.
We have shown that with any choice of the initial function

f (R) the only solution with the metric (9) for pure gravity
(or with a constant scalar field) corresponds to a spherical
extra space.

This result deserves attention at high energies where the
Hubble parameter is large enough. A common starting point
is to fix the properties of extra dimensions, their size in partic-
ular. These properties depend on the Lagrangian parameters,
including the topology of extra space, but do not depend on
our 4D metric. According to (30), (32), the state of affairs is
different at least for the class of models containing all sorts
of f (R). The extra space is inevitably maximally symmet-
ric, and its radius is stiffly related to the Hubble constant,
r = √

3H−1.
In particular, if we choose f (R) = aR2 + R + (c − V )

(see Eq. (34) further on), Eq. (26) gives the following relation
between the parameters:

108aH4 + 12H2 + c − V = 0 or

H2 = −b ± √
b2 − 3a(c − V )

18a
= R0

18
. (33)

The possibility of complex roots in this expression shows
that not any choice of the parameters leads to a valid solution,
since obviously H2 must be real.

At the inflationary stage of the Universe evolution, r is
close to 10−27 cm, and it is about 10−33 cm at the Planck
scale. However, if we consider very small H , for example,
corresponding to the present epoch, the Ricci scalar of extra
dimensions will be close to zero, meaning their huge size,
incompatible with observations.

To avoid such a strong constraint, one can add matter fields
(a scalar one in our case) or/and widen the Lagrangian by
adding other invariants like the Ricci tensor squared, mak-
ing it possible to obtain inhomogeneous extra dimensions. A

Fig. 1 The extra space metric function r(u), the Ricci scalar R(u)

of 6D space and the scalar field φ(u) for f (R) = aR2 + bR + c
and V (φ) = (m2/2)φ2 (units mD = 1). The parameter values are
m = 0.1, b = 1, a = −100, c = −0.0021. Additional conditions
are: φ0 = 0.07, H = 0. The value of R(0) follows from Eq. (23). Here
R(0) 
 0.00485

detailed discussion on the basis of other extra space metrics
can be found in [29,30].

In the next section, we show that smallness of the Hubble
parameter does not mean smallness of the extra-dimensional
Ricci scalar. The size of extra space could be small enough
not to be in conflict with observations.

3.3 Numerical solutions: conical singularities

To obtain examples of numerical solutions of interest, let us
choose the following functions in the action (2):

f (R) = aR2 + bR + c, a, b, c = const,

V (φ) = m2

2 φ2, m = const. (34)

The figures below present solutions for different values of
the parameters.

The numerical results are presented in Figs. 1, 2, 3, 4, 5
and 6. A variation of the parameter values can lead to quali-
tatively different metrics in M2. For example, the curvature
may change its sign, as is seen from Fig. 5.

The point u = 0 is a regular center by our boundary con-
ditions. One can notice that in general our solutions contain
conical singularities at u = umax. Indeed, as is seen from
Fig. 4, left panel, where the first derivative r ′(umax) �= −1,
the curvature R is infinite at the point u = umax. A similar
thing happens with a usual cone as a 2D surface in 3D flat
space: in that case, the metric on the conical surface is every-
where flat, hence the curvature tensor and all its invariants
are zero, while at the top the curvature is infinite. Our case is
quite similar, the only difference is that the curvature around
the top (u = umax) is not zero but finite. Indeed, the limiting
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Fig. 2 The same as in Fig. 1 but H = 0.035, R(0) 
 0.0227767

Fig. 3 The same as in Fig. 1 but H = 0.1, R(0) 
 0.198327

Fig. 4 Additional information about the case discussed in Fig. 3

Fig. 5 The parameter values: m = 0.1, b = 1, a = 10, c = 0.0021.
Additional conditions: φ0 = 0.07, H = 0, R(0) 
 0.00189 follows
from Eq. (23)

Fig. 6 Solution without a conical singularity, r ′(umax) = −1. The
extra space metric function r(u), the Ricci scalar R(u) of 6D space
and the scalar field φ(u) for f (R) = aR2 + bR + c and V (φ) =
(m2/2)φ2 (units mD = 1). The parameter values are m = 0.1, b =
1, a = −10.9, c = −0.0021. Additional conditions are: φ0 =
0.07, H = 0.1 The value of R(0) follows from Eq. (23). Here
R(0) 
 0.179969, r ′(umax) = −1
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values of R as u → umax are finite, see Fig. 3, right panel.
Moreover, the l.h.s. in Eq. (20) is finite in the same limit, so
finite is also the r.h.s. characterizing the scalar field. Such
metrics are used in the extra-dimensional context, see, e.g.,
[31] and references therein.

It is also of interest to check whether or not there are
solutions free from such a singularity, other than the evident
maximally symmetric metric, R = const. The question is:
can we find a nontrivial nonsingular solution? The answer
is yes, and it is presented in Fig. 6. To be sure that this is
not a numerical effect, we shifted the value φ0 = 0.07 in
both directions and accordingly obtained r ′(umax) < −1
and r ′(umax) > −1.

In this solution with a regular metric, as has been veri-
fied by our numerical calculations, the curvature R and the
scalar field are also finite, so such models are completely reg-
ular. However, models with conical singularities do not differ
too substantially from these regular models in their physical
properties.

A few general remarks on possible singularities in extra
dimensions. Evidently, the classical equations written above
are invalid at energy scales larger than the Planck scale.
For 4D physics the corresponding length scale is about
l4 = 1/m4 ∼ 10−33 cm. At scales near l4 and smaller,
quantum fluctuations are strong, and any solution to the clas-
sical equations is invalid. In a D-dimensional world a sim-
ilar scale is lD = 1/mD = 1 by our convention. There
are two consequences if we intend to work on the classi-
cal level: (i) the size of extra dimensions must be much
larger than unity; (ii) any peculiarities with the coordi-
nate interval δu 
 lD = 1 are meaningless without thor-
ough analysis of quantum effects. In particular, if a clas-
sical solution contains a singularity, as it happens in most
of our solutions at u = umax, it is reasonable to suppose
that such a singularity is smoothed by quantum effects and
should not be taken seriously. The stability of such configu-
rations based on the methods discussed in [32] is considered
below.

One can also notice that the size r of the internal space
presented in the figures is of the order of ∼ 10 = 10/mD .
That means that quantum fluctuations are suppressed, and
our classical equations are applicable. Another constraint
relates to the Newton law of gravity at low energies. To clarify
the question, let us follow the paper [33]. It was reasonably
mentioned there that two point particles separated by a dis-
tance l feel a gravitational potential V (l) ∝ 1/ l D−3 that
is dictated by the Gauss theorem in D-dimensional space.
The experimental result is V (l) ∝ 1/ l if l > 10−2 cm
which is true for our 4-dim space (see, e.g., [34]). We are
dealing with D = 6 and hence V (l) ∝ 1/ l3 if l � r .
Now we cite [33]: “... if the masses are placed at dis-
tances l  r ,their gravitational flux lines cannot con-
tinue to penetrate in the extra dimensions, and the usual 1/ l

potential is obtained.” The conclusion is that the inequal-
ity

r 
 10/mD � 10−2 cm (35)

should hold in order to avoid problems for our model. Our
numerical calculations presented in Sect. 5 give mD ∼
m4/20, where m4 is the Planck mass, see Eq. (46) and above.
Hence, r 
 10/mD 
 200/m4 ∼ 10−31 cm, and the
inequality (35) holds with great accuracy.

4 Stability

A general analysis of the stability is a very complicated task.
Here we show that our solutions are stable relative to pertur-
bations homogeneous in 4D space, depending only on t and
u. More definitely, we study the evolution of metric (9) with
the small deviations

φ(t, u) = φc(u) + δφ(t, u),

r(t, u) = rc(u) + δr(t, u), R(t, u) = Rc(u) + δR(t, u),

δφ � φc, δr � rc, δH � Hc, δR � Rc. (36)

Here and below the index “c” relates to the static solutions.
We substitute them into the classical equations and show
that there are no growing modes. There are three unknown
functions δr(t, u), δφ(t, u), δR(t, u), so that we need three
classical equations linearized with respect to these quantities,
which may be written in the form

−�2δφ − 3Hcδφ̇ + 1

rc
r ′
cδφ

′ + 1

rc
φ′
cδr

′ − 1

r2
c
φ′
cr

′
c δr

−m2δφ = 0, (37)

δR = 2

rc
�2δr + 6

Hc

rc
δṙ + 2

r2
c
r ′′
c δr, (38)

a

[
4Rc

rc
�2δr − 10�2δR + 12

HcRc

rc
δṙ + 10R′

c

rc
δr ′

−30Hcδ Ṙ + 10r ′
c

rc
δr ′ + 1

r2
c

(
4r ′′

c Rc − 10r ′
c R

′
c

)
δr

+ 1

r2
c

(
4r ′′

c Rc − 10r ′
c R

′
c

)
δr+

(
24H2

c − 4r ′′
c

rc
−6Rc

)
δR

]

+b

[
2

rc
�2δr + 6Hc

rc
δṙ + 2r ′′

c

r2
c

δr − 3δR

]
+ 6m2φcδφ

+4φ′
cδφ

′ = 0, (39)

where the dot denotes ∂/∂t , �2 = ∂2
t t − ∂2

uu , a and b are
coefficients from (34).

In fact, we arbitrarily choose initial deviations from the
static field configuration and perform numerical analysis.
We show that the solutions to the classical equations have
no growing modes and relax (due to friction) to the static
homogeneous configuration. The friction is supplied by the
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Fig. 7 Time dependence of the perturbations to the solution presented
in Fig. 3

Fig. 8 Time dependence of the perturbations to the solution presented
in Fig. 6 (values at u = 10)

nonzero Hubble parameter H and (as confirmed by calcula-
tions) is absent if H = 0.

For the perturbation equations we have used the boundary
conditions

δr(t, 0) = δφ(t, 0) = δR(t, 0) = δr(t, umax)

= δφ(t, umax) = δR(t, umax) = 0 (40)

and the initial conditions

δr(0, u) = δφ(0, u) = δR(0, u) = 0.01 sin2 (uπ/umax)

δṙ(0, u) = δφ̇(0, u) = δR(0, u) = 0. (41)

The nonsingular solutions presented in Figs. 3, 6 are also
stable. The time behavior of their fluctuations under the same
boundary and initial conditions is shown in Figs. 7 and 8.

5 Reduction to 4 dimensions and low energies

The study made above reveals that static inhomogeneous
extra dimensions could exist. For given f (R) and V (φ), their
shape and energy density also depend on the initial (random)l
value φ0. Let us briefly discuss the observational manifesta-
tions of such solutions. As was shown in [16], there exist such
extra-dimensional metrics that lead to the 4D cosmological
constant Λ4 arbitrarily close to zero. This effect is a result of
interference between the gravitational and scalar field parts
of the Lagrangian. The result obtained in [15] is based on
approximate equations. In this section, we use the exact set
of equations derived from the metric (9) and the action (2).

The quantity Λ4 can be found by integrating out the inter-
nal coordinates in the action (2). We know that the Hubble
parameter is at present almost zero as compared to the possi-

ble extra-dimensional scales. Hence let us put H = 0. In this
case R0 and φ0 are related by (23), and Λ4(φ0) is a function
of the unique argument φ0. It remains to find this function
and its zero points.

Let us consider static solutions found above and use the
smallness of H as compared to the extra space Ricci scalar
R2 = −2r ′′/r , see (12). After the decomposition f (R) =
f (R4 + R2) 
 f (R2) + fR(R2)R4 we obtain

S = 2π

∫
d4x

√
g4

∫ umax

0
dur(u)

[
1

2
fR(R2)R4 + 1

2
f (R2)

−1

2
φ2

,u − V
(
φ(u)

)]
(42)

Comparing this expression with the standard form of the 4D
action

S4 =
∫

d4x
√
g4

[
1

2
m2

4R4 − Λ(φ0)

]
(43)

we get the observed Planck mass

m2
4(φ0) = 2π

∫ umax

0
du r(u) fR(R2) (44)

in the units mD = 1, and

Λ4(φ0) = −2π

∫ umax

0
du r(u)

[
1

2
f (R2)

−1

2
φ2

,u − V
(
φ(u)

)]
. (45)

The above discussion used the unitsmD = 1. Now we can
express all quantities in terms of the usual Planck units in 4
dimensions. One can easily find the value φ0 
 0.00073 that
corresponds to the zero value of Λ4 from Fig. 9, upper panel.
The lower panel gives the 4D Planck mass m4 
 21.23 in
units mD = 1 at this value of φ0.

Now everything is prepared for calculating the energy den-
sity (25) of the scalar field distributed in the extra dimensions.
Numerical integration in u gives

ρ(φ0) 
 1.03 m4
D 
 1.03(m4/21.23)4 
 0.0000051m4

4.

(46)

The scalar field density stored in the extra space is neutral-
ized by the gravitational term f (R2), so that the cosmological
constant (45) is arbitrarily small for the specific solution to
Eqs. (3.1). Such a solution certainly exists due to the conti-
nuity of the set of solutions. The quantity φ0 was used as an
additional parameter, see (22), to find a specific distribution
φ(u). We see that the set of the scalar field distributions is
parametrized by the boundary value φ0. The same can be said
about its energy–momentum tensor TAB(φ0).

We conclude that the scalar field can help to stabilize com-
pact extra space. The size of latter is smaller than 10−18cm
in spite of zero value of the Hubble parameter H . Therefore,
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Fig. 9 The dependence of Λ4 and m4 on φ0 for f (R) = aR2 +bR+c
and mD = 1, m = 0.1, b = 1, a = −100, c = −0.0021, V (φ) =
(m2/2) φ2, H = 0. R(0) is the positive root of Eq. (23)

there are no contradictions with r−2 law of the gravity and
the experimental limit found at the LHC collider.

6 Conclusion

In this paper, we have studied the metric of compact extra
dimensions at high energy density of the Universe where the
4D space-time is described by the de Sitter metric with an
arbitrary value of the Hubble parameter. Numerical solutions
to the full set of the classical equations have been analyzed. It
is shown that in a theory with given f (R), inclusion of a scalar
field leads to a continuous set of static extra space metrics.
The properties of such inhomogeneous metrics depend on
the scalar field distribution in the extra dimensions.

The extra-dimensional metrics represent a set of the car-
dinality of continuum even if the Largargian parameters are
fixed. These metrics are stable under fluctuations in the extra
space, as was shown in Sect. 4.

It has been shown that the form of the stationary extra
metric depends also on the value of the Hubble parameter H .
The latter slowly changes with time in the early Universe.
Therefore, we can approximate it as a constant and apply
the obtained results under the assumption H = const. As a
result, the extra space metric and the scalar field distribution
are changing during the inflationary period.

Our analysis of the classical equations indicates that in the
absence of matter fields only a maximally symmetric (spher-
ical) metric in M2 is possible. This analytic result shows that

the Ricci scalar of the extra space is unambiguously related
to the Hubble parameter, and hence the extra-dimensional
radius is slowly varying with time at the inflationary stage,
and a similar picture might be expected for the present epoch.
However, at present this radius has to be unacceptably large,
this shortcoming being cured by invoking a scalar field, which
makes its role very important.

At high energy scales, quantum fluctuations perturb both
the metric and the scalar field. It is widely assumed that
our manifold was born at sub-Planckian energies, so that the
scalar field randomly varies at those times. Let us estimate the
conditions at which the fluctuations cannot disturb the extra
space metric. Fluctuation are able to produce Kaluza–Klein
excitations if the extra-dimensional scale le is larger then the
fluctuation wavelength 1/k, where k is magnitude of the its
wave vector. For relativistic matter, the energy densityρ ∼ k4

while the Hubble parameter is H ∼
√

ρ/m2
4. These estimates

constrain the extra-dimensional scale as le � 1/
√
Hm4.

This inequality allows us to impose a restriction on the
extra space metric which is much stronger than those obtain-
able in collider experiments. Indeed, the cosmological con-
stant and the gravitational constant do not vary within the
present horizon. This means that fluctuations should be
damped at the inflationary stage where H = HI 
 1013 GeV,
so that the scale le of the extra dimensions should be
smaller than 1/

√
HIm4. We conclude that the averaged size

of the compact extra dimensions should be smaller than
∼ 10−28 cm. This limit confirms those obtained in [17],
where it was shown that the slow roll motion of the infla-
ton is forbidden if le > H−1. Recall that the collider limit
is le < 10−18 cm, which is 10 orders of magnitude weaker
than our prediction.

In conclusion, we would like to mention one more appli-
cation of the idea of inhomogeneous extra dimensions. Con-
sider, instead of (9), the 6D metric

ds2 = e2γ (u)ημνdx
μdxν − du2 − r(u)2dϕ2, (47)

where ημν is the 4D Minkowski metric, and the metric in M2

is the same as in (9), but in terms of the metric (6) we now
have

bμ = γ (u), b4 = 0, b5 = ln r(u). (48)

Using the expressions (7) and (8), it is then straightforward to
derive the explicit form of field equations for the unknowns
γ (u), r(u) and φ(u). A tentative study has shown that there
exist solutions with u-dependence of the circular radius r
somewhat similar to that shown in Fig. 1 under boundary
conditions similar to (21), (22), even if the scalar field is
absent. If the size of M2 is large enough and with proper
dependences r(u) and φ(u), the solutions can admit interpre-
tations in terms of the brane world concept, somewhat sim-
ilar to [35,36]. Unlike solutions with the metric (9), mostly
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intended for the early Universe, those with (47) are able to
describe the present-day universe with very small 4D curva-
ture, and a study of their possible properties and applications
is in progress.
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