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Abstract We suggest a further generalization of the
hypergeometric-like series due to M. Noumi and J. Shi-
raishi by substituting the Pochhammer symbol with a nearly
arbitrary function. Moreover, this generalization is valid
for the entire Shiraishi series, not only for its Noumi–
Shiraishi part. The theta function needed in the recently sug-
gested description of the double-elliptic systems [Awata et
al. JHEP 2020:150, arXiv:2005.10563, (2020)], 6d N = 2*
SYM instanton calculus and the doubly-compactified net-
work models, is a very particular member of this huge family.
The series depends on two kinds of variables, �x and �y, and
on a set of parameters, which becomes infinitely large now.
Still, one of the parameters, p is distinguished by its role in
the series grading. When �y are restricted to a discrete subset
labeled by Young diagrams, the series multiplied by a mono-
mial factor reduces to a polynomial at any given order in p.
All this makes the map from functions to the hypergeometric-
like series very promising, and we call it Shiraishi functor
despite it remains to be seen, what are exactly the morphisms
that it preserves. Generalized Noumi–Shiraishi (GNS) sym-
metric polynomials inspired by the Shiraishi functor in the
leading order in p can be obtained by a triangular trans-
form from the Schur polynomials and possess an interesting
grading. They provide a family of deformations of Macdon-
ald polynomials, as rich as the family of Kerov functions,
still very different from them, and, in fact, much closer to the
Macdonald polynomials. In particular, unlike the Kerov case,
these polynomials do not depend on the ordering of Young
diagrams in the triangular expansion.

a e-mail: awata@math.nagoya-u.ac.jp
b e-mail: kanno@math.nagoya-u.ac.jp
c e-mails: mironov@lpi.ru; mironov@itep.ru (corresponding author)
d e-mail: morozov@itep.ru

1 Introduction

In the present paper, we discuss a new insight into the the-
ory of generalized hypergeometric series P[�x |�y] generaliz-
ing those introduced by Shiraishi [1]. Here �y parameterize
the moduli in the mother-function formalism (see [2] for a
recent review), and the partitions, or Young diagrams R (on
which the standard symmetric polynomials like Macdonald
depend) appear on the particular locus

yi = qRi (st)N−i (1)

Our main goal is to demonstrate that the construction can
and deserves to be further extended, and provides a series
Pξ [�x |�y] for any input function ξ(z), restricted by two simple
conditions

ξ(1) = 0 and ξ(z−1) ∼ z−1ξ(z) (2)

Then, the Shiraishi series per se is associated with ξ(z) =
1− z, while the elliptic deformation, supposedly relevant [3]
to the double-elliptic systems [4,5], is associated with ellip-
tic ξ(z) ∼ ϑ(z) (see also [6] for the elliptic case). However,
at each power of p we get polynomials in x on the locus (1)
for arbitrary ξ(z). Moreover, at least in the leading order in
p, these polynomials are as nice as the ordinary Macdonald
polynomials: their symmetric part is obtained by a triangu-
lar transformation from the symmetric polynomials MonR[x]
and should satisfy a Calogero/Ruijsenaars-like equations (i.e.
it is expected to be possible to define an appropriate ξ -
dependent version of the Calogero–Ruijsenaars Hamiltoni-
ans and integrable systems). We call this entire construction
Shiraishi functor, which is hopefully acting from the space
of functions ξ(z) into that of integrable systems.
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In what follows, for each function ξ(z) we introduce the
series that depends on variables xi , yi , i = 1, . . . , N , which
is a formal power series in the ratios xi/x j in Sect. 2. After a
certain rescaling Shiraishi series becomes also a series in pos-
itive powers of pN . Moreover, being multiplied by a proper
monomial

∏
i x

Ri
i , every item becomes a polynomial in xi

after the substitution (1) is made for �y. This completes the
definition of Shiraishi functor.

In the rest of the paper we mostly concentrate on gener-
alized Noumi–Shiraishi (GNS) polynomials, which appear
in the order p0 after symmetrization (see [7] for N = 2
GNS in the particular elliptic case). The set of such sym-
metric polynomials is actually as big as another well known
family of deformations of Macdonald polynomials: that of
Kerov functions also labeled by an arbitrary functions g(z) =
∑∞

i=1 gi z
i . Still the Shiraishi set is completely different from

the Kerov one, and they intersect only over the Macdonald
polynomials. Moreover, as we explain, the GNS polynomials
have a good chance to preserve close links to representation
theory, preserved by the Macdonald deformation of the Schur
polynomials, but violated by the Kerov functions.

Our claim is that, depending on entire arbitrary func-
tion ξ(z), i.e. on infinitely many additional parameters, they
remain very similar to Macdonald polynomials, though very
different from Kerov functions. They are obtained by a trian-
gular transform from monomial symmetric polynomials, or
from Schur polynomials, or from Macdonald polynomials,
and thus can be easily continued from the Miwa locus to the
entire space of time variables pk . The coefficients actually
depend on ξ through a peculiar function η(z) = ξ(qz)ξ(t/qz)

ξ(t z)ξ(z) ,
moreover, in the basis of monomial symmetric polynomi-
als there is a simple grading, connecting the power of η

and the number of monomial symmetric polynomials in the
lexicographical ordered list of partitions at a given level.
For the complementary system, conjugate to the GNS poly-
nomials w.r.t. the Schur measure, the grading also shows
up in a proper basis. With the help of this conjugate sys-
tem, one can build up the Cauchy formula and define the
skew GNS polynomials through the corresponding general-
ized Littlewood–Richardson coefficients. We also manage to
construct a Hamiltonian that has the GNS polynomials asso-
ciated with the one-row partitions as its eigenfunctions. In
variance with the Kerov case, in the definition of the GNS
polynomials, it is sufficient to choose the normal (partial)
ordering, and, hence, the intersection of the sets of GNS and
Kerov polynomials is exhausted by the Macdonald polyno-
mials only.

Notation. In the paper, we denote the polynomials:

Schur Schur polynomials [7]
Mac Macdonald polynomials [7]
Mon monomial symmetric polynomials [7]
Kerov Kerov functions [8, 9]
Gns, Gns⊥ generalized Noumi−Shiraishi polynomials (17), (23)

pk := ∑
i x

k
i power symmetric polynomials

(3)

For the Young diagram R = {R1 ≥ R2 ≥ · · · }, we use the
notations pR := ∏

i pRi and zR := ∏
k k

mkmk ! where mk is
the number of lines of length k in the diagram R. We use the
functions

η(z) = ξ(qz)ξ(t z/q)

ξ(t z)ξ(z)

ζk(z) = ξ(qkz)ξ(t z)

ξ(qk−1t z)ξ(qz)
=

k−1∏

i=1

η(qi z) (4)

Throughout the paper, we call Macdonald locus the choice
of function ξ(z) = 1 − z.

2 Shiraishi functor: promoting Macdonald 1 − z to
arbitrary function

Now we give a preliminary definition of Shiraishi functor
that allows one to convert an arbitrary function ξ(z) into a
map from a power series of 2N variables parameterized by
the function ξ(z) and by four parameters to an infinite set of
graded functions parameterized by the Young diagrams R.

Suppose we are given a function ξ(z) with the symmetry
properties

ξ(1) = 0, ξ(z−1) = αz−1ξ(z), α ∈ C (5)

Define

�(z; q)n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−1∏

k=0

ξ(qkz), n ≥ 0,

n−1∏

k=0

ξ(q−k−1z)−1, n < 0.

(6)

where |q| < 1 is a parameter. Now one can define a ξ -
Shiraishi power series

P
ξ
N (xi ; p|yi ; s|q, t)

:=
∑

λ(i)

N∏

i, j=1

N ξ ( j−i)
λ(i),λ( j) (t y j/yi |q, s)

N ξ ( j−i)
λ(i),λ( j) (y j/yi |q, s)

N∏

β=1

∏

α≥1

(
pxα+β

t xα+β−1

)λ
(β)
α

(7)
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where

N ξ (k)
λ,μ(u|q, s) :=

∏

b≥a≥1
b−a≡k (mod n)

�
(
uq−μa+λb+1s−a+b; q

)

λb−λb+1

×
∏

b≥a≥1
b−a≡−k−1 (mod n)

�
(
uqλa−μb sa−b−1; q

)

μb−μb+1

(8)

where {λ(i)}, i = 1, . . . , N is a set of N partitions, and we
assume xN+i = xi . Then,

Pξ
R(xi ; p, s, q, t)

:=
N∏

i=1

x Rii · Pξ
N

(
pN−i xi ; p

∣
∣
∣ yi = qRi (st)N−i ; s

∣
∣
∣ q,

q

t

)

(9)

is a graded function of variables xi of the weight |R| =
∑

i Ri , which is a series in pNk :

Pξ
R(xi ; p, s, q, t) =

∑

k≥0

pNk · P
ξ (k)

R(xi ; s, q, t)
∏N

i=1 x
k
i

=
∑

k≥0

Pξ (k)

R (xi ; s, q, t) ·
N∏

i=1

(
p

xi

)k

(10)

Here Pξ (k)

R (xi ; s, q, t) is a polynomial of variables xi with
grade |R| + Nk.

Note that, in (8), instead of using the standard Nekrasov
function, we impose the mod n selection rule following [1]. It

is essential for assuring Pξ (k)

R (xi ; s, q, t) to be a polynomial,
moreover, to be a symmetric polynomial at N = 2 and almost
a symmetric polynomial at larger N (see the next section).

If one chooses ξ(z) = 1 − z, then P
ξ
N (xi ; p|yi ; s|q, t) is

the standard Shiraishi function. Choosing ξ(z)
= √

zϑp(z)/(p; p)∞, one gets an elliptic lift of the Shiraishi
function (ELS-function). In the both these cases, α = −1.

3 Symmetric polynomials

The main problem with this definition is that defined in such

a way Pξ (k)

R (xi ; s, q, t) are not obligatory symmetric in xi
(beyond the Macdonald case). This may imply that the defi-
nition should be somehow modified. In what follows, we use
a very concrete prescription to make symmetric polynomi-

als of Pξ (0)

R (xi ; s, q, t), and obtain their properties which can
afterwards be used for their axiomatic definition, indepen-
dent of (7) and, if necessary, deviating from it.

The question is intimately related to x ↔ y symmetry
(spectral duality [11–15]), which is lost for ξ(z) beyond the

Macdonald locus and can be somehow restored by intro-
ducing another arbitrary function ξ̃ (z) for the y-dependence,
satisfying a ξ ↔ ξ̃ duality, which is, however, beyond the
analysis in this text.

Here we construct a basis of symmetric functions in the
following way: we define a symmetric function[
Pξ (k)

R (xi ; s, q, t)
]

symm
as a sum

[
Pξ (k)

R (xi ; s, q, t)
]

symm

:=
∑

μ�|R|

[
Pξ (k)

R (xi ; s, q, t)
]

μ
Monμ [�x] (11)

of monomial symmetric polynomials Monμ ,

Monμ [�x] =
∑

σ∈SN
xμi
σ(i), (12)

where
[
. . .

]

μ
denotes the coefficient in front of

∏
i x

μi
i .

The difference Pξ (0)

R (xi ; s, q, t) −
[
Pξ (0)

R (xi ; s, q, t)
]

symm
is always vanishing for N = 2 and is non-vanishing for
N > 2 first time at level 4 for the single diagram [3, 1]. For
N = 4 this example looks as

Pξ (0)

[3,1](xi ; s, q, t) −
[
Pξ (0)

[3,1](xi ; s, q, t)
]

symm

= F0

(
x1x2x

2
3 + (x1x2 + x1x3 + x2x3)x

2
4

)

F0 := ζ2(1)2 − ζ2(1)ζ2(qt) − ζ2(1)ζ2(q) + ζ2(t)ζ2(qt)

(13)

where Mon(k)
R denotes the monomial symmetric polynomial

of variables xi , i = 1, . . . , k.
Similarly, at level 5 one has:

Pξ (0)

[4,1](xi ; s, q, t) −
[
Pξ (0)

[4,1](xi ; s, q, t)
]

symm

= F1

(
x1x2x

3
3 + (x1x2 + x1x3 + x2x3)x

3
4

)

+F2

(
(x1x

2
3 + x2x

2
3 + x2

2 x3 + x2
1 x2 + x2

2 x1 + x2
2 x3)x

2
4

+x2
1 x2x

2
3 + x1x

2
2 x

2
3

)
+ F3x1x2x

2
3 x4 + F4x1x2x3x

2
4

(14)

F1 := ζ2(1)ζ3(1) − ζ2(q
2t)ζ3(1) − ζ4(1) + ζ4(t)

F2 := ζ3(1)
(
ζ3(1) − ζ2(1)ζ2(q

2t) − ζ3(q) + ζ3(qt)
)

F3 := ζ3(1)ζ2(q
2t)F0

F4 := ζ3(1)F1 (15)

All these combinations Fi are vanishing at the Macdonald
locus and at the ELS-function locus (i.e. the choice ξ(z) =√
zϑp(z)/(p; p)∞) as well.
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4 Role of the functor parameters

The role of N .
N appears in Sect. 2 in several roles:

• As the number of variables xi
• In reduction condition for yi
• As the length of Young diagrams Ri

In the leading order in p, the polynomial Pξ (0)

R (xi ; s, q, t)
can be considered as a graded polynomial of time variables
pk := ∑N

i xki so that N can be considered arbitrary large,
and N does not enter formulas. In the usual terms of sym-
metric functions associated with representation theory, fixing
concrete N corresponds to reduction from GL∞ to GLN . A
typical example is restricting the infinite Toda chain to a Toda
chain of length N . This analogy can be pushed even further,
see the next paragraph.
The role of p: series vs polynomials. The Shiraishi func-
tions belong to the class of mother functions, i.e. they depend
not on the Young diagrams, but on continuous variables �y.
Relation/reduction to Young diagram R emerges through the
specialization

yi = qRi (st)N−i (16)

The Shiraishi functions are expressed only through �x =
{x1, . . . , xN }, no immediate lifting to generic time-variables
pk from the Miwa locus p∗

k = ∑N
i=1 x

k
i is available at generic

�y: they are not symmetric for generic �y. Outside (16), these
functions are asymmetric series in �x , interpolating between
polynomials of various R-dependent degrees on the loci (16).

The Shiraishi functions depend on a variety of parameters.
From the point of view of the series-polynomial relation, dis-
tinguished is the role of p. The Shiraishi function is an infi-
nite series, but it becomes a finite Laurent polynomial at each
degree of p after specializing �y to a Young diagram by (16).

Degree of p is pN
∑N

i, j=1 λ
(i)
N j−i+1 . At the leading order p0, one

gets after multiplication by
∏N

i=1 x
Ri
i and symmetrization,

an ordinary symmetric polynomial, which we call general-
ized Noumi–Shiraishi polynomial, since the mother function
of this form for the Macdonald polynomials was studied in
detail in [16].

The powers of p are related to imposing the periodic-
ity condition xN+i = xi . At a given N , p dependence is
expressed entirely through pN , which can serve as a bet-
ter parameter than p itself. A counterpart of this parameter
could be found in the periodic Toda chain: one can consider an
infinite Toda chain and impose the periodicity condition with
period N . Then, the Baker–Akhiezer function (the eigenfunc-
tion of the Lax operator) is quasi-periodic, and the counter-
part of the quasiperiodicity parameter is just p. Bringing this
parameter to zero, one obtains the open Toda chain, and this is

much similar to the way of obtaining the generalized Noumi–
Shiraishi polynomial. In algebraic terms, this corresponds to
transition from the affine to finite-dimensional algebras.

One could also look for a description of the system at N =
∞ (SL∞ level), where �x becomes a sort of a function x(p),
and p plays the role of the associated loop parameter. Then
one can pick up a particular locus (particular solutions of the
would-be universal hypergeometric equation), specified by a
peculiar N -periodicity in order to get the Shiraishi series for
particular N with the condition xN+i = p−N xi .

The role of s is still obscure to us, thus to avoid confusion
we do not comment on it in the present text.

Note also that the role of parameters q and t becomes
completely different in variance with the standard Macdonald
case: q governs the Pochhammer symbols and is in charge
of the deformation from simple polynomials like the Schur
polynomials, while t is rather related to concrete details of
this deformation. Moreover, t in some parts of formulas is
mixed with the parameter s (like the choice of yi ), but in
some other, not.

5 GNS polynomials

The polynomial Pξ (0)

R (xi ; s, q, t) for arbitrary function ξ(z)
does not depend on s, and so does the symmetric polyno-

mial
[
Pξ (0)

R (xi ; s, q, t)
]

symm
thus we can denote it through

[
Pξ (0)

R (q, t)[x]
]

symm
. It also does not depend on N in the fol-

lowing sense: it can be rewritten as a polynomial of the time
variables pk := ∑N

i=1 x
k
i , and after that the coefficients of

[
Pξ (0)

R (q, t){pk}
]

symm
do not depend on N (!). Note that time

variables pk are denoted by the same letter as the parameter
p, both notations are standard and can not be changed. We
hope that this will not cause confusion, especially because,
in this paper, we mostly discuss the GNS polynomials, which
depend on pk but no longer on p (they are the p0 contribution
to the Shiraishi series).

The GNS polynomial can be rewritten in the form, simi-
lar to the Noumi–Shiraishi representation of the Macdonald
polynomials [16], hence, the name:

Pξ (0)

R (q, t)[x] =
N∏

i=1

x Rii ·
∑

mi j

CR
n (mi j |q, t)

∏

1≤i< j≤N

(
x j
xi

)mi j

(17)

where mi j = 0 for i ≥ j , mi j ∈ Z≥0,

CR
n (mi j , |q, t) :=

=
n∏

k=2

∏

1≤i< j≤k

�
(
qR j−Ri+∑

a>k (mia−m ja )t i− j+1; q
)

mik

�
(
qR j−Ri+∑

a>k (mia−m ja )qti− j ; q
)

mik
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·
n∏

k=2

∏

1≤i≤ j<k

�
(
qR j−Ri−m jk+∑

a>k (mia−m ja )qti− j−1; q
)

mik

�
(
qR j−Ri−m jk+∑

a>k (mia−m ja )t i− j ; q
)

mik

(18)

Formulas (17) and (11) allow one to give a manifest rep-
resentation of the GNS symmetric polynomials in terms of
monomial symmetric polynomials MonR ,

GnsR[x] :=
[
Pξ (0)

R (q, t)[x]
]

symm
=

∑

P

C (q,t)
RP · MonP [x]

(19)

Lifted to the time-variables space pk := ∑
i x

k
i , the mono-

mial symmetric polynomials coincide with restriction of
Macdonald polynomials to t = 1 (which do not depend on
q):

MonR [�x] = Mact=1
R

[�x]
↓

MonR {pk} = Mact=1
R

{pk}
(20)

The Kostka matrix C (q,t)
RP is diagonal in the size of Young

diagrams, CRP ∼ δ|R|,|P|, and it is triangular in a matrix
form, for the lexicographical ordering of Young diagrams:

GnsR{pk} = MonR {pk} +
∑

P<R

C (q,t)
RP · MonP {pk} (21)

In the lexicographical ordering, R > P if, for i running
from 1, the first non-vanishing difference Ri − Pi is positive.
In fact, similarly to the ordinary Macdonald polynomials,
it is sufficient to choose the natural (or dominance) partial
ordering [8], since the elements of the Kostka matrix between
the unordered Young diagrams vanish. In this ordering, R >

P if
∑k

i=1

(
Ri − Pi

)
for all k. It is a partial ordering: for

instance, the natural ordering does not fix the order of the
diagrams [2, 2, 2] and [3, 1, 1, 1], and C (q,t)

[2,2,2],[3,1,1,1] =
C (q,t)

[3,1,1,1],[2,2,2] = 0.
Thus, the non-deformed GNS polynomial GnsR corre-

sponds to the antisymmetric Young diagram, while the most
deformed, to the symmetric one.

From representation (17) it follows that the coefficients
of GNS polynomials are graded combinations of products
of the function η(z) := ξ(qz)ξ(t z/q)

ξ(t z)ξ(z) at various points qi t j .
Hence, there is a hidden symmetry of the polynomials: they
are invariant w.r.t. the replace ξ(z) → zaξ(z) with an arbi-
trary a.

If one chooses ξ(z) = 1 − z, then GnsR[x] is the standard
Macdonald polynomial, and (17) gives its Noumi–Shiraishi
representation [16].

6 Properties of the GNS polynomials

Orthogonality. Let us define a conjugate system of polyno-
mials in the following way. Denote �RQ the coefficients of
the p-expansion of the GNS

GnsR =
∑

Q

�RQ · pQ (22)

(this expansion is in no way triangular). Then, the set of
polynomials

Gns⊥
R =

∑

Q

�−1
QR · pQ

zQ
(23)

with �−1 being the inverse matrix, is orthogonal,
〈
GnsR

∣
∣
∣Gns⊥

Q

〉
= δRQ (24)

w.r.t. to the measure
〈
p


∣
∣
∣p
′

〉
= z
δ
,
′ (25)

Triangularity. The polynomials Gns⊥
R possess a triangular

expansion

Gns⊥
R =

∏

i

Schur[Ri ] +
∑

P>R

C⊥
RP

∏

i

Schur[Pi ] (26)

again with graded coefficients in η. This follows from the
orthogonality relations
〈
MonR

∣
∣
∣
∏

i

Schur[Qi ]
〉
= δRQ (27)

It also follows that C⊥
RP is just the transposition of the matrix

inverse to C (q,t)
RP , (21):

C⊥
RP = C−1

PR (28)

and the (partial) natural ordering is again sufficient in (26):
the corresponding coefficients are zero like the previously
discussed example: C⊥[2,2,2],[3,1,1,1] = C⊥[3,1,1,1],[2,2,2] = 0.

Thus, the non-deformed Gns⊥
R corresponds to the sym-

metric Young diagram, while the most deformed, to the anti-
symmetric one.

Note that, in the Macdonald case,

Gns⊥
R

∣
∣
∣
ξ(z)=1−z

{pk} = MacR∨{(−1)k+1 pk} (29)

where the bar over the Macdonald polynomial denotes the
permutation of q and t .
The Cauchy formula. Having the orthogonality relation
(24), one can also immediately get the Cauchy formula for
the GNS polynomials:

∑

R

GnsR{pk} · Gns⊥
R {p′

k} = exp

(
∑

k

pk p′
k

k

)

(30)
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Fig. 1 Symbolic description of zeroes of the product decomposition
PR′ PR′′ = ∑

Q PQ in the lexicographically ordered set of partitions
(Young diagrams) Q. A product of Kerov functions (�) gets non-
vanishing contributions from everywhere in between R′ ∪ R′′ and
R′+R′′. Contributions to the product of Macdonald (and Schur) polyno-
mials (•) are non-vanishing only at some points in this domain, which
belong to the product of representations R′ ⊗ R′′. A product of the

generalized Noumi–Shiraishi polynomials (�) can get non-vanishing
contributions from the same points as Macdonald polynomials, but also
from the region in between R′ + R′′ and [1|R′ |+|R′′ |], while their conju-
gate polynomials (�) gets contributions from the same points as Mac-
donald polynomials, but also from the region in between R′ ∪ R′′ and
[|R′| + |R′′| − 1, 1]

It follows from (22) and (23):

∑

R

GnsR{pk} · Gns⊥R {p′
k} =

∑

R,Q,Q′
�RQ · �−1

Q′R ·
pQ p′

Q′
zQ′

=
∑

Q

pQ p′
Q

zQ
= exp

⎛

⎝
∑

k

pk p
′
k

k

⎞

⎠

(31)

Ring structure. (Fig. 1) One can construct the structure con-

stants of the ring formed by the polynomials Pξ (0)

R (q, t), i.e.
the generalized Littlewood–Richardson coefficients:

GnsR′ {pk} · GnsR′′ {pk} =
∑

R

NR
R′R′′GnsR{pk} (32)

They possess an interesting property: in the case of Kerov
functions, non-vanishing are only the coefficients between
the partitions R′∪R′′ = [r ′

1+r ′′
1 , r ′

2 +r ′′
2 , . . .] and R′+R′′ =

[ordered collection of all r ′
i and r ′′

j ]; in the case of Macdon-
ald polynomials, there are additional zeroes, since only the
partitions associated with the irreducible representations (via
the Schur–Weyl duality) emerging in the decomposition of
R′⊗R′′ contribute, and not all of the representations between
R′ ∪ R′′ and R′ + R′′ (in the partial ordering) emerge in this
decomposition. In the GNS case, similarly to the Macdonald
case, the coefficients NR

R′R′′ are vanishing for the partitions
with the ordering number larger than R′ ∪ R′′, and vanishing
for the representations between R′∪R′′ and R′+R′′ for R not
belonging to the decomposition of R′ ⊗ R′′. However, they
are non-vanishing for partitions with the ordering number
less than R′ + R′′. For instance, the group theory decompo-
sition dictates that, for the Macdonald polynomials,

Mac[2] · Mac[1,1] = Mac[3,1] ⊕ Mac[2,1,1] (33)

and, in the more general case of Kerov functions,

Kerov[2] · Kerov[1,1] = Kerov[3,1] ⊕ Kerov[2,2] ⊕ Kerov[2,1,1]
(34)

At the same time, for the GNS,

Gns[2] · Gns[1,1] = Gns[3,1] ⊕ Gns[2,1,1] ⊕ Gns[1,1,1,1]
(35)

One can similarly define the generalized Littlewood–
Richardson coefficients for the conjugate GNS:

Gns⊥
R′ {pk} · Gns⊥

R′′ {pk} =
∑

R

N⊥R
R′R′′Gns⊥

R {pk} (36)

One may think these polynomials behave exactly like the
Macdonald polynomials: the non-vanishing ring structure
coefficients are determined by the group theory decompo-
sition. For instance,

Gns⊥[2] · Gns⊥[1,1] = Gns⊥[3,1] ⊕ Gns⊥[2,1,1] (37)

However, this is not always the case: for instance,

Gns⊥[1,1] · Gns⊥[1,1] = Gns⊥[3,1] ⊕ Gns⊥[2,2] ⊕ Gns⊥[2,1,1] ⊕ Gns⊥[1,1,1,1]
(38)

while

Mac[1,1] · Mac[1,1] = Mac[2,2] ⊕ Mac[2,1,1] ⊕ Mac[1,1,1,1]
(39)

Generally, the coefficients N⊥R
R′R′′ are vanishing for the par-

titions with the ordering number less than R′ ∪ R′′, and
vanishing for the partitions between R′ ∪ R′′ and R′ + R′′
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for R not belonging to the decomposition of representations
R′⊗R′′. However, they are non-vanishing for partitions with
the ordering number larger than R′ + R′′ for exception of
the partition associated with the symmetric representation
[|R′| + |R′′|].
Skew polynomials. The skew GNS polynomials can be
defined in the standard way:

GnsR{pk + p′
k} =

∑

Q

GnsR/Q{pk} · GnsQ{p′
k} (40)

and one can similarly define the dual skew polynomials
Gns⊥

R/Q{pk}. Properties of the skew polynomials follow from
the orthogonality relations. In particular, similarly to the stan-
dard Macdonald (and further, the Kerov case), the skew GNS
polynomials can be constructed from the ring structure coef-
ficients:

GnsR/Q =
∑

P

N⊥R
QP · GnsP (41)

This follows from the Cauchy formula (30) and the general
theorem [17]:

∑
R Gns⊥

R {p} · GnsR{p′ + p′′} = exp
(∑

k
pk (p′

k+p′′
k )

k

)
= ∑

P,Q Gns⊥
P {p} · GnsP {p′}Gns⊥

Q{p} · GnsQ{p′′}

|| ||
∑

R,Q Gns⊥
R {p} · GnsR/Q{p′}GnsQ{p′′} = ∑

P,Q,R N
⊥R
PQGns⊥

R {p}GnsP {p′}GnsQ{p′′}

Assuming that the map F : f (R, Q, p′) �→ f̃ (p, p′, p′′) :=
∑

R,Q Gns⊥
R {p}GnsQ{p′′} f (R, Q, p′) does not have a ker-

nel, one can omit the identical factors Gns⊥
R {p}GnsQ{p′′} at

the two sides of the bottom line, and get (41).
One can also define the conjugate skew symmetric poly-

nomials

Gns⊥
R {pk + p′

k} =
∑

Q

Gns⊥
R/Q{pk} · Gns⊥

Q{p′
k} (42)

and they are also given by the formula involving the ring
structure coefficients:

Gns⊥
R/Q =

∑

P

NR
QP · Gns⊥

P (43)

The generalized Cauchy formula. As usual, one can easily
extend the Cauchy formula (30) to the case of skew polyno-
mials:

∑

R

GnsR/η1{pk} · Gns⊥
R/η2

{p′
k}

= exp

(
∑

k

pk p′
k

k

)
∑

ρ

Gnsη2/ρ{pk} · Gns⊥
η1/ρ

{p′
k}

(44)

It is proved much similar to the previous formulas: using the
map F . Indeed, apply this map to the l.h.s. of (44) and use the
definition of the skew GNS polynomials, formulas (41)-(43)
and the Cauchy formula (30):

∑

η1,η2

Gnsη1 { p̄k}Gns⊥η2
{ p̄′

k}
∑

R

GnsR/η1 {pk} · Gns⊥R/η2
{p′

k}

=
∑

R

GnsR{pk + p̄k} · Gns⊥R {p′
k + p̄′

k}

= exp

⎛

⎝
∑

k

(pk + p̄k)(p
′
k + p̄′

k)

k

⎞

⎠

= exp

⎛

⎝
∑

k

pk p
′
k

k

⎞

⎠ · exp

⎛

⎝
∑

k

pk p̄
′
k

k

⎞

⎠ · exp

⎛

⎝
∑

k

p̄k p
′
k

k

⎞

⎠

· exp

⎛

⎝
∑

k

p̄k p̄
′
k

k

⎞

⎠ = exp

⎛

⎝
∑

k

pk p
′
k

k

⎞

⎠ ·
∑

λ,μ,ρ

Gnsλ{pk}

·Gns⊥λ { p̄′
k} · Gnsμ{ p̄k} · Gns⊥μ {p′

k} · Gnsρ{ p̄k} · Gns⊥ρ { p̄′
k}

= exp

⎛

⎝
∑

k

pk p
′
k

k

⎞

⎠ ·
∑

λ,μ,ρ,η1,η2

Gnsλ{pk}Gns⊥μ {p′
k}

·N⊥η2
λρGnsη2 { p̄′

k} · Nη1
μρGnsη1 { p̄k}

= exp

⎛

⎝
∑

k

pk p
′
k

k

⎞

⎠

·
∑

η1,η2

Gnsη1 { p̄k}Gns⊥η2
{ p̄′

k} ·
∑

ρ

Gnsη2/ρ{pk} · Gns⊥η1/ρ
{p′

k}

Then, again, formula (44) follows from the assumption of
absence of a kernel of the map F .
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The Hamiltonian. One of the main features of the stan-
dard symmetric functions is that they satisfy the eigenvalue
equation with a Hamiltonian [18,19]. In fact, there are typi-
cally infinitely many Hamiltonians, which is a consequence
of integrability behind a set of symmetric functions, but the
first Hamiltonian is sufficient to unambiguously restore the
whole set. Hence, one has to look for a Hamiltonian for the
GNS polynomials. At N = 2 case, they satisfy the equation

ĤGns[r ] = 0,

Ĥ := x1ξ(P̂2)ξ(t P̂1) − x2ξ(P̂1)ξ(t P̂2)

x1 − x2
(45)

where Pi := qxi ∂xi . Moreover,

ĤGns[r,s] = ξ(qs)ξ(tqr ) · Gns[r,s]
+

∑

1≤i≤(r−s)/2

αi · Gns[r−i,s+i] (46)

and the Young diagrams with more than 2 rows do not con-
tribute in the N = 2 case. This means that Gns[r,s] with
s = r, r − 1 are also eigenfunctions along with Gns[r ], i.e.
with s = 0, the eigenvalues being ξ(qs)ξ(tqr ).

Let us remind that the standard Macdonald Hamiltonian
has the form

Ĥ = x2 − t x1

x2 − x1
P̂1 + x1 − t x2

x1 − x2
P̂2 (47)

To illustrate how it works, consider the action of this
Hamiltonian on the Gns[2]:

ξ(P̂2)ξ(t P̂1)x
2
1 = x2

1ξ(1)ξ(tq2) = 0,

ξ(P̂1)ξ(t P̂2)x
2
1 = x2

1ξ(q2)ξ(t)

ξ(P̂2)ξ(t P̂1)x1x2 = x1x2ξ(q)ξ(tq),

ξ(P̂1)ξ(t P̂2)x1x2 = x1x2ξ(q)ξ(qt)

ξ(P̂2)ξ(t P̂1)x
2
2 = ξ(q2)ξ(t),

ξ(P̂1)ξ(t P̂2)x
2
2 = x2

2ξ(tq2)ξ(1) = 0 (48)

Since

Gns[2] = x2
1 + x2

2 + ξ(q2)ξ(t)

ξ(q)ξ(qt)
x1x2 (49)

one immediately obtains
(
x1ξ(P̂2)ξ(t P̂1) − x2ξ(P̂1)ξ(t P̂2)

)
Gns[2] = 0 (50)

It turns out to be a general rule at any N : the GNS polynomial
associated with one-row partition satisfies the equation (we
have checked this conjecture up to level 6)

ĤGns[r ] = 0,

Ĥ :=
∏

i< j

(
xiξ(P̂j )ξ(t P̂i ) − x jξ(P̂i )ξ(t P̂j )

)
(51)

The standard Macdonald Hamiltonian for arbitrary N has the
form

Ĥ =
∑

i

∏

j �=i

x j − t xi
x j − xi

P̂i (52)

Note that this Hamiltonian depends explicitly on the origi-
nal function ξ(z), while their eigenfunctions depend on η(z).
In certain sense, the Hamiltonian has an “anomaly” as com-
pared to the eigenfunctions (symmetric polynomials GnsR).

Since Gns⊥ associated with one-row partition is just the
non-deformed Schur polynomial, it is trivially the eigenfunc-
tion of the usual Macdonald Hamiltonian (52).

Thus, we demonstrated that the GNS are associated, at
least, with quasi-exactly solvable system [20–22].

7 Incompatibility with Kerov functions

In this section, we explain that the GNS polynomials are an
extension of the Macdonald polynomials very different from
another extension known under the name Kerov functions.
We deal with the very explicit polynomials of the first lev-
els, the formulas for the GNS case being collected in the
Appendix.

1. Kerov functions were introduced in [9] and recently
reviewed in some detail in [10]. They are obtained by a trian-
gular orthogonalization of polynomials (12) w.r.t. the scalar
product

〈pR |pR′ 〉 = δR,R′ · zR · gR (53)

gR := ∏
i gRi with arbitrary parameters gk . The triangular

Kostka matrix KerovR = ∑
Q CRQ · MonQ for the Kerov

functions looks as follows:
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C (1) = (1)

C (2) =
⎛

⎜
⎝

1 0

2g2

g2
1+g2

1

⎞

⎟
⎠

C (3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

3g3(g2
1+g2)


∨
3

1 0

6g2g3

∨

3

6(g1g2+g3)

3

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

C (4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0

4g2g4(2g3
1g2+3g2

1g3+g2g3)


∨
4

1 0 0 0

6g3g4(g2
2+g2)2


∨
4

− 2g2(g2
1+g2)(g3

1g4−3g2
1g2g3−3g1g2g4−g3g4)


′∨
4

1 0 0

12g2g3g4(g2
1+g2)


∨
4

6g4
1g

2
2g3 + 3g4

1g3g4 + 4g3
1g

2
2g4+

+12g2
1g

3
2g3 + 6g2

1g2g3g4 + 12g1g3
2g4 + 5g2

2g3g4

′∨

4

2(g2
2+g4)(g3

1+3g1g2+2g3)


′
4

1 0

24g2
2g3g4


∨
4

12g2(2g2
1g

2
2g3+g2

1g3g4+2g1g2
2g4+g2g3g4)


′∨
4

12(g2
2+g4)(g1g2+g3)


′
4

12(g2
1g2+2g1g3+g2

2+2g4)


4
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. . .

C[3,1,1,1],[2,2,2]
[10, eq.(37)]∼ x2

1 x
2
2 x

2
3 (x2

1 − x2x3)(x
2
2 − x1x3)(x

2
3 − x1x2) · Schur[7]{g} �= 0

. . . .

(54)

with denominator functions 
 described in [10, Eq. (71)]:


3 = g3
1 + 3g1g2 + 2g3 = 3!Schur[3]{g}


∨
3 = 2g3

1g2 + 3g2
1g3 + g2g3 = 3!g2

1g2g3Schur[3]{g−1}

∨

4 = 6g4
1g

2
2g3 + 3g4

1g3g4 + 8g3
1g

2
2g4

+6g2
1g2g3g4 + g2

2g3g4


′∨
4 = 2g5

1g
3
2 + g5

1g2g4 + 6g4
1g

2
2g3 + 3g4

1g3g4 + 2g3
1g

2
2g4

+4g2
1g

3
2g3 + 2g2

1g2g3g4 + 3g1g
3
2g4 + g2

2g3g4

(55)

2. There is a minor degree of consistency between (54)
and (62), for example, in (62) C[3][111] = C[3][21]C[2][11],
and the same is true for (54):

6g2g3


∨
3

= 3g3(g2
1 + g2)


∨
3

· 2g2

g2
1 + g2

(56)

or, say, C[4][22] = C[4][31]C[3][21]

6g3g4(g2
2 + g2)

2


∨
4

= 4g2g4(2g3
1g2 + 3g2

1g3 + g2g3)


∨
4

·3g3(g2
1 + g2)


∨
3

(57)

These relations demonstrate that sometime the numerators
in (54) are made from the same denominator functions, but
generically these relations are far more involved. The same is
true about the consistency domain between (54) and (62): it is
too small. Despite the “number of degrees of freedom” in the
both cases is the same (it is given by an arbitrary function,
or by an infinite set of coefficients), they enter the Kostka
matrices in a very different way, and the elements of (54) are
severely stronger constrained than the function ξ .

3. There is no room for the second set of GNS polyno-
mials, as it happens in the Kerov case. Normally the sec-
ond set of polynomials is associated with a transforma-
tion like (54), which is triangular w.r.t. the alternative, anti-
lexicographic ordering of Young diagrams. However, in the
GNS case there is no difference: the second set of poly-
nomials is just the same, the change of ordering does not
change the polynomials. This follows from the vanishing
of the Kostka matrix elements between partitions differing
in the two different orderings. The first such a matrix ele-
ment emerges at level 6 between the partitions [2, 2, 2] and
[3, 1, 1, 1]: C[2,2,2],[3,1,1,1] = C[3,1,1,1],[2,2,2] = 0 (and sim-
ilarly for their transposed [3, 3] and [4, 1, 1]).
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Moreover, it is shown in [10,23] that, within Kerov family,
these matrix elements vanish only for the Macdonald poly-
nomials, therefore, one can conclude that the intersection

GNS pols ∩ Kerov funcs = Macdonald pols (58)

4. Orthogonality of the GNS polynomials implies non-

diagonality of the scalar product 〈pR
∣
∣
∣pR′ 〉. For example, at

level 3, the diagonalizability of C (3) =
⎛

⎝
1 0 0
a 1 0
b c 1

⎞

⎠ requires

that c = (a−3)b
a2−a−b

. It is indeed true for the Kerov case, when

a = 3g3(g2
1 + g2)


∨
3

,

b = 6g2g3


∨
3

,

c = 6(g1g2 + g3)


3
(59)

but is not true for (62).
In fact, even a little bit more strong statement is correct:

the requirement of diagonal scalar product of the GNS poly-
nomials is inconsistent with a diagonal scalar product of the
Kerov functions.

8 Conclusion

In this paper, we introduced a new infinite-parametric family
of symmetric polynomials, which seems to be an interesting
generalization of the two-parametric Macdonald polynomi-
als. They are also obtained by a triangular transformation
of monomial symmetric polynomials and Schur polynomi-
als; they form a closed ring under multiplication graded by
the size of the Young diagrams; they are independent on the
choice of ordering of Young diagrams within the natural
partial ordering; and their ring structure coefficients lying
between R′ ∪ R′′ and R′ + R′′ vanish together with those
in the Macdonald case, i.e. for representations which do not
appear in the product of other two:

R1 + R2 ≤ Q ≤ R1 ∪ R2 :
N⊥Q

R1R2
�= 0 ⇐⇒ Q ∈ R1 ⊗ R2, (60)

(note that there is still a deviation from representation theory:
someN⊥ have “tails”, they do not vanish also for some “more
symmetric” Q > R1 + R2, while N, though also satisfying
(60), have tails from the other, “antisymmetric” side: for Q <

R1 ∪ R2).
In addition, the Kostka matrix relating GNS polynomials

to the Schur ones has a non-trivial grading. This makes this
family an interesting alternative, or, better, complement, to

the family of Kerov functions [9,10], which is equally large,
but deviates much more from representation theory.

This remarkable family is currently built in a four-step
process.

• First, we consider a far-going generalization of Shiraishi
series [1], by introducing an arbitrary function ξ(z),
instead of just ξ(z) = 1 − z in [1] or ξ(z) ∼ ϑ(z) in
[3,6] related to the Dell deformation of the integrable
Calogero–Ruijsenaars systems and Nekrasov theories.
We call this generalization Shiraishi functor from the
space of functions ξ(z) restricted only by behaviour w.r.t.
z → 1/z to that of hypergeometric-like Shiraishi series.

• Second, we restrict �y variables in Shiraishi mother func-
tion to Young diagrams by the usual rule (16), expand in
peculiar parameter p and, after an appropriate rescaling,
pick up a p0 term. This procedure mimics that in [16],
and we call the result the Generalized Noumi–Shiraishi
symmetric polynomials in �x .

• Third, we expand these polynomials in, say, Schur func-
tions (expansion appears to be triangular), what allows to
raise them from the space of �x to that of time-variables pk .
This provides what we call GNS polynomials, Gnsξ

R{p}.
• Forth, we construct a system of polynomials Gns⊥

R {p} ,
conjugate to GnsR{p} w.r.t. the standard scalar product of

time-variables
〈
p


∣
∣
∣p
′

〉
= z
δ
,
′ . These polynomi-

als appear to be remarkably distinguished by their prop-
erties.

This system possesses further generalization by the
change of the scalar product and by a look on the higher
powers in p. Calculations in the latter case become far more
tedious and will be considered elsewhere. The primary task
for the future research is to further explore these, GnsR{p},
Gns⊥

R {p}, with the hope to find their straightforward defini-
tion, for example, by finding a ξ -dependent scalar product,
in which they become self-orthogonal (rather than form a
bi-orthogonal system with the GNS polynomials GnsR{p}),
or by finding a general formula for the ξ -deformation of the
Ruijsenaars Hamiltonians, for which Gns⊥

R {p} are the com-
mon eigenfunctions.

Clearly, the remarkable polynomials Gns⊥
R {p}, or their

symmetric-polynomial version Gns⊥
R [x] on the Miwa locus

pk = ∑N
i=1 x

k
i , deserve a separate name and notation, free

of the reference to scaffolding used in our current construc-
tion . This is, however, a little premature to decide, first the
adequate definitions and language should be found.
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Appendix: Explicit examples of GNS and GNS⊥

Hereafter, we introduce the notation

ζk(z) = ξ(qkz)ξ(t z)

ξ(qk−1t z)ξ(qz)
=

k−1∏

i=1

η(qi z) (61)

Triangular expansion of the GNS polynomials

The triangular expansion of the GNS polynomials is given
by (21), GnsR{p} = ∑

Q CRQ · MonQ{p} with

C (1) = (1)

C (2) =

⎛

⎜
⎜
⎝

[1, 1] 2

[1, 1] 1 0
[2] ζ2(1) 1

⎞

⎟
⎟
⎠

C (3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

ζ2(1) + ζ2(t) 1 0

ζ2(1)ζ3(1) ζ3(1) 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

C (4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0

ζ2(1) + ζ2(t) + ζ2(t2) 1 0 0 0

ζ2(1)
(
ζ2(1) + ζ2(t)

)
ζ2(1)2ζ2(qt) 1 0 0

ζ2(1)
(
ζ2(1)ζ2(q) + ζ2(1)ζ2(qt) + ζ2(t)ζ2(qt)

)
ζ2(1)

(
ζ2(q) + ζ2(qt)

)
ζ2(1) 1 0

ζ2(1)ζ3(1)ζ4(1) ζ3(1)ζ4(1) ζ3(1)ζ3(q) ζ4(1) 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. . . (62)
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Since explicitly

Mon[1] = p1

Mon[2] = p2, Mon[1,1] = p2
1 − p2

2
= Schur[1,1]

Mon[3] = p3, Mon[2,1] = p2 p1 − p3,

Mon[1,1,1] = p3

3
− p2 p1

2
+ p3

1

6
= Schur[1,1,1]

Mon[4] = p4, Mon[3,1] = p3 p1 − p4,

Mon[2,2] = p2
2 − p4

2
, Mon[2,1,1] = p4

2
− p3 p1

3
− p2

2

4
+ p4

1

12
,

Mon[1,1,1,1] = − p4

4
+ p3 p1

3
+ p2

2

8
− p2 p2

1

4
+ p4

1

24
= Schur[1,1,1,1]

. . . (63)

we get:

Gns[1] = p1,

Gns[2] =
(

1 − ζ2(1)

2

)

p2 + ζ2(1)
p2

1

2
= p2 + ζ2(1)S[1,1]

= S[2] −
(

1 − ζ2(1)
)

S[1,1]

Gns[1,1] = −p2 + p2
1

2
= S[1,1]

Gns[3] =
(

1 − ζ3(1) + ζ3(1)ζ2(1)

3

)

p3

+ζ3(1)

(

1 − ζ2(1)

2

)

p2 p1 + ζ3(1)ζ2(1)

6
p3

1

= S[3] −
(

1 − ζ3(1)
)

S[2,1] +
(

1 − 2ζ3(1)

+ζ3(1)ζ2(1)
)

S[1,1,1]

Gns[2,1] = p2 p1 − p3 +
(
ζ2(1) + ζ2(t)

)
(
p3

3
− p2 p1

2
+ p3

1

6

)

= S[2,1] −
(

2 − ζ2(1) − ζ2(t)
)

S[1,1,1]

Gns[1,1,1] = p3

3
− p2 p1

2
+ p4

1

6
= S[1,1,1]

Gns[4] = p4 + ζ4(1)
(
p3 p1 − p4

)
+ ζ3(1)ζ3(q)

p2
2 − p4

2

+ζ3(1)ζ4(1)

(
p4

2
− p3 p1

3
− p2

2

4
+ p4

1

12

)

+ζ2(1)ζ3(1)ζ4(1)

(

− p4

4
+ p3 p1

3
+ p2

2

8
− p2 p2

1

4
+ p4

1

24

)

Gns[3,1] =
(
p3 p1 − p4

)
+ ζ2(1)

p2
2 − p4

2

+ζ2(1)
(
ζ2(q) + ζ2(qt)

)
(
p4

2
− p3 p1

3
− p2

2

4
+ p4

1

12

)

+ζ2(1)
(
ζ2(1)ζ2(q) + ζ2(1)ζ2(qt) + ζ2(t)ζ2(qt)

)

(

− p4

4
+ p3 p1

3
+ p2

2

8
− p2 p2

1

4
+ p4

1

24

)

Gns[2,2] = p2
2 − p4

2
+ ζ2(1)2ζ2(qt)

(
p4

2
− p3 p1

3
− p2

2

4
+ p4

1

12

)

+ζ2(1)
(
ζ2(1) + ζ2(t)

)

(

− p4

4
+ p3 p1

3
+ p2

2

8
− p2 p2

1

4
+ p4

1

24

)

Gns[2,1,1] = p4

2
− p3 p1

3
− p2

2

4
+ p4

1

12
+

(
ζ2(1) + ζ2(t) + ζ2(t

2)
)

(

− p4

4
+ p3 p1

3
+ p2

2

8
− p2 p2

1

4
+ p4

1

24

)

Gns[1,1,1,1] = − p4

4
+ p3 p1

3
+ p2

2

8
− p2 p2

1

4
+ p4

1

24
. . . (64)

Examples of conjugate polynomials Gns⊥ and their
ζ -grading

The simplest of polynomials conjugate to GnsR{p} w.r.t. the
Schur metric

〈p
|p
′ 〉 = z
 · δ
,
′ , 〈GnsR{p}
∣
∣
∣Gns⊥

R′ {p}〉 = δR,R′

(65)

are:

Gns⊥[1] = p1 = S[1]
Gns⊥[2] = Schur[2] = S[2]

Gns⊥[1,1] = Schur2[1] − ζ2(1) · Schur[2] = S2[1] − ζ2(1) · S[2]

Gns⊥[3] = 1

6
p3

1 + 1

2
p1 p2 + 1

3
p3 = S[3]

Gns⊥[2,1] = − 1

6

(
ζ3(1) − 3

)
p3

1 − 1

2

(
ζ3(1) − 1

)
p1 p2

− 1

3
ζ3(1)p3 = S[1]S[2] − ζ3(1)S[3]

Gns⊥[1,1,1] = − 1

6

(
3ζ2(1) + 3ζ2(t) − ζ2(t)ζ3(1) − 6

)
p3

1

+ 1

2

(
ζ2(1) + ζ2(t) − ζ2(t)ζ3(1)

)
p1 p2

+ 1

3
ζ2(t)ζ3(1)p3 =

= S3[1] −
(
ζ2(1) + ζ2(t)

)
S[1]S[2] + ζ2(t)ζ3(1)S[3]

Gns⊥[4] = S[4]
Gns⊥[3,1] = S[1]S[3] − ζ4(1)S[4]
Gns⊥[2,2] = S2[2] − ζ2(1)S[1]S[3] −

(
ζ2(1) − ζ2(q)

)
ζ4(t)S[4]

Gns⊥[2,1,1] = S2[1]S[2] − ζ2(1)S2[2] −
(
ζ2(q) + ζ2(qt) − ζ2(1)

)
ζ2

(1)S[1]S[3] +
(
ζ2(q) + ζ2(qt) − ζ2(1)

)
ζ2(1)ζ4(t)S[4]

Gns⊥[1,1,1,1] = S4[1] −
(
ζ2(1) + ζ2(t) + ζ2(t2)

)
S2[1]S[2]

+ζ2(1)ζ2(t2)S2[2] +
(
ζ2(t)ζ2(q) + ζ2(t2)ζ2(q)

+ζ2(t2)ζ2(qt) − ζ2(t2)ζ2(1)
)
ζ2(1)S[1]S[3]

−
(
ζ2(q) + ζ2(qt) − ζ2(1)

)
ζ2(1)ζ2(t2)ζ4(t)S[4]

. . . (66)

Note that they are also polynomial in ζ (do not contain it in
denominators) and, more interesting, are clearly graded with
the grade being related to the ordering of Young diagrams
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(the grade of ζk is k − 1). From this point of view, of a
special interest is level |R| = 6, where the ordering becomes
ambiguous, but in fact the grading rule is preserved, because
of vanishing of the coefficient in front of Schur[3] · Schur3[1]
in Gns[2,2,2] and vice versa. We conjecture that the same
happens at higher levels.

The grading tables in the obvious notation:

gradζ2

(
Gns⊥[1,1]

)
= 1 · S[2]

gradζ2

(
Gns⊥[2,1]

Gns⊥[1,1,1]

)

=
(

2
1 3

)(
S[3]

S[2]S[1]

)

gradζ2

⎛

⎜
⎜
⎝

Gns⊥[3,1]
Gns⊥[2,2]

Gns⊥[2,1,1]
Gns⊥[1,1,1,1]

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

3
4 1
5 2 1
6 3 2 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

S[4]
S[3]S[1]

S2[2]
S[2]S2[1]

⎞

⎟
⎟
⎠

gradζ2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Gns⊥[4,1]
Gns⊥[3,2]

Gns⊥[3,1,1]
Gns⊥[2,2,1]

Gns⊥[2,1,1,1]
Gns⊥[1,1,1,1,1]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

4
6 2
7 3 1
8 4 2 1
9 5 3 2 1

10 6 4 3 2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

S[5]
S[4]S[1]
S[3]S[2]
S[3]S2[1]
S2[2]S[1]
S[2]S3[1]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, . . .

gradζ2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Gns⊥[5,1]
Gns⊥[4,2]

Gns⊥[4,1,1]
Gns⊥[3,3]

Gns[3,2,1]
Gns[3,1,1,1]
Gns[2,2,2]

Gns⊥[2,2,1,1]
Gns⊥[2,1,1,1,1]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

5
8 3
9 4 1
9 4 1

11 6 3 2 2
12 7 4 3 3 1
12 7 4 3 3 1
13 8 5 4 4 2 1 1
14 9 6 5 5 3 2 2 1
15 10 7 6 6 4 3 3 2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S[6]
S[5]S[1]
S[4]S[2]
S[4]S2[1]

S2[3]
S[3]S[2]S[1]

S[3]S3[1]
S3[2]

S2[2]S2[1]
S[2]S4[1]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, . . .

The interesting particular cases are

• η = 0:

GnsR{p} = MonR{p} Gns⊥
R {p} =

∏

i

SRi
{p} (67)

• η = 1: this is the case of Schur polynomials,

GnsR{p} = Gns⊥
R {p} = SchurR{p} (68)

• η = (1−qz)(1−t/qz)
(1−t z)(1−z) : this is the case of Macdonald poly-

nomials,

GnsR{p} = MacR{p}, Gns⊥
R {pk } = MacR∨ {(−1)k+1 pk} (69)

Examples of ring structure coefficients

The very first examples of product decompositions for the
GNS polynomials are:

Gns2[1] = Gns[2] +
(

2 − ζ2(1)
)

· Gns[1,1]

Gns[1] · Gns[1,1] = Gns[2,1] +
(

3 − ζ2(1) − ζ2(t)
)

· Gns[1,1,1]

Gns[1] · Gns[2] = Gns[3] +
(

1 + ζ2(1) − ζ2(1)ζ2(q)
)

· Gns[2,1]

+
(

2ζ2(1)−ζ2(t)−ζ2(1)2−ζ2(1)ζ2(t)+ζ2(1)ζ2(q)ζ2(t)
)

· Gns[1,1,1]
. . .

Note that the underlined “anomalous” coefficient is non-
vanishing for generic ζ2(z), but it vanishes on the Macdonald
locus ξ(z) = 1 − z.

However, its conjugate counterpart vanishes for arbitrary
ξ(z):

Gns⊥[1]
2 = Gns⊥[1,1] + ζ2(1) · Gns⊥[2]

Gns⊥[1] · Gns⊥[1,1] = Gns⊥[1,1,1] + ζ2(t) · Gns⊥[2,1]
Gns⊥[1] · Gns⊥[2] = Gns⊥[2,1] + ζ3(1) · Gns⊥[3] (70)

The non-vanishing coefficients, which vanish on the Mac-
donald locus (underlined), appear now only at level 4:

Gns⊥[1] · Gns⊥[1,1,1] = Gns⊥[1,1,1,1] + ζ2(t
2) · Gns⊥[2,1,1]

Gns⊥[1] · Gns⊥[2,1] = Gns⊥[2,1,1] + ζ2(1) · Gns⊥[2,2]
ζ2(1)ζ2(qt) · Gns⊥[3,1]

Gns⊥[1] · Gns⊥[3] = Gns⊥[3,1] + ζ4(1) · Gns⊥[3]

Gns⊥[1,1] · Gns⊥[1,1] = Gns⊥[1,1,1,1] +
(
ζ2(t

2) + ζ2(t) − ζ2(1)
)

·Gns⊥[1,1,2] + ζ2(1)ζ2(t) · Gns⊥[2,2]

+
(
ζ2(1)3 + ζ2(1)ζ3(t) − ζ2(1)2ζ2(qt) − ζ2(1)ζ3(1)

)
· Gns⊥[1,3]

Gns⊥[1,1] · Gns⊥[2] = Gns⊥[2,1,1] + 0 · Gns⊥[2,2]

+
(
ζ2(tq) + ζ2(q) − ζ2(1)

)
· Gns⊥[3,1]

Gns⊥[2] · Gns⊥[2] = Gns⊥[2,2] + ζ2(1) · Gns⊥[3,1]
+ζ2(q)ζ4(1) · Gns⊥[4] (71)

In fact, underlined is the only redundant coefficient at level 4.
The reason is that there are no redundant coefficients in front
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of Gns⊥[r ] at any r . The coefficient in the box is vanishing:
this is in agreement with the product of representations, [2]⊗
[1, 1] = [2, 1, 1] + [3, 1], which does not contain [2, 2].

Note that these coefficients are obviously much simpler
and better structured in the conjugate case. This is one of the
striking features of conjugate polynomials Gns⊥.
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