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Abstract In this paper, by analyzing the underlying
Lefschetz-thimble structure, we investigate quantum phases
(or quantum critical points) in zero-dimensional scalar field
theories with complex actions. Using first principles, we
derive the thimble equations of these models for various val-
ues of the coupling parameters. In the thimble decomposi-
tion of complex path integrals, determination of the so-called
intersection numbers appears as an important ingredient. In
this paper, we obtain the analytic expressions for the com-
bined intersection number of thimbles and anti-thimbles of
these zero-dimensional theories. We also derive the condi-
tional expressions involving relations among the coupling
parameters of the model, that would help us predict quantum
phase transitions in these systems. We see that the underly-
ing thimble structure undergoes a drastic change when the
system passes through such a phase transition.
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1 Introduction

We encounter path integrals with complex actions in many
branches of physics. The prominent examples are the
Minkowski path integral, Yang–Mills theory in the theta vac-
uum, Chern–Simons gauge theories, chiral gauge theories,
and QCD with chemical potential. There are also quantum
theories with complex actions that are invariant under PT
symmetry [1–3]. In the context of string theory, the IKKT
matrix model, a zero-dimensional supersymmetric quantum
field theory that serves as a promising candidate for a non-
perturbative formulation of superstring theory, is shown to
have a complex fermion operator [4–6]. Investigating the
nonperturbative structure of such theories using traditional
path-integral Monte Carlo methods is unreliable due to the
presence of the sign problem. It would be very useful to have a
formalism that offers a promising tool to solve quantum field
theories containing such complex path-integral weights.

A recent and developing method to deal with quantum
field theories with complex actions uses the complex analog
of Morse theory from differential topology [7,8].1 There, the
objects of primary interest, the so-called Lefschetz thimbles,
are a set of sub-manifolds associated with a function that sat-
isfy the Morse flow equation for the real part of the function.

1 There exists another compelling method to deal with models contain-
ing complex actions. It is based on complex Langevin dynamics. See
Refs. [4–6,9–17] for recent developments in using complex Langevin
dynamics in quantum field theories with complex actions.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-08493-8&domain=pdf
http://orcid.org/0000-0003-4288-8207
mailto:r.bharathkumar@outlook.com
mailto:anoshjoseph@iisermohali.ac.in


923 Page 2 of 20 Eur. Phys. J. C (2020) 80 :923

The central idea behind using this formalism is to recast the
path integral in terms of a finite set of non-oscillatory inte-
grals. Recent work on complex path integrals and connec-
tions to Lefschetz thimbles, including applications to quan-
tum tunneling and scattering amplitudes can be seen in Refs.
[18–29]. In Refs. [30–35] the Lefschetz-thimble approach
has been employed to study bosonic quantum field theo-
ries, and in Refs. [36–43] models including fermions were
studied. The relevance of Lefschetz thimbles in the context
of semi-classical expansion in asymptotically free quantum
field theories is discussed in Refs. [44–48].

In this paper, we explore zero-dimensional scalar field the-
ories with complex actions, containing a quartic interaction
term and a source term. These models represent the sim-
plest nontrivial quantum field theory with a linear source
term. We show that the Lefschetz thimble equations can
be derived, using first principles, for various values of the
coupling parameters. One result in this paper is the deriva-
tion of the expressions of parametrized curves for thimbles
and anti-thimbles for all possible cases of the parameters
for the quartic model. In the process of thimble decomposi-
tion of complex path integrals, an important ingredient is the
determination of the so-called intersection numbers. Another
result we obtained in this paper is the analytic expressions
for the combined intersection number of thimbles and anti-
thimbles of these zero-dimensional theories. We also provide
a completely analytic demonstration of the existence of quan-
tum phases (or quantum critical points) in the model using
the intersection numbers. Due to the lack of existence of a
proper definition of thermodynamic quantities in zero dimen-
sions, the discussion is formulated in terms of non-analytic
behavior of the partition function. Further, since the locations
of these non-analyticities depend only on the (non-thermal)
control parameters of the system, a symmetry involving the
field φ is unaffected as one crosses these phase boundaries.
These observations indicate that the phases under consider-
ation behave like quantum phases. Conditional expressions
involving relations among the parameters of the model help
us predict the quantum critical points in these systems. We
show that the underlying thimble structure undergoes a dras-
tic change while the system is going through a quantum criti-
cal point. Although the accessibility of the information about
these phases through Stokes phenomena has been hinted in
previous works, see Refs. [7,37,49,50], our work provides
the first completely analytic demonstration as a new result.

The paper is organized as follows. In Sect. 2 we provide
a primer on Lefschetz thimbles by introducing the gradient
flow equations of the given action. In Sect. 3 we introduce the
model of our interest, a zero-dimensional bosonic model with
complex action containing quartic interactions and a source
term. The thimble equations for this model are derived next
in Sect. 4. We discuss analytic expressions for the thimble
and anti-thimble equations, and the so-called ghost solutions,

which are neither thimbles nor anti-thimbles. We also dis-
cuss the behavior of the partition function and observables
of the model as a function of the control parameters. In Sect.
5 we discuss the boundaries of phase transitions for vari-
ous combinations of the values of the coupling parameters.
This includes the interesting case when the complex action
exhibits PT symmetry. A few examples of the phase transi-
tion boundaries are provided in Sect. 6. The examples show
that the structure of the thimbles undergoes a drastic change
when the governing (non-thermal) parameters of the model
pass through a quantum critical point. In Sect. 7 we provide
a summary of the main results, and in Sect. 8 we give our
conclusions and indicate possible future directions.

2 A primer on Lefschetz thimbles

Intuitively, we can relate the Lefschetz thimbles to the orig-
inal integration cycle of the quantum field theory in the fol-
lowing way. Let us denote the original integration cycle as
MR. We ‘complexify’ this manifold to MC, that is, we take
a complex manifold MC that contains the original manifold
MR as a submanifold, with the requirement that the complex
conjugate of an element of MR is the element itself. One can
think ofMR = R

n andMC = C
n for ease of understanding.

Post complexification, we identify the Morse function
[51]. The Morse function in a loose sense determines these
thimbles. A natural function to consider is the action. (The
actual Morse function under consideration is the real part of
−S since, by definition, Morse functions are real.) Given a
Morse function, we identify its critical points – points inMC

where the Morse function is locally extremized. The next
step, visually, can be thought of as continuously deforming
MR, the deformation being controlled by the Morse function
through the Morse flow equations

dzi

dt
= gi j̄

∂S

∂z j
,

dzi

dt
= gi j̄

∂S

∂z j
, (2.1)

where gi j̄ is the metric on MC and zi are a set of local
coordinates around the critical points of S. It can be checked
immediately that the imaginary part of the action S is constant
along the solution to the above equations.

As the final result of this construction, we obtain a pair of
sub-manifolds, called the thimble and anti-thimble, associ-
ated with each critical point. The thimble is the ‘stable’ solu-
tion. That is, the action goes to infinity sufficiently rapidly
along a thimble, so as to keep the integral involving exp(−S)

to be convergent. The anti-thimble is the ‘unstable’ solu-
tion. An example familiar in physics is the method of steep-
est descent, and thus the Lefschetz thimbles formalism can
be thought of as the generalization of the steepest descent
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method. A rigorous treatment of this construction can be
found in Refs. [51–53].

An integral involving the action on the sub-manifold MR

can now be written as a linear combination of integrals over
the Lefschetz thimbles. In this language, the expression for
the partition function associated with a system with action S
is given as the weighted sum of contributions from the critical
points of the action

Z =
∑

i

ni

∫

Ji

Dφ e−S[φ], (2.2)

where the integral denotes integration over the Lefschetz
thimble Ji , which is associated with the i-th critical point
φi of the action. The weight (also known as the intersection
number) ni is an integer that decides the contribution of a
particular critical point to the partition function. Assuming
that the critical points do not share a common gradient flow,
given in Eq. (2.1), ni is given by the number of times the
anti-thimble intersects the original integration cycle M [54].
That is,

ni = 〈Ki ,M〉 . (2.3)

An advantage of using Lefschetz thimbles is that on these
thimbles, as discussed above, the imaginary part of the action
remains constant. This is certainly a desirable property since,
in the (Euclidean) path integral formalism of quantum field
theories, the constant imaginary part of the action, Im(S), in
the integral, Eq. (2.2), can be pulled out as a phase factor, and
the remaining integral becomes a non-oscillatory integral.2

In zero-spacetime dimensions the formalism simplifies
greatly. For the majority of the situations considered in this
work, the original integration cycle is the real line, R. In this
case, we end up dealing with curves in the plane of allowed
degrees of freedom for the fields (i.e., C) that satisfy the
gradient flow equation

∂φ(t)

∂t
= −

(
δS

δφ

)
, (2.4)

where t is a parameter and the overline represents complex
conjugation. The thimbleJi associated with the critical point
φi of the action is defined as the solution to Eq. (2.4) that
satisfies

lim
t→∞ φ(t) = φi ,

2 There is a possibility that the integral can pick up an oscillatory nature
due to the Jacobian that transforms the integration measure. This, how-
ever, is much milder compared to the original integral and is referred to
as the mild sign problem [30].

and the anti-thimble Ki satisfies

lim
t→−∞ φ(t) = φi .

By definition, the thimbles always end inside regions of sta-
bility,3 while anti-thimbles end inside regions of instability.

3 Quartic model with a source term

Let us consider a quantum field theory in zero-spacetime
dimensions, with the action given in the following form

S[φ] = σ

2
φ2 + λ

4
φ4 + hφ. (3.1)

The action has a quartic interaction term and a source term -
it is the simplest nontrivial quantum field theory action with
a source term. The parameters σ , λ and h are in general
complex. For convenience, we also express

σ = a + ib and λ = c + id. (3.2)

The motivation for considering this particular action is
twofold. First, the above action acts as an excellent toy model
for understanding systems with complex actions, in the path
integral formalism [34,49,55,56], and how Lefschetz thim-
bles help mitigate the sign problem, while also being not too
trivial and allowing us to showcase a lot of rich dynamics
that accompany the Lefschetz thimble analysis. The above
action, with complex σ is relevant for the relativistic Bose
gas at non-zero chemical potential [57,58]. A variant of this
model, with σ = h = 0 and λ complex was studied in Ref.
[55]. Second, for the method employed in our calculations,
quartic interactions are the highest, exactly solvable terms
due to the Abel–Ruffini theorem in algebra [59] that states
that there are no closed-form expressions for solutions to
general polynomial equations of degree five or higher. Fur-
ther, the inclusion of a source term ensures that we exhaust
all physically possible situations for a system with quartic
interactions.

Let us begin with determining the regions of stability
(sometimes referred to as the Stokes wedges [46,77]) in this
model. Since the integral in Eq. (2.2) involves the expression
exp(−S), the integral is convergent in regions where, as φ

approaches infinity, Re(S[φ]) ≥ 0. Since the highest order in
our action is four, we get four wedges in the complex plane
where the integral is convergent. This is shown schematically
in Fig. 1.

One way to find the (anti-)thimble associated with a crit-
ical point is to solve the gradient flow equation, Eq. (2.4),

3 Regions of stability are defined as regions in the complex plane where
the integral in Eq. (2.2) remains convergent.
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(a) {a, b, c, d} = {0, 0, 1,−2} (b) {a, b, c, d} = {0, 0, 1, 0} (c) {a, b, c, d} = {0, 0, 1, 2}

Fig. 1 A schematic representation of the regions of stability at infinity for the action given in Eq. (3.1). Inside the shaded regions, the integral in
Eq. (2.2) is convergent. In general, the position and shape of these wedges are controlled by the parameters σ, λ and h in the action

for (anti-)thimbles. This method, however, quickly becomes
very complicated, even for simple forms of actions, due to the
coupling between the real and imaginary parts of the differ-
ential equation. Fortunately, there is another simpler method.
We can exploit a very crucial property of (anti-)thimbles: the
imaginary part of the action remains constant along these
(anti-)thimbles. Therefore, to solve for the thimbles, we look
for solutions to the constraint

Im (S[φ] − S[φi ]) = 0, (3.3)

with φi denoting the critical point.
Let us restrict our calculations to cases where h (the

parameter controlling the linear term in the action) is small
compared to σ and λ. We further restrict h to be either real
or purely imaginary. This allows us to approximate the three
critical points4 of the action as

φ0 = − h

σ
+ O(h3), (3.4a)

φ± = ±i

√
σ

λ
+ h

2σ
± i

3h2

8

√
λ

σ 5
+ O(h3). (3.4b)

The critical point φ0 is close to the origin (that is, φ = 0)
for small h while the position of φ± depends on the choice
of the parameters. Let us denote the imaginary part of the
action at a given critical point by ρi . That is,

ρi ≡ ImS[φi ], i = −, 0,+. (3.5)

For the particular action we are considering, they take the
following forms

4 In our discussion here, the critical points are the points in the φ plane
where the action gets extremized, as defined in Sect. 1. They are not the
points in the parameter space corresponding to phase transitions.

ρ0 =
(

b

a2 + b2

)
Im(h2) + O(h3), (3.6a)

ρ± =
[
d(a2 − b2) − 2abc

4(c2 + d2)

]

±Im

(
ih

√
(ac + bd) + i(bc − ad)

c2 + d2

)

− b

4(a2 + b2)
Im(h2) + O(h3). (3.6b)

We note that the convergence of the partition function inte-
gral given in Eq. (2.2) requires the real part c of λ to be posi-
tive when the original integration cycle is R. However, when
c is negative, which is the case when the action possesses
PT symmetry (we will see this case later), the standard pro-
cedure is to take an integration cycle about the angles 5π/4
and 7π/4 in the complex plane (that is, in the third and the
fourth quadrant, respectively) [60,61]. This choice ensures
that the partition function integral remains convergent. If we
parametrize the field as φ = x + iy then this amounts to
choosing our integration cycle, in the cases where c is nega-
tive, as

y(x) =
{
x for x ≤ 0,

−x for x > 0.
(3.7)

4 Thimble equations and observables

4.1 Thimble equations

As discussed in Sect. 3, we solve for the (anti-)thimble by
equating the imaginary part of the action at a generic value of
φ to the imaginary part of the action at one of its critical points
φi . In Ref. [34], Aarts derived the equation for the (anti-
)thimble corresponding to φ0 when h = 0 and d = 0. We
recreate those results here as a primer, and for completeness.
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of the action.
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(a) Thimbles, anti-thimbles and (b) Thimble, anti-thimble, and (c) Thimbles and anti-thimbles
for the critical points φ± of the
action.

Fig. 2 The solutions to the thimble equation given in Eq. (3.3), cor-
responding to the critical points φ0 and φ±, for the parameters {a =
1, b = 1, c = 1, d = 0, h = 0}. In all the three figures, the green solid

curves represent the thimbles, red dashed curves represent the anti-
thimbles, and the grey solid curves represent the ghosts. The shaded
regions represent the regions where Re(S) ≥ 0

Substituting ρ0 into the constraint given in Eq. (3.3), hav-
ing set h = 0 and d = 0, we obtain the following constraint

− cxy3 − b

2
y2 +

(
ax + cx3

)
y + b

2
x2 = 0. (4.1)

Solving for y as a function of x , we obtain the thimble
and anti-thimble, J0 and K0, respectively, associated with
the critical point φ0

y(x) = 1

6cx

(
−b + e−iθ 
2


1
+ eiθ
1

)
, (4.2a)


1 =
(
b
3 +

√
b2
2

3 − 
3
2

)1/3

, (4.2b)


2 = b2 + 12cx2(a + cx2), (4.2c)


3 = b2 + 18cx2(a − 2cx2). (4.2d)

Here θ ∈ {−π
3 , 0, π

3 }. In Fig. 2 we show the three curves
corresponding to the three values of the parameter θ . The
thimble corresponds to θ = −π

3 and the anti-thimble corre-
sponds to θ = π

3 . The curves for θ = 0 are paths of constant
Im S that are neither thimbles nor anti-thimbles. We shall
refer to these curves as the ghost solutions or simply ghosts.

Similarly, when solving for φ±, we obtain Eq. (4.2), but
with Eq. (4.2d) now changed to the following form


3 = b2 + 72cx2(a − cx2). (4.3)

In this case, θ = 0 corresponds to the thimbles for both
φ+ and φ−. The curve has two branches, one for x < 0 and
the other for x > 0. The anti-thimble associated with φ+ has
θ = −π

3 . The anti-thimble associated with φ− has θ = π
3 . In

Fig. 2 we show the thimbles, anti-thimbles and ghosts for all

the critical points, φ0 and φ±, of the action for the parameters
{a = 1, b = 1, c = 1, d = 0, h = 0}.

So far we have restricted the model to the case where
h = 0 and d = 0. Let us now do away with the restriction on
d while still maintaining the constraint h = 0. The thimble
equation given in Eq. (4.1) is now modified as

d

4
y4 − cxy3 −

(
b

2
+ 3d

2
x2

)
y2 +

(
ax + cx3

)
y

+b

2
x2 + d

4
x4 = ρi . (4.4)

Rearranging the above equation in the form

Ay4 + By3 + Cy2 + Dy + E = 0,

we obtain the equation of curves, yk(x), k = 1, 2, 3, 4, for
(anti-)thimbles as a function of x

y1,2 = − B

4A
− S ± 1

2

√
−4S2 − 2P + Q

S
, (4.5a)

y3,4 = − B

4A
+ S ± 1

2

√
−4S2 − 2P − Q

S
, (4.5b)

P = 8AC − 3B2

8A2 , (4.5c)

Q = B3 − 4ABC + 8A2D

8A3 , (4.5d)

R =
⎛

⎝

1 +

√

2

1 − 4
3
0

2

⎞

⎠ , (4.5e)
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(a) Thimbles, anti-thimbles, and (b) Thimble, anti-thimble, and (c) Thimbles and anti-thimbles
for the critical points φ± of the
action.

Fig. 3 The solutions to the thimble equation given in Eq. (3.3), corre-
sponding to the critical points φ0 and φ±, for the parameters {a = 1,
b = −0.9, c = 0, d = 1.5, h = 0}. In all the three figures, the

green solid curves represent the thimbles, red dashed curves represent
the anti-thimbles, and the grey solid curves represent the ghosts. The
shaded regions represent the regions where Re(S) ≥ 0

S = 1

2

√

−2

3
P + 1

3a

(
R + 
0

R

)
, (4.5f)


0 = C2 − 3BD + 12AE, (4.5g)


1 = 2C3 − 9BCD + 27B2E + 27AD2 − 72ACE .

(4.5h)

Although the solutions to the thimble equation given in Eq.
(4.4) exist in the form of Eq. (4.5), there are a few caveats
we would like to stress on. There are too many conditions to
keep track of due to the requirement that x, y ∈ R. (A visual
summary of these conditions can be found in Ref. [62].)
These conditions could potentially lead to discontinuities in
the curve equations, yk(x), k = 1, 2, 3, 4, for the thimbles in
Eq. (4.5). Further, the requirement of keeping track of these
conditions manifests itself as the four solutions simultane-
ously being either the thimble or the anti-thimble depending
on the region in the complex plane under consideration. We
will refer to this as the ‘piecewise behavior’ of the solutions
since they appear themselves as piecewise thimbles/anti-
thimbles/ghosts. Whether a solution shows piecewise behav-
ior or not depends on the set of parameters {a, b, c, d}.

Let us consider the examples illustrated in Figs. 3 and
4. We see that the solution y1 for φ0 gives the thimble for
x < 0 and a ghost for x > 0, y2 gives the anti-thimble for
x < 0 and a ghost for x > 0, y3 gives the anti-thimble for
x > 0 and a ghost for x < 0, and y4 for gives the anti-
thimble for x > 0 and a ghost for x < 0. Similarly, for φ±,
the solutions y1 and y2 give the thimble for both x < 0 and
x > 0, and y3 and y4 give the thimble for both x < 0 and
x > 0. However, they still exhibit the piecewise behavior.
There definitely are parameter sets {a, b, c, d} for which the
piecewise behavior might not be exhibited. One such case is

when {a = 1, b = 1, c = 1, d = 1}; six of the eight solutions
do not exhibit this behavior. (We show this in Figs. 5 and 6.)
These cases, however, seem to be exceptions rather than the
norm.

From the thimble/anti-thimble/ghost solutions given in
Eq. (4.5), we see that obtaining the curves for the case h 
= 0
is straightforward. If h is real, thenC changes from (ax+cx3)

to (h + ax + cx3) while E remains the same, except for
the change in ρi . If h is purely imaginary, then C remains
unchanged and E gains an additional hx term apart from the
change to ρi . This situation also suffers from the issues dis-
cussed earlier for the case where h was taken to zero while
d was non-zero.

4.2 Partition function and observables

Let us consider the action given in Eq. (3.1) for the case
h = 0. We have

S[φ] = σ

2
φ2 + λ

4
φ4. (4.6)

This model is referred to as the quartic model and it rep-
resents the simplest nontrivial quantum field theory action.
This model was studied extensively in the context of complex
Langevin dynamics in Refs. [34,55,56].

The n-point functions of the model can be constructed in
the following way

〈φn〉 = 1

Z

∫
Dφ φne−S[φ], Z =

∫
Dφ e−S[φ], (4.7)

with Z denoting the partition function.
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(a) Thimbles, anti-thimbles, and (b) Thimble, anti-thimble, and (c) Thimbles and anti-thimbles
for the critical points φ± of the
action.

Fig. 4 Demonstration of the piecewise behavior by the solutions to
the thimble equation given in Eq. (3.3), corresponding to the critical
points φ0 and φ± of the action, for the parameters {a = 1, b = −0.9,
c = 0, d = 1.5, h = 0}. In all the three figures, the blue solid curves

correspond to solution y1, orange solid curves to the solution y2, green
solid curves to the solution y3 and the red solid curve to the solution y4.
The shaded regions denote the regions where Re(S) ≥ 0
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ghosts for all the critical points,
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(a) Thimbles, anti-thimbles, and (b) Thimble, anti-thimble, and (c) Thimbles and anti-thimbles
for the critical points φ± of the
action.

Fig. 5 The solutions to the thimble equation, Eq. (4.4), corresponding
to φ0 (Middle) and φ± (Right), for the parameters {a = 1, b = 1, c = 1,
d = 1, h = 0}. In all the three figures, the green solid curves repre-

sent the thimbles, red dashed curves represent the anti-thimbles, and the
grey solid curves represent the ghosts. The shaded regions represent the
regions where Re(S) ≥ 0

Now consider the following integral associated with the
above action along the original integration cycle R

In =
∫ ∞

−∞
dx xn exp

[
−

(
σ

2
x2 + λ

4
x4

)]
. (4.8)

Since the integrand is of odd parity under the exchange x →
−x when n is odd, the above integral is non-zero only for
even values of n. We recover the partition function when
n = 0, and the observables for the system are related to the
above integral as

〈φn〉 = 1

Z
In . (4.9)

The exact result of the integral is known in terms of mod-
ified Bessel functions for the cases n = 0 and n = 2, for
Re(σ ) > 0 and Re(λ) > 0, as [63]

Z =
√

σ

2λ
eσ 2/(8λ) K1/4

(
σ 2

8λ

)
, (4.10)

〈φ2〉 = σ

4λ

K−3/4

(
σ 2

8λ

)
+ K5/4

(
σ 2

8λ

)

K1/4

(
σ 2

8λ

) − σ

2λ
− 1

σ
. (4.11)

Here K is the modified Bessel function of the second kind.
In the case where Re(σ ) < 0, we replace K in Z with I , the
modified Bessel function of the first kind.
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ghosts for all the critical points,
φ0 and φ±, of the action.
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ghosts for the critical point φ0

of the action.
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(a) Thimbles, anti-thimbles, and (b) Thimble, anti-thimble, and (c) Thimbles and anti-thimbles
for the critical points φ± of the
action.

Fig. 6 Demonstration of piecewise behavior by the thimble solutions
to Eq. (3.3), corresponding to φ0 and φ±, for the parameters {a = 1,
b = 1, c = 1, d = 1, h = 0}. In all the three figures, the blue solid

curves correspond to solution y1, orange solid curves to solution y2,
green solid curves to solution y3, and red solid curves to solution y4.
The shaded regions denote the regions where Re(S) ≥ 0

Integrating Eq. (4.8) by parts, rearranging, and dividing
by Z , we obtain a recursion relation for observables of the
theory

(2n + 1)〈φ2n〉 − σ 〈φ2(n+1)〉 − λ〈φ2(n+2)〉 = 0. (4.12)

Thus, since the closed-form expressions for the partition
function and the observable 〈φ2〉 are known, all observables
of the theory are known and can be written in terms of the
two using Eq. (4.12). The relation could potentially be used
to determine the partition function of the action with sources.
For nonzero h the partition function is given by

Zsources =
∫ ∞

−∞
dx e−hx exp

[
−

(
σ

2
x2 + λ

4
x4

)]
. (4.13)

Taylor expanding the first exponential, we get

Zsources =
∞∑

n=0

h2n

(2n)! I2n, (4.14)

and from the recurrence relation derived above, Zsources can
be written solely in terms of I0 and I2.

5 Determining the intersection numbers

The intersection number ni , defined in Eqs. (2.2) and (2.3),
being an integer, greatly controls the behavior of the partition
function and observables of the model.

As the parameters of the action are changed, the intersec-
tion number corresponding to a critical point could poten-
tially change, which results in an abrupt change in the values

of the partition function and the observables of the system.
The most dramatic among these is the case when the intersec-
tion number takes the value zero, and this in turn results in the
corresponding critical point not contributing to the dynam-
ics of the system. This change in the intersection number is
referred by the name Stokes phenomena5 [7,49]. This phe-
nomenon points at the existence of quantum phase transitions
in the system.

We note that the abrupt changes in the values of the par-
tition function and observables occur as a function of one
or more non-thermal parameters in the model. These type of
transitions at zero temperature are called quantum phase tran-
sitions or quantum critical points. We can capture quantum
phase transitions in the system by observing the appearance
of non-analyticity in the observables as a function of one or
more non-thermal control parameters. In our case, the con-
trol parameters belong to the set {σ, λ, h}. For more details
on quantum phase transitions see Ref. [66].

The power of using Eq. (3.3) to solve for (anti-)thimbles is
the fact that it captures the information about these intersec-
tion numbers. Using this equation, we can look for the values
of the control parameters around which the intersection num-
ber jumps. This, in turn, allows us to predict the boundaries
of these phase transitions. One of our main results will be
the analytic expressions for the combined intersection num-
ber of thimbles and anti-thimbles of the simplest nontrivial
quantum field theory: a scalar-field theory in zero-spacetime

5 An alternative, and equivalent, definition used frequently in the lit-
erature in the context of integration by the method of steepest descent
is the change in the asymptotic formula for the same analytic function
when the parameters of the function are changed [64,65].
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dimensions containing a quartic interaction term and a source
term.

When the parameter c is positive, to arrive at these expres-
sions, we use the fact that the original integration cycleR cor-
responds to y = 0. Substituting this in Eq. (3.3), we obtain
a polynomial equation in x of degree four or lower. Looking
at the number of real solutions to the polynomial equation
(remember, x ∈ R) gives us the information about the num-
ber of times the thimbles and anti-thimbles6 intersect the
original integration cycle. When c is negative, (this is the
case for the action with PT symmetry) we can substitute
Eq. (3.7) in Eq. (3.3) and repeat the above analysis.

5.1 A simple demonstration using Airy integral

Before we present our results for the action given in Eq.
(3.1), as a primer, let us look at quantum phase transitions in
a model containing the Airy integral as the action.

Consider the following integral

Ai(u) =
∫ ∞

−∞
exp

(
i

{
x3

3
+ ux

})
, (5.1)

where we restrict u to take real values. This integral is equiv-
alent to taking our action (after continuation to the complex
plane) as

S[φ] = −i

{
φ3

3
+ uφ

}
. (5.2)

There are two critical points of this action, namely φ± =
±i

√
u. At these critical points, the action takes the values

S[φ±] = ±2

3
u3/2. (5.3)

The imaginary part of the action is

Im(S[φ]) = 3xy2 − x3

3
− ux . (5.4)

To look for phase transition boundaries, we look for the
number of real solutions to the equation

Im(S[φ])
∣∣∣
along R

= ImS[φ±], (5.5)

6 The number of solutions could potentially also contain information
about the number of times a ghost solution intersects the original inte-
gration cycle. However, we have not come across a situation where a
ghost solution intersects the real line. This is explained by the obser-
vation that a ghost solution always has one end inside the region of
stability and the other end inside the region of instability. This, along
with the fact that these curves do not intersect either the thimble or the
anti-thimble of the same critical point tells us that the ghosts are always
away from the real line.

which is equivalent to putting y = 0 in Eq. (3.3). Thus we
look for real solutions to the equation

−x3

3
− ux = 0. (5.6)

For cubic equations, the number of solutions depends only
on the sign of the discriminant, which for the above equation
is


 = −4

3
u. (5.7)

When the discriminant is negative, the number of real solu-
tions to the cubic equation is one, and when the discriminant
is positive, the number of solutions is three. Thus we expect
a phase transition at u = 0. In fact, this phase transition coin-
cides with the change in the asymptotic expansion of Ai(u).

There is a very subtle detail that must be noted. For real
u, it is not possible to find the thimble for φ− and the anti-
thimble for φ+ without deformingu into the complex plane as
u+iε for small ε. This occurs because when u is real, the two
critical points are always connected by a Stokes ray [7]. More
specific to our method, this problem arises because when u
is real, Eq. (5.5) has a vanishing right hand side. This leads
to four curves being described by a polynomial equation of
degree three, which cannot occur unless the critical points are
connected by a flow. This is referred to as being connected
by a Stokes ray. The deformation u → u + iε moves the
critical points away from the Stokes ray, allowing us to find
the thimbles and anti-thimbles.

If we take u in Eq. (5.1) to be complex we will arrive at
a slightly more complicated situation. We will get a simi-
lar phase transition structure, where the phase boundary is
|arg(x)| = 2π/3. This was shown explicitly using the Lef-
schetz thimble formalism by Tanizaki in Ref. [54].

We now move on to our action with quartic interactions.
Due to the differences in algebraic calculations and physical
interpretations, we divide our results into multiple cases, and
provide the detailed calculations that led to the results in
Appendix A.

5.2 Quartic model without source term

5.2.1 Real coupling

Let us consider the case h = 0, σ, λ ∈ C, Re(λ) ≥ 0, and
d = 0. The thimble equation, Eq. (3.3), gives a quadratic in
x , from which the intersection numbers can trivially be found
based on the conditions given below

ni

⎧
⎨

⎩

= 1 when i = 0,∀ σ, λ,

≤ 1 when i = ±, a
c < 0,

= 0 when i = ±, a
c > 0.

(5.8)
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Table 1 Constraints on the intersection number for the critical point
φ0 when h = 0, σ, λ ∈ C, Re(λ) ≥ 0, and d 
= 0

Condition Intersection number

� < 0 ≤ 3

� ≥ 0 = 1

This is the easiest of the cases that have been considered. In
further analyses, the possibility ofd = 0, where the equations
reduce to a quadratic instead of the original quartic in x , is
not considered since repeating the calculation by requiring
d = 0 is straightforward.

5.2.2 Complex coupling

Upon relaxing the condition on d while maintaining h = 0,
σ, λ ∈ C, and Re(λ) ≥ 0, the polynomial obtained from Eq.
(3.3) is a bi-quadratic in x .

Let us define the variables
,
 and�, which are related to
the discriminant, product of roots, and sum of roots, respec-
tively as outlined in Appendix A, as


 = (bc − ad)2

(c2 + d2)
, (5.9a)


 = d(b2 − a2) + 2abc

d(c2 + d2)
, (5.9b)

� = b

d
. (5.9c)

Then the intersection number for the critical point φ0 is
determined using the conditions in Table 1, and the intersec-
tion number for the critical points φ± is determined using the
conditions in Table 2.

There are two comments to be made about these results.
First, in both the Tables 1 and 2 (and later), we have exten-
sively used the fact that (anti-)thimbles pass through the cor-
responding critical points. Further, in the situations discussed
in this section, the (anti-)thimbles are not connected by the
same flow equation, except for points in the parameter space
at which the intersection number changes. Thus we have also
used the fact that a (anti-)thimble of a particular critical point
does not pass through any other critical point. Second, if a
condition given in these tables does not provide any condition
for a specific relation between the parameters (for instance, 

and 
 in Table 1), it is to be understood that the value of that
particular relation does not affect the intersection number.

As an illustration, let us determine the boundary at which
the Stokes phenomena occurs for the choice of constants a =
1, c = 0, and d = 1.5, as derived by Fukushima and Tanizaki
in Ref. [49].7 Conditions for 
 given in Table 2 imply that all

7 Note that the convention for constants used in Ref. [49] is slightly
different but nonetheless, the results remain the same.

Table 2 Constraints on the intersection number for the critical points
φ± when h = 0, σ, λ ∈ C, Re(λ) ≥ 0, and d 
= 0

Condition Intersection number


 > 0, 
 > 0, � < 0 ≤ 4


 > 0, 
 = 0, � < 0 ≤ 2


 > 0, 
 < 0 ≤ 2


 = 0, � < 0 ≤ 2


 > 0, 
 > 0, � ≥ 0 = 0


 > 0, 
 = 0, � ≥ 0 = 0


 = 0, � ≥ 0 = 0

Table 3 Constraints on the intersection number for the critical points
φ0, φ± when h 
= 0, h ∈ R, σ, λ ∈ C, Re(λ) ≥ 0, and d 
= 0

Condition Intersection number


 > 0, 
 > 0, � < 0 ≤ 4


 > 0, 
 = 0, � < 0 ≤ 3


 > 0, 
 < 0 ≤ 2


 = 0, � < 0 ≤ 2


 > 0, 
 = 0, � > 0 ≤ 1


 = 0, � = 0 ≤ 1


 > 0, 
 > 0, � > 0 = 0


 = 0, � > 0 = 0


 < 0 = 0

three thimbles to contribute when b ∈ (−∞,−1) ∪ (1,∞).
Conditions for � in Tables 1 and 2 further require b < 0,
which implies that when b ∈ (−∞,−1), all three thimbles
contribute, and that Stokes phenomena is observed around
the critical coupling b = bc = −1.

5.3 Quartic model with source term

5.3.1 Real source parameter

We now relax the condition on h to h ∈ R. The obtained
equation, like the previous case, is a bi-quadratic but with a
change to the part independent of x .

Again let us introduce the variables 
, 
 and � as


 = b2 + 4dρi , 
 = ρi

d
, � = b

d
. (5.10)

Here ρi is the imaginary part of the action, as defined in Eq.
(3.6). The intersection number for each critical point φi is
now determined by the conditions given in Table 3.

For the situation where 
 > 0, 
 ≥ 0, � = 0, the inter-
section number depends on the critical point under question.
For φ0, the intersection number will be equal to one, while
for φ±, the intersection number is zero.
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Table 4 Constraints on the intersection number for φ0, φ± when h ∈
C, Re(h) = 0, σ, λ ∈ C, Re(λ) ≥ 0, and d 
= 0

Condition Intersection number


 > 0, P < 0, Q < 0 ≤ 4


 = 0, P < 0, Q < 0, 
0 
= 0 ≤ 3


 = 0, 
0 = 0, Q 
= 0 ≤ 2


 = 0, Q = 0, P < 0 ≤ 2


 < 0 ≤ 2


 = 0, Q > 0 ≤ 1


 = 0, P > 0 ≤ 1

(given Q 
= 0 or R 
= 0)


 = 0, 
0 = 0, Q = 0 ≤ 1


 > 0, P > 0, Q > 0 = 0


 = 0, P > 0, Q = 0, R = 0 = 0

5.3.2 Imaginary source parameter

Let us consider the case when the source parameter is purely
imaginary. Defining


 = − 1

16

(
64d3ρ3

i + 32b2d2ρ2
i + 72bd2h2ρi + 27d2h4

+4b4dρi + 2b3dh2
)
, (5.11)


0 = 1

4

(
b2 − 12dρi

)
, (5.12)

P = bd, (5.13)

Q = −1

4

(
4dρi + b2d2

)
, (5.14)

R = d2h

2
, (5.15)

we obtain the conditions on the intersection number. They
are provided in Table 4.

5.4 Theory with PT symmetry

Let us look at zero-dimensional actions that possess the so-
called PT -symmetry, where P is the parity symmetry and
T is the time reversal invariance. The motivation for consid-
ering PT -symmetric theories is the following. In Ref. [67]
it was shown that imposing PT -symmetric boundary con-
ditions on the functional-integral representation of the four-
dimensional −λφ4 theory gives a spectrum that is bounded
below. Such an interaction leads to a quantum field theory
that is perturbatively renormalizable and asymptotically free,
with a real and bounded-below spectrum. These properties
suggest that a −λφ4 quantum field theory might be useful in
describing the Higgs sector of the Standard Model. We hope
that our investigations in zero dimensions would serve as a
starting point for exploring the thimble structures of these
type of theories in higher dimensions.

Table 5 Constraints on the intersection number for the critical point
φ0 when the action is PT symmetric

Condition Intersection number

� > 0 ≤ 3

� < 0 ≤ 1

In zero-spacetime dimensions, any real function of i x is
symmetric under PT transformation [60]. That is, our action
should be of the form8

S =
∑

n

−λn(i x)
n, (5.16)

with n denoting integers and λn representing real numbers.
Comparing Eq. (5.16) with Eq. (3.1), we see that Eq. (5.16)

corresponds to the case with h ∈ C, Re(h) = 0, and σ =
a, λ = c ∈ R, such that c < 0. This is equivalent to replacing
h → ih and c → −c in Eqs. (3.1), (3.4) and (3.6), and
maintaining h ∈ R, c > 0. This leads to the following critical
points of the action

φ0 = − ih

a
+ O(h3), (5.17a)

φ± = ±
√
a

c
− ih

2a
± 3h2

8

√
c

a5
+ O(h3). (5.17b)

The values of ρi depend on the value of a. We have

ρi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 when a ≤ 0, ∀ i,
0 when a > 0, i = 0,

+h
√

a
|c| when a > 0, i = +,

−h
√

a
|c| when a > 0, i = −.

(5.18)

Let us explore the case when a is positive. In this situa-
tion we obtain a set of quadratic equations. Solving for each
sector in Eq. (3.7), and combining the results, we obtain the
conditions in Tables 5 and 6, where we have defined


R = h2 + 4aρi , (5.19)


L = h2 − 4aρi , (5.20)

� = h

a
, (5.21)


 = ρ

a
. (5.22)

Combining the intersection numbers for each sector is
highly non-trivial, and more information on how they were
combined can be found in Appendix A.

8 We have only considered polynomials in i x but any function with real
powers of i x is PT -symmetric.
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Table 6 Constraints on the intersection number for the critical points
φ± when the action is PT symmetric

Condition Intersection number


R > 0, 
L > 0, � > 0 ≤ 3


R = 0, 
L > 0, � > 0, 
 < 0 ≤ 2


R > 0, 
L = 0, � > 0, 
 > 0 ≤ 2


R < 0, 
L > 0, � > 0, 
 > 0 ≤ 2


R > 0, 
L < 0, � > 0, 
 < 0 ≤ 2


R = 0, 
L < 0, � > 0 ≤ 1


R > 0, 
L < 0, 
 > 0 ≤ 1


R > 0, 
L = 0, � < 0, 
 > 0 ≤ 1


R > 0, 
L > 0, � < 0, 
 > ≤ 1


R < 0, 
L = 0, � > 0 ≤ 1


R < 0, 
L > 0, 
 < 0 ≤ 1


R = 0, 
L > 0, � < 0, 
 < 0 ≤ 1


R > 0, 
L > 0, � < 0, 
 < 0 ≤ 1

Otherwise = 0

When a ≤ 0, the situation is far more delicate than the
previous situations we have considered. In the region for the
these values of the parameters, all the three critical points lie
on the imaginary axis (x = 0). Further, one of the solutions
to the thimble equation, Eq. (3.3), is x = 0. Since c < 0,
this solution lies outside the regions of stability, and is an
anti-thimble as illustrated in Fig. 7. The main assumption in
deriving Eq. (2.3) was that the critical points do not share
a common gradient flow. This assumption is violated when
a ≤ 0, resulting in the possibility of critical points sharing
a common (anti-)thimble, and the (anti-)thimbles of two dif-
ferent critical points intersecting with each other. Thus, in
this situation, the intersection number cannot be determined
using the method employed in our calculations.

It would certainly be interesting to explore the intersec-
tion numbers and the thimble structures in PT -symmetric
theories in higher dimensions.

6 Quantum phase transition and change in thimble
structure

In this section, we demonstrate the usefulness of the results
in Sect. 5 with the help of a few examples.

We choose to fix the parameters c, d, and h, and vary either
a or b in order to maximize the number of conditions that
need to be checked.

First, consider the situation where λ = 1 and h = 0.
Equation (5.8) tells us that the intersection number depends
only on the relative sign of a and c, and that b has no effect
on the intersection number. Thus, choosing b = 1 and look-
ing at the the partition function as a function of a, we clearly
observe a discontinuity/kink at the critical value of the param-
eter a = ac = 0. (We can see that this discontinuity is a
result of branch cut crossing in the σ plane.) It is shown in
in Fig. 8. Thus for the given choice of parameters, the sys-
tem undergoes a phase transition at a = 0. Looking at the
corresponding change to the structure of the thimbles, shown
in Fig. 9, the discontinuity in Z is due to the change in the
intersection number of φ± from zero, for a > 0, and one for
each critical point, when a < 0.

We now choose to vary b after fixing the parameter {a =
1, c = 1, d = 1, h = 0}. The expressions in Eq. (5.9) take
the following forms in terms of b


 = (b − 1)2

2
, 
 = b2 + 2b − 1

2
, � = b. (6.1)

Fig. 7 Change in the structure
of thimbles as the parameter a
crosses the phase boundary
a = 0. In both the figures, the
green solid curves represent the
thimbles, red dashed curves
represent the anti-thimbles, and
the grey solid curves represent
the ghosts. The shaded regions
represent the regions where
Re(S) ≥ 0. The anti-thimble
x = 0 has been offset to
x = 0.01 for better visibility. We
see that there is a drastic change
in the underlying thimble
structure as the system passes
through a phase transition

- 2 - 1 1 2

- 2

- 1

1

2

(a)

{a, b, c, d, h} = {1/5, 0, 1/5, 0, 1/100}

- 2 - 1 1 2

- 2

- 1

1

2

(b)

{a, b, c, d, h} = {−1/5, 0, 1/5, 0, 1/100}
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(a) (b)

Fig. 8 The partition function Z ≡ Z(a, b, c, d, h) and the observable
〈φ2〉 as a function of a for the fixed parameters {b = 1, c = 1, d =
0, h = 0}. The blue curve represents the real part, the red curve rep-
resents the imaginary part, and the green curve represents the absolute

value. Clearly, there is a discontinuity/kink at a = ac = 0. This discon-
tinuity is due to the change in the intersection number of φ± from zero,
for a > 0, and one for each critical point, when a < 0

Fig. 9 Change in the structure
of thimbles as the parameter a
crosses the phase boundary
a = ac = 0. In both the figures,
the green solid curves represent
the thimbles, red dashed curves
represent the anti-thimbles, and
the grey solid curves represent
the ghosts. The shaded regions
represent the regions where
Re(S) ≥ 0. We see that there is
a drastic change in the
underlying thimble structure as
the system passes through a
phase transition

-2 -1 1 2

-2

-1

1

2

(a) {a, b, c, d, h} = {1, 1, 1, 0, 0}

-2 -1 1 2

-2

-1

1

2

(b) {a, b, c, d, h} = {−1, 1, 1, 0, 0}

Based on the conditions given in Table 1, we expect a
sudden change in the value of the partition function at the
critical coupling b = bc = 0. From Table 2, we expect that
this should happen when b = 0,−1−√

2. Note that although
it seems like we can expect a phase transition around b = 1
and b = −1 + √

2, in the vicinity of these points, the inter-
section number does not change. On plotting the partition
function for these parameters, we observe a discontinuity at
b = −1 − √

2. (See Fig. 10.) The explanation for why we
do not obtain a discontinuity is that at b = 0, the change
in the number of solutions is reflected in 〈Ji ,R〉 instead of
〈Ki ,R〉. This explains why we have mentioned everywhere
that the intersection number is less than or equal to a certain
integer.

Let us look at a slightly more complicated case. We can
try to find discontinuities as we vary both the couplings a
and b simultaneously. The expressions given in Eq. (5.9) in
terms of a and b for {c = 1, d = 1, h = 0} are


 = (b − a)2

8
, 
 = b2 + 2ab − a2

2
, � = b. (6.2)

A naive expectation would thus straightforwardly be that
when a = b or when b2 − a2 + 2ab = 0 (corresponding to
the case 
 = 0 and 
 = 0), the partition function will have a
discontinuity. (See Fig. 11.) Plotting the partition function as
a function of a and b, we observe that this expectation is valid
in certain cases, and in certain cases there is no discontinuity.

Let us now turn on the source term. We maintain {a =
1, c = 1, d = 1}. Choosing h = 0.01, Eq. (3.6) becomes

ρ0 = 0, ρ+ = 1 − b2 − 2b

8
+ 0.01�,

ρ− = 1 − b2 − 2b

8
− 0.01�, (6.3)

where
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Fig. 10 The partition function
Z and observable 〈φ2〉 as a
function of b for the parameters
{a = 1, c = 1, d = 1, h = 0}.
The blue curve represents the
real part, the red curve
represents the imaginary part,
and the green curve represents
the absolute value. We observe a
discontinuity at
b = bc = −1 − √

2
(a) (b)

function. partition function. partition function.

function, with the surfaces on
which either a = b or
b2 − a2 + 2ab = 0.

partition function, with the
surfaces on which either a = b

or b2 − a2 + 2ab = 0.

(a) Real part of the partition (b) Imaginary part of the (c) Absolute value of the

(d) Real part of the partition (e) Imaginary part of the (f) Absolute value of the
partition function, with the
surfaces on which either a = b

or b2 − a2 + 2ab = 0.

Fig. 11 Real, imaginary, and absolute values of the partition function as a function of a and b for the parameters {c = 1, d = 1, h = 0}. The
yellow surfaces represent the respective values of the partition function and the red surfaces represent the surface along which either a = b or
b2 − a2 + 2ab = 0

� =
√
b2 + 1 cos

[
arctan

(
b − 1

b + 1

)]
. (6.4)

We do not expect a phase transition with respect to φ0 since
here ρ0 = 0, and we have already fixed our choice of a and
c. Corresponding to the critical points φ+ and φ−, we have,
from Eq. (5.10)


+ = b2 − 2b + 1

2
+ 0.04�,


− = b2 − 2b + 1

2
− 0.04�,


+ = 1 − b2 − 2b

8
+ 0.01�,


− = 1 − b2 − 2b

8
− 0.01�, � = b.
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As is evident, when the source term is real, the equiva-
lence between the critical points φ+ and φ− gets lifted while
φ0 remains untouched. Solving the equations using a sym-
bol interpreter, we get the points where the phase transitions
could be expected as

b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 (if � = 0),

1 + 1
(25

√
2)

± 12
√

2
625 + 8

√
2

25 (if 
− = 0),

−1 ± 1
25

√
1251 − √

2501 (if 
+ = 0),

−1 ± 1
25

√
1251 + √

2501 (if 
− = 0),

(6.5)

Numericising the above values of b, we get

b = {
0, 0.6907, 1.3658, − 2.3862, 0.3862,

−2.4428, 0.4428
}
. (6.6)

The partition function for this action, from Eq. (4.14), is
given as

Z = I0 + h2

2
I2 + O(h4) = I0 + 0.00005I2. (6.7)

This has a discontinuity in the vicinity of b = −2.4. How-
ever, the point at which the partition function is discontin-
uous does not match exactly with either b = −2.38621 or
b = −2.44278. In fact, it matches exactly with our previ-
ous example where the boundary was at b = −1 − √

2. We
believe the issue is with the expansion of Zsources and not the
method used to find the points of phase transitions, due to
the fact that the perturbative expansion with respect to h in
Eq. (4.14) depends on the partition function and observables
of the action without sources. These are not sensitive to the
lifting of equivalence between φ+ and φ−.

7 Summary of results

In this paper, we have considered a zero-dimensional scalar
field theory with quartic interactions and a source term –
a model that captures the simplest nontrivial quantum field
theory action. In this theory, the thimbles can be found analyt-
ically by exploiting the most crucial property of these curves
– the imaginary part of the action remains constant on them.
However, solving for the thimbles using this method has its
own problems as illustrated in Sect. 4 where for more gen-
eral situations, it is difficult to clearly distinguish between
the solutions as they can either be thimbles or anti-thimbles,
based on the region in the complex plane under question.
We called this the ‘piecewise behavior’ of the solutions. To
our knowledge, the piecewise behavior is not unique to the
model we have considered. It would be interesting to com-
ment about the piecewise behavior of thimbles when dealing
with models in higher dimensions.

Despite these issues, there are advantages of employing
the Lefschetz thimbles method since it provides a lot of
ancillary information about the system. Since the intersec-
tion numbers in Eq. (2.2) are in general integers, changes in
the intersection numbers correspond to discontinuities in the
partition function and observables, indicating the existence
of different phases, characterized by the coupling parameters
of the model. We used the simple method of solving Eq. (3.3),
massaged in a way to access the information on the intersec-
tion numbers as outlined in Sect. 5 and Appendix 9, to find
conditional expressions involving relations between the cou-
pling parameters of the system that characterize the different
phases. A few examples showcasing the effectiveness of this
method was presented in Sect. 6.

Although from the results, it is evident that quantum phase
transitions occur in the system as the control parameter is var-
ied through the critical point, we note that the theory exists at
zero temperature. The parameters that tell us about the phase
transitions in the model are non-thermal parameters and this
is the reason these phase transitions are called quantum phase
transitions or quantum critical points [18,36,45,46]. There
are two main observations about the behavior of the phases.
First, the boundaries of phase transitions are completely
determined by the parameters σ, λ, and h. Thus, any symme-
try involving the field φ would remain a symmetry after the
phase transition. Second, these phase transition boundaries
correspond to distinct changes in the topological structure
of the thimbles and anti-thimbles. (We show this feature in
Fig. 9.) Further, regions within the phase boundaries are akin
to wall chambers and phase transitions correspond to wall
crossing [7].

We also note that comments on the thermodynamical
nature of these transitions cannot be made for the model we
have chosen since thermodynamic quantities such as the free
energy cannot be consistently defined in zero dimensions. If
we study this model in one or more dimensions we could
talk about the interplay between quantum and thermal phase
transitions. We leave the investigation of the thimble structure
and quantum/thermal phase transitions of the next nontriv-
ial system, a one-dimensional model defined on a Euclidean
thermal circle, for the future.

8 Conclusions and future directions

In this paper, we exploited the properties of Lefschetz thim-
bles to analytically demonstrate how the thimble formal-
ism can be used to predict quantum critical points in non-
trivial zero-dimensional scalar field theories. An imme-
diate extension would be to explore the same problem
for zero-dimensional supersymmetric quantum field the-
ories. A supersymmetric version of the zero-dimensional
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PT -symmetric model was recently studied using complex
Langevin dynamics in Ref. [17].

In zero-spacetime dimensions, except for showing that
the partition function and observables develop discontinu-
ities as one or more non-thermal parameters are varied, lead-
ing to quantum phase transitions in the system, comments on
the thermodynamical nature of phase transitions cannot be
made. Thus a more nontrivial and highly elucidatory exten-
sion would be to study phase transitions in higher dimen-
sional systems, where the information of the background
manifold becomes important and thermodynamic quantities
can be defined. It would be interesting to study the interplay
between quantum critical points and thermodynamic critical
points when the higher dimensional quantum field theories
in question are put on a Euclidean thermal circle.

There has been some success in effecting these calcu-
lations numerically using hybrid Monte Carlo simulations
for the one-dimensional Thirring model [50], and there
are numerous demonstrations of connections between Lee-
Yang zeroes and Stokes phenomena in the context of chi-
ral phase transitions [18,36,68,69]. However, a completely
analytic and general demonstration of phase structures of
higher dimensional systems, their relation to the structure
of thimbles/anti-thimbles, and a relation with the thermody-
namics of the system if any, is desired.

Another nontrivial and interesting generalization would
be introducing non-Abelian degrees of freedom in the
zero-dimensional theory. The IKKT matrix model, a zero-
dimensional supersymmetric non-Abelian quantum field the-
ory, serves as a promising candidate for a nonperturbative
formulation of superstring theory. However, this model is
shown to have a complex fermion operator [4–6] making the
effective bosonic action complex. An investigation based on
the thimble formalism would certainly turn out to be fruitful.

We note that in the recent past, complexification methods
in the study of path integrals have been the focus of quite a bit
of analytic and numerical work. The immediate hope would
be generalizing the analysis to higher-dimensional integrals,
which would either be obtained by putting the path integral on
a lattice, or due to internal degrees of freedom when the fields
are taken to be matrix-valued for a system in zero dimensions.
Although the task would be formidable, we believe that it
should not be unachievable. In the case of putting the path
integral on a lattice, the mass and the interaction terms of the
model only involve the field φn defined at a lattice site n and
would not add to the difficulty of solving the problem. The
parts that could lead to difficulties are the hopping terms,
such as φnφn+1 . That, however, should not be extremely
difficult since the method we prescribe talks about existence
and number of sections of hypersurfaces described by multi-
variate polynomials of order less than five.

There exists a construction that automatically finds the
right combination of thimbles, without the need to com-

pute any intersection numbers, and has already been shown
to produce physically interesting results in Monte Carlo
simulations of a variety nontrivial quantum field theories
[26,38,42,43,70–76]. Our work, though perhaps is useful
primarily for analytic work, provides an alternative method
to finding the relevant thimbles for the choice of parameters
that have been made. Though it may be doubtful whether it
would be useful for numerics, it would certainly be useful
for analytic work.
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Appendix A: Expressions for boundaries of phase tran-
sitions

In this section we derive the expressions for the boundaries
of phase transitions. We start with the case where the source
parameter h is zero. The imaginary part of the action is

Im S(x, y) = d

4
y4 − cxy3 −

(
b

2
+ 3d

2
x2

)
y2

+(ax + cx3)y + b

2
x2 + d

4
x4, (A1)

and the critical points of the action are

φ0 = 0, φ± = ±i

√
σ

λ
. (A2)

Along the original integration cycle,R, which corresponds
to y = 0, the imaginary part of the action is
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Im S(x) = b

2
x2 + d

4
x4. (A3)

To get the combined intersection number of the thimble
and anti-thimble of a critical point, we look for the existence
of real solutions to the equation

b

2
x2 + d

4
x4 − ρi = 0. (A4)

Here, ρi = Im S at φi , see Eq. (3.6). In the case where
d = 0, Eq. (A4) is simply

x = ±
√

2ρi

b
. (A5)

Substituting ρi , the above equation takes the form

x =
{

0 when i = 0,

±
√

− a
c when i = ±.

(A6)

Requiring x ∈ R and using 〈Ji ,Ki ′ 〉 = δi,i ′ , this imme-
diately gives us

ni

⎧
⎨

⎩

= 1 when i = 0,∀ α, β,

≤ 1 when i = ±, a
c < 0,

= 0 when i = ±, a
c > 0.

(A7)

When d 
= 0, Eq. (A4) is a bi-quadratic. Defining w = x2,
we look for positive real solutions to

b

2
w + d

4
w2 − ρi = 0. (A8)

The relevant parameters associated with the above equa-
tion are its discriminant, sum of roots, and product of roots.
Denoting them as 
, −�, and 
 respectively,9 we obtain


 = (bc − ad)2

(c2 + d2)
, 
 = d(b2 − a2) + 2abc

d(c2 + d2)
, � = b

d
.

(A9)

It is to be noted that we have chosen to omit overall fac-
tors (such as that of 2 in �) since what is relevant is only the
sign of these quantities. When the discriminant is positive,
we have two distinct real solutions for w. In this case, when
the product of roots is positive, either both solutions are pos-
itive (giving a combined intersection number of 4) or both
solutions are negative (intersection number is zero). This is
checked using �. When the discriminant is zero, we only get
one real root for w. Again, � helps in determining whether

9 We use −� for sum of roots to avoid dealing with an overall minus
sign in our results.

the root is positive or negative. When the discriminant is neg-
ative (which for this particular case is never possible), there
are no real roots of w and the intersection number is zero.
These end up giving the conditions mentioned in Tables 1
and 2.

When the source term is non-zero, and the parameter h is
real, the analysis remains exactly the same. The only change
is the change to ρi . If the source term is purely imaginary,
Eq. (A3) now becomes

hx + b

2
x2 + d

4
x4 + ρi = 0. (A10)

Since the equation is now a purely quartic equation (in
the sense that it is not reducible to a bi-quadratic), we have
a complicated set of conditions for ni . We refer the reader to
the conditions in Ref. [62] to arrive at the results in Table 4.

When the action possesses PT symmetry, we can obtain
its critical points and the imaginary part of the action by
substituting h → ih and c → −c in Eqs. (3.4) and (3.6),
which gives us

φ0 = − ih

a
+ O(h3), (A11)

φ± = ±
√
a

c
− ih

2a
± 3h2

8

√
c

a5
+ O(h3). (A12)

ρi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 when a ≤ 0, ∀ i,
0 when a > 0, i = 0,

−h
√

a
|c| when a > 0, i = +,

+h
√

a
|c| when a > 0, i = −.

(A13)

The imaginary part of the action, given in Eq. (A1), upon
making these substitutions becomes

Im S(x, y) = hx + axy − c
(
x3y − xy3

)
. (A14)

As outlined in Sect. 3, the standard procedure for deal-
ing with this action is to take an integration cycle about the
angles 5π/4 and 7π/4 (in the third and the fourth quadrant,
respectively). We have chosen it to be (See Eq. (3.7))

y(x) =
{
x for x ≤ 0,

−x for x > 0.
(A15)

Substituting the above integration cycle in Eq. (A14) and
equating it to the imaginary part of the action at a critical
point, we obtain

hx + ax2 + ρi = 0 for x ≤ 0, (A16)

hx − ax2 + ρi = 0 for x > 0. (A17)
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Table 7 The ‘Left’ intersection number nLi for critical points φ0 and
φ± when the action is PT -symmetric

Condition Intersection number


L > 0, 
L > 0, �L < 0 ≤ 2


L = 0, �L < 0 ≤ 1


L > 0, 
L < 0 ≤ 1

Otherwise = 0

Table 8 The ‘Right’ intersection number nR
i for critical points φ0 and

φ± when the action is PT -symmetric

Condition Intersection number


R > 0, 
R > 0, �R > 0 ≤ 2


R = 0, �R > 0 ≤ 1


R > 0, 
R < 0 ≤ 1

Otherwise = 0

For the case where a > 0, we split the intersection number
into two parts. The number of times the thimble and anti-
thimble intersect the part of the integration cycle where x < 0
is called nLi , and the number of times the thimble and anti-
thimble intersect the part of the integration cycle where x > 0
is called nR

i . The total intersection number thus is ni = nLi +
nR
i . For x < 0, since the associated (anti-)thimble equation

is a quadratic in x , we define the discriminant, product of
roots, and sum of roots as


L = h2 − 4aρi , 
L = ρi

a
, �L = − h

2a
. (A18)

We obtain similar expressions for x > 0


R = h2 + 4aρi , 
R = −ρi

a
, �R = h

2a
. (A19)

Here we look for negative real solutions for the Eq. (A16)
and positive real solutions for the Eq. (A17). Standard analy-
sis of quadratic equations gives us the conditional expressions
in Tables 7 and 8.

Combining these conditions is slightly nontrivial since
there are cases where two conditional expressions cannot be
satisfied simultaneously. (For example, �L > 0 and �R > 0
is not simultaneously possible.) Having taken care of such
situations, we arrive at the results in Table 6.
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