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Abstract This work is devoted to the study of relativistic
anisotropic compact objects. To obtain this class of solutions
of the Einstein field equations, we have developed a general
scheme to generate the metric of the space–time describ-
ing the interior of the compact structure. This approach is
based on the class I space–time and the extended gravita-
tional decoupling by means of an extended geometric defor-
mation (EGD). The class I condition provides a differential
equation relating both metric potential ν and λ, whilst the
EGD translates the metric potentials to ν = ξ + β h(r) and
λ = − ln[μ+β f (r)], where h(r) and f (r) are the deforma-
tion functions and β a dimensionless constant. In this case the
pair {ξ, μ} represents the seed solution satisfying the class I
condition without any deformation. Once the deformed met-
ric potentials are inserted into the class I, the main task is to
obtain h(r) or f (r). So, in this case a particular ansatz for
h(r) is considered in conjunction with β = 0.5 to get f (r).
In order to check feasibility of our model, we have performed
a thoroughly physical, mathematical and graphical analysis.

1 Introduction

Last few years, the embedding theorem attracted the atten-
tion among the researchers working in the area of mathemat-
ical and physical sciences. Through this embedding theory,
it can be found a link between the classical general rela-
tivity and higher dimensional spaces that can explain the
inner symmetry clusters of the elements. The researchers
[1–3] have linked different manifolds by embedding the 4-
dimensional Einstein field equations into a 5-dimensional flat
space–time. This methodology has been used in string theory,
supergravity, induced matter theory and membrane theory,
for many viable aspects. In this connection, in the following
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Refs. [4–6], it was shown that an m-dimensional Riemannian
space Vm can be locally and isometrically embedded into
a pseudo-Euclidean space (Vn), where n = m(m + 1)/2.
In this case, n − m = m(m − 1)/2 denotes the “embed-
ding class” of the immersed Riemannian space. This extra
dimension is required for minimal embedding, although for
symmetric cases, any m dimensional spherically symmetric
space–time (Vm) needs at least a (m + 1) dimensional flat
space–time (Vm+1) to be immersed. It is well-known that the
interior Schwarzschild space–time solution is of class I while
the exterior Schwarzschild solution represents a space–time
of embedding class II. On the other hand, the Friedmann–
Lemaître–Robertson–Walker (FLRW) and the de-Sitter cos-
mological models are only of class I. In the present paper,
we study the static spherically symmetric class I space–time
case. It worth mentioning that, on the background of embed-
ding class I technology for spherically symmetric space–
time, there are only two perfect fluid solutions, namely (i)
Schwarzschild solution [7] and (ii) Kohler and Chao [8]
solution. The class I condition, provides an extra differential
equation (also known as Karmarkar condition [9]) in the static
spherically symmetric case that connects both metric poten-
tials corresponding to r−r and t−t metric components. This
condition provides an extensive tool for solving Einstein’s
field equations and investigate new relativistic astrophysical
compact stellar structures. Recently, several solutions were
obtained in the context of charged and anisotropic matter
distributions with well defined compact structures for class I
space–time [10–26] (and references contained therein).

In the presence of anisotropy matter distribution in the
stellar structures, it was shown by Dev and Gleiser [27,28]
that the mass, compactness as well as red-shift are affected
by this anisotropic behavior. The Ruderman [29] and Canuto
et al. [30–32] theoretical studies, pointed out that a stellar
structure may create the anisotropy inside it if the matter
density is greater than the nuclear density i.e. pt �= pr when
ρm > ρn . In this direction, an inventive contribution has been
done by Bowers and Liang [33] the properties of anisotropic
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relativistic stellar configurations, for the static spherically
symmetric space–time case. Moreover, as Mak and Harko
have resisted [34–36], anisotropies can be unified in several
backgrounds such as: by the presence of type 3A superfluid
[37], pion condensation [38] or numerous kinds of system
transitions [39]. Although the above ingredients, have been
taken into account to explain the presence of local anisotro-
pies inside compact astrophysical objects, a recent study by
Herrera showed [40] that the anisotropic state of the mat-
ter distribution in the stellar interior seems to be a natural
state regarding the compact configurations in static hydro-
static equilibrium. Moreover, even if the system is initially
described by an isotropic matter distribution, it naturally falls
into an anisotropic phase. As it well known that the sys-
tem attains a static equilibrium stage after a dynamical pro-
cess, where the matter distribution threading the stellar inte-
rior is susceptible to suffer dissipative fluxes, energy density
inhomogeneities and/or the appearance of shear in the fluid
flow, ending with an anisotropic fluid distribution. Further-
more, departure from the isotropic pressure condition leads
to get a more stable system. Last several years, a large num-
ber of researchers have been investigated effectively the role
and impact of the anisotropy within compact stellar objects
[41–63]. Interestingly, recently a simple, powerful and ver-
satile tool denominated gravitational decoupling by mini-
mal geometric deformation (MGD) [78–88] was developed
to introduce anisotropic behavior into the matter distribu-
tion, describing a wide range of solutions within the frame-
work of Einstein gravity theory and beyond it [89–112]. In
this connection, some pioneering works on MGD have been
done by da Rocha and his collaborators in different aspects
[113–118]. Furthermore, the inverse problem i.e., given a
minimally deformed and anisotropic space–time: what is its
non-deformed and isotropic counterpart? has been worked in
[119].

The gravitational decoupling by MGD is based on the
introduction of a new material source coupled to the energy–
momentum tensor via a dimensionless constant parameter.
Specifically it reads

Ti j ≡ T̂i j + βθi j , (1)

where θi j is the mentioned new piece, which in principle
could be a scalar, vector or tensor field, and β is the dimen-
sionless parameter. After replacing (1) into the Einstein field
equations subject to a spherically symmetric and static space–
time, one gets an intricate system of equation built on the seed
matter distribution, geometry and the new source. Of course,
if Einstein’s equations are already complex in themselves,
then what is the advantage of including an extra source?
From the mathematical point of view it is obvious that the
problem becomes more complicated, since new degrees of
freedom arise. From the physical point of view one could
gain some new insights to understand (or reinforce previous

studies) the behaviour of high dense matter with anisotropic
components.1 In the simplest case, when the seed solution
is representing an isotropic fluid, this scheme translates it
to an anisotropic domain, and as was discussed earlier an
anisotropic material content recreate a more realistic sce-
nario from the astrophysical point of view. So, in that case at
general level the new set of equations has seven unknowns,
namely the isotropic density ρ̂, the isotropic pressure p̂, the
geometry {eν, eλ} and the pieces {θ tt , θrr , θ

ϕ
ϕ }. On the other

hand, when the kernel solution already contains anisotropies
the number of unknowns rises from seven to eight since
there are a radial p̂r and tangential p̂t pressures. In such
a case the re-anisotropization of the fluid introduces a strong
anisotropic behavior which helps to support the stability and
equilibrium of the system. Nevertheless, solve this intricate
problem is not an easy task. To tackle it the gravitational
decoupling by means of MGD is employed. This is a purely
geometry argument where the radial component of the metric
tensor eλ is deformed,

e−λ(r) �→ μ(r) + β f (r), (2)

being f (r) the decoupler function. As can be seen (2) intro-
duces some modifications on the mass function m(r) since
both are connected. Once the above map is inserted into
the global set of equations, it is separated into two system
of equations: (i) one is completely determined by the seed
space–time and (ii) the second one contains the θ -sector and
the decoupler function. An interesting point to be noted here,
is that each separate system satisfies its own conservation
equation (null divergence of T̂i j and θi j ). This means that both
sources only interact gravitationally. The main point here
now, is how to close the θ -system. In this concern, several
proposals have been worked in the literature in order to solve
the extra equations, yielding to an admissible solution. For
example the more common is the mimic constraint approach
[88,89,108], the imposition of a suitable deformation func-
tion f (r) [96,106] and more recently by using the so-called
Cosenza–Herrera–Esculpi–Witten ansatz [110]. However, a
more interesting situation arises when the above methodol-
ogy includes deformation on both metric potentials. Devel-
oped in [120] the extended case or extended geometric defor-
mation (EGD from now on) contemplates the same modifi-
cation introduced on the energy–momentum tensor but this
time the deformation (2) is extended to

ν(r) �→ ξ(r) + βh(r), e−λ(r) �→ μ(r) + β f (r). (3)

Despite a new degree of freedom h(r) appears into the θ -
sector, still is possible to solve the problem at least mathe-
matically. So, taking into account the precedent antecedents

1 This comment refers to stellar interiors only, since for other types of
structures such as black holes, matter behaves completely differently
from the mentioned case.
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and considering that the study of compact structures such
as neutron or quark stars, compromises and active research
field, we have employed the so-called class I methodology
in conjunction with the EGD to obtain anisotropic compact
configurations (for further details see [121]). In the seminal
work [120] to close the θ -system was assumed that the extra
piece θi j is equal to a static electric field. In this case we want
to obtain the concrete form of the source θi j , hence we have
imposed an adequate temporal deformation h(r) to find out
the complete θ -sector and the function f (r). Moreover, we
have employed Karmarkar condition as an auxiliary equation
to find the decoupler function f (r). From the mathematical
point of view the class I constraint yields to a non-linear ordi-
nary differential equation in f (r) or a second order one in
h(r). To test the feasibility of this approach, we have taken the
seed space–time solution to be the hybrid Adler–Finch–Skea
solution. It is worth mentioning that the seed solution must
satisfies the field equations under class I condition in the limit
β → 0. The complete transformed space–time, has been
tested by performing an exhaustive analysis of the main fea-
tures that any compact structure describing an aniso- tropic
matter distribution should fulfill. To recreate a more realistic
scenario, we have checked all these properties by using real
observational data corresponding to some compact stars. It
should be noted that deformation on both metric functions,
modifies the complete relativistic hydrostatic balance equa-
tion. Since the gravitational gradient is proportional to the
first derivative of the gtt potential, its magnitude is changed.
In this respect, we have checked the hydrostatic balance of
the resulting model, concluding that the system is in complete
balance under the hydrostatic, gravitational and anisotropic
gradients. This fact is very important, since the fulfillment
of the modified relativistic hydrostatic equilibrium equation,
tells us that the conservation law of the energy–momentum
tensor is also preserved when new sources are present. Some
recent works on EGD model can bee seen in Refs. [122,123].

So, the article is organized as follows. In Sect. 2 gravita-
tional decoupling by EGD and class I methodology are revis-
ited. In Sects. 3 and 4, are discussed the junction condition
process in this context and the class I condition is presented
as generator of the deformation functions, respectively. Sec-
tion 5 presents the most general requirements that any com-
pact anisotropic solution, should satisfy in order to describe
an admissible solution. In Sect. 6 the model is presented
and in Sect. 7 some implications on the main macro physics
parameter, such as the total mass M compactness factor u
and surface gravitational red-shift zs are discussed. Finally,
in Sect. 8 some conclusions and remarks for the reported
study are provided. The generating function for this solution
has been provided at the last in the Appendix A.

2 The background extended geometric deformation
(EGD) approach and the embedding class one
space–time

2.1 Gravitational decoupling by extended geometric
deformation (EGD)

An extended gravitational decoupling by means of extended
geometric deformation (EGD) technique, is an innovative
approach to create or generalize solutions of Einstein’s field
equations, for anisotropic or electric charge matter distribu-
tions [88]. As it is well-known, the matter distribution con-
tains aniso- tropy if pr �= pt . There are several methods
to introduce local anisotropies in self-gravitating systems.
For this purpose, we introduce an extra gravitational source
which is coupled to the energy–momentum tensor associated
with the seed solution. Then the modified energy–momentum
tensor can be given by [88,125],

Ti j ≡ T̂i j + β θi j , (4)

where T̂i j denotes the energy–momentum tensor correspond-
ing to the seed solution for the compact star model. Then,
we consider a static spherically symmetric space–time in
Schwarzschild like coordinates x = {t, r, θ, φ} as

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2θdφ2). (5)

It is well-known that the class I isotropic fluid solution for the
above spherically symmetric metric, is compatible with only
two perfect fluid solutions namely, the Schwarzschild [7]
interior solution (or its special cases of the de-Sitter Universe
or the Einstein universe) and the Kohler–Chao [8] solution.
Nevertheless, as we argued before the main aim is to describe
compact structures subject to (5) with an anisotropic content.
Therefore, in order to obtain it, we shall consider that the
matter distribution threading the interior embedding class I
seed space–time, is described by the most general form of an
imperfect fluid distribution, expressed by

T̂i j = (ρ̂ + p̂t )χiχ j − gi j p̂t + ( p̂r − p̂t )uiu j , (6)

being χ i = e−ν/2δit the time-like four velocity of the fluid,
satisfying χ iχi = 1, where ρ̃ is the energy-density, p̃r
and p̃t are the radial and tangential pressures, respectively.
However, the new field θi j also introduced anisotropies into
the self-gravitating system. Then the anisotropic behavior
within the compact configuration becomes stronger. Now, the
Einstein field equations corresponding to modified energy–
momentum tensor Ti j are given as follows,

Gi j ≡ Ri j − 1

2
R gi j = −8πG

c4 Ti j . (7)
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Then the explicit form of Einstein’s field (7) equations asso-
ciated with the line element (5) and the matter distribution
(4) can be read as,

8πρ = 1

r2 − e−λ

(
1

r2 − λ′

r

)
, (8)

8πpr = − 1

r2 + e−λ

(
1

r2 + ν′

r

)
, (9)

8πpt = 1

4
e−λ

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (10)

where primes denote differentiation with respect to the radial
coordinate r . From now on, we shall employ relativistic
geometrized units where Newton’s gravitational constant G
and the speed of light c are set2 to: G = c = 1 and modified
density and pressures can be written as,

ρ ≡ ρ̂ + β θ tt (11)

pr ≡ p̂r − β θrr (12)

pt ≡ p̂t − β θϕ
ϕ . (13)

Besides, the modified energy–momentum tensor Ti j must
satisfy the conservation law

∇i T
i
j = 0, (14)

leading to

p̂r
′ + ν′

2
( p̂r + ρ̂) + 2( p̂r − p̂t )

r
− β L(θ ii ) = 0, (15)

where the function L(θ ii ) is given by

L(θ ii ) ≡ (θrr )′ + ν′

2
(θrr − θ tt ) + 2

r
(θrr − θϕ

ϕ ). (16)

The above Eq. (15) is a linear combination of the expressions
(8)–(10). It is necessary to point out that the presence of θ -
term leads an extra anisotropies if θrr �= θ

ϕ
ϕ only. Thus, the

effective anisotropy is defined as

Δ ≡ pt − pr = ( p̂t − p̂r ) + β(θrr − θϕ
ϕ ). (17)

In the present situation, the extra term β(θrr −θ
ϕ
ϕ ) produces a

stronger anisotropic behavior into the self-gravitating system
that helps to increase the stability and equilibrium mecha-
nisms.

2 This convention will be assumed throughout the article in order to
reduce the notation. However, for presenting of the numerical values of
the main salient physical quantities such as density, radial and tangential
pressures, these constants will be restored in the correct units form in
order to express the above mentioned physical quantities. In the Table 2,
the used numerical values of constant G and c as are follows: G =
6.673 × 10−8 cm3/gs2 and c = 2.997 × 1010cm/s.

The introduction of the new piece changes the usual mass
function definition by

m(r) = 4π

∫ r

0
ρ(x) x2 dx = 4π

∫ r

0
ρ̂(x) x2 dx

︸ ︷︷ ︸
m0(r)

+ 4π β

∫ r

0
θ0

0 (x) x2dx
︸ ︷︷ ︸

mβ(r)

, (18)

where m0(r) denotes the mass function corresponding to
pure general relativity (GR hereinafter) case, while mβ(r)
is the extra contribution in the original GR due to gravita-
tional decoupling. Normally, it is not an easy task to find out
interior analytical solutions of the Einstein field equations
for relativistic compact objects. Therefore, in order to find
exact solutions, a famous choice is the extended gravitational
decoupling via the EGD approach. The essential facts of this
procedure depend on the resulting deformed metric potentials
given by Eq. (3), which shows the deformation of the metric
components grr and gtt consisting in two unknown functions
h(r) and f (r) namely, the radial and temporal deformation
functions. However, the remaining features will be the same
due to the spherically symmetry of the solution. Under this
situation, the components of the θi j sector are formed by the
functions h(r) and f (r) and their derivatives, in distinction
with what happens in the MGD case (2), where the θi j tensor
is constructed only with the radial deformation i.e., f (r) and
its derivatives.

Splitting the system of differential equations (8)–(10) and
taking into account Eq. (3) the set (8)–(10) is divided into
two different systems: (i) the first system satisfies Einstein
field equations for an anisotropic system, in absence of β

parameter i.e. β = 0,

ρ̂ = 1

8π

{
1

r2 − μ

r2 − μ′

r

}
, (19)

p̂r = 1

8π

{
− 1

r2 + μ

(
1

r2 + ξ ′

r

) }
, (20)

p̂t = 1

8π

{
μ

4

(
2ξ ′′ + ξ ′2 + 2

ξ ′

r

)
+ μ′

4

(
ξ ′ + 2

r

)}
, (21)

being the general solution,

ds2 = −μ−1 dr2 − r2(dθ2 + sin2 θ dφ2) + eξ(r)dt2, (22)

with a mass function given by

m0(r) ≡ 4π

∫ r

0
ρ(x) x2 dx ≡ r

2
[1 − μ(r)] , (23)

and subject to the following conservation equation

∇(ξ, μ)
i T̂ i

j = 0 �⇒ p̂′
r

+ξ ′

2

(
p̂r + ρ̂

) + 2( p̂r − p̂t )

r
= 0. (24)
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On the other hand, the second system of equations for the
θ -sector are determined by turning on β. So, one has

θ tt = − 1

8π

{
f ′
r

+ f

r2

}
, (25)

θrr = − 1

8π

{
f

(
ν′
r

+ 1

r2

)
+ μ h′

r

}
, (26)

θ
ϕ
ϕ = − 1

8π

{
f

2

(
ν′′ + ν′2

2
+ ν′

r

)
+ f ′

2

(
ν′r + 2

2r

)
+ Ψ (r)

}
,

(27)

with the expressions Ψ (r),

Ψ (r) = μ

4

(
2 h′′ + β h′ 2 + 2 h′

r
+ 2 ξ ′ h′

)
+ μ′ h′

4
. (28)

In this case the mass function mβ(r) is expressed by

mβ(r) = 4π β

∫ r

0
θ tt (x) x

2dx

= −β

2

∫ r

0

{
f ′(x)
x

+ f (x)

x2

}
x2dx = −β r

2
f (r).

(29)

It is important to remark that the mβ(r) strongly depends on
the sign of β and f (r). The consequence is that the extra
piece mβ(r) will increase the total seed mass or decrease.

The respective conservation law for the above field equa-
tions (25)–(27) associated with the θ -sector is [120],

(θrr )′ − 1

2
ν′(θ tt − θrr ) − 2

r
(θϕ

ϕ − θrr ) = h′

2
( p̂r + ρ̂). (30)

The above equation is a linear combination of Eqs. (25) and
(27) through the coupling constant β.

2.2 Embedding class one space–time

It is well known that a space–time describes an embedding
class I space–time if the 4-dimensional space–time is embed-
ded into 5-dimensional pseudo-Euclidean space. This can
happen if there exists a second fundamental form symmetric
tensor Ki j = K ji , that satisfies the Gauss–Codazzi equa-
tions,

Rhi jk = ε(Khj Kik − Khk Ki j ), (31)

∇ j Khi = ∇i Khj , (32)

here ε takes the value 1 or −1 corresponding to signature
required for the manifold, Rhi jk is the Riemann tensor and
∇k the affine connection allied to the metric tensor gi j such
that ∇i g jk = 0.

The only non-zero components of the symmetric tensor Khi

are: Krr , Ktt , Kθθ = sin2θ Kφφ and Ktr = Krt . By plugging
these components into (31), we get

Rφtφt = Rrtrt Rθφθφ − Rrθθ t Rrφφt

Rrθrθ
, (33)

where Rrθrθ �= 0 [64] and the non-zero components of Rie-
mann tensor Rhi jk associated with the condition (33) in the
context of static spherically symmetric line element (5) are
given as,

Rφtφt = − r

2
ν′eν−λ sin2 θ, (34)

Rrtrt = −eν

(
ν′′

2
− λ′ν′

4
+ ν′2

4

)
, (35)

Rθφθφ = −e−λr2 sin2 θ(eλ − 1), (36)

Rrθrθ = − r

2
λ′. (37)

Now by inserting the above components (34)–(37) into
class I condition (33), we derived the following ordinary dif-
ferential equation

λ′ = (2 ν′′ + ν′ 2) (1 − e−λ)

ν′ 2 . (38)

The above equation can be solved for both unknowns λ(r)
and ν(r) and can also be expressed in terms of each other as,

eλ = (1 + Ã ν′2 eν) or eν =
[
B̃ + C̃

∫ √
eλ − 1dr

]2

,

(39)

where Ã, B̃ and C̃ denote arbitrary integration constants.

3 Junction conditions for anisotropic stellar models

The study of the junction conditions for anisotropic stellar
models at the surface r = R, is an essential measure that can
be described by joining the interior space–time M− (r < R)
and the exterior one M+ (r > R) at the boundary of the
stellar compact object. In our current scenario, the interior
stellar space–time can be described by the following line
element in the context of the extended geometric deformation
approach as

ds2 = −
(

1 − 2m(r)

r

)−1

dr2 − r2(dθ2 + sin2 θ dφ2)

+eξ(r)+β h(r) dt2, (40)

123
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where

m(r) = m0(r) + mβ(r) = r

2
(1 − e−λ(r)), (41)

is internal mass of the anisotropic stellar structure. The inte-
rior space–time (40) must be joined in a smoothly way with
the empty exterior space–time i.e. ani- sotropic pressures p+

i
and density ρ+ must be zero. In general, the outer space–
time is described by the vacuum space–time i.e., exterior
Schwarzschild solution. Nevertheless, the presence of the θ -
sector into the matter distribution could in principle change
both the geometry and the matter content for the outer space–
time. In this scenario, the stellar compact object will be not
immersed in vacuum space–time anymore. In this situation,
the compact stellar model can remain embedded into a vac-
uum space–time whether the contributions coming from the
θ -sector are considered to be confined within the stellar inte-
rior only [88]. Therefore, the exterior Schwarzschild space–
time can be given by

ds2 =
(

1 − 2MSch

r

)
dt2

−
(

1 − 2MSch

r

)−1

dr2 − r2dΩ2, (42)

being MSch the Schwarzschild mass which coincides with the
total mass M of the object at the boundary Σ . For smooth
joining of inner geometry with outer geometry at the bound-
ary of the stellar interior at r = R, we apply the well known
Israel–Darmois junction conditions [65,66]. These condi-
tions are known as the continuity of the first and second
fundamental forms across the boundary Σ . The continuity
of the first fundamental form at the boundary of the stellar
model Σ provides

g−
t t

∣∣∣∣
r=R

= g+
t t

∣∣∣∣
r=R

and g−
rr

∣∣∣∣
r=R

= g+
rr

∣∣∣∣
r=R

, (43)

yielding to

ν(R) = ξ(R) + β h(R) = ln

(
1 − 2M

R

)
, (44)

e−λ(R) = μ(R) + β f (R) = 1 − 2M

R
, (45)

where the total mass M of the compact object can be deter-
mined as

MSch = M = m(R) = m0(R) + mβ(R). (46)

Next, the continuity of the second fundamental says

[Gi j r
j ]Σ = 0 (47)

being r j a unit vector. From Eqs. (4) and (12) one obtains

[Ti j r j ]Σ = 0 �⇒ [ p̂r − β θrr (r)]Σ = 0, (48)

thus

p̂r (R) − β (θrr )−(R) = −β (θrr )+(R). (49)

where p̂r (R) denotes the radial pressure at the boundary
(r = R) corresponding to interior matter distribution when
β = 0. The Eq. (49) describes the general expression for the
second fundamental form associated with the Einstein field
equations given by Eq. (7). Now, using Eq. (26) we arrive to

p̂r (R) + β

[
f

8π

(
ν′

r
+ 1

r2

)
+ μ h′

r

]
r=R

= −β (θ1
1 )+(R), (50)

here ν′ ≡ ∂r ν−. In order to find out (θrr )+(R) in (50), we
employ Eqs. (26), (44) and (45), obtaining

p̂r (R) + β

[
f (R)

8π

(
ν′(R)

R
+ 1

R2

)
+ μ(R) h′(R)

8πR

]

= β f ∗(R)

8π

[
2M

R2
(
R − 2M

) + 1

R2

]

+β
[h∗(R)]′

8π

(
R − 2M

R2

)
, (51)

where, f ∗(R) and h∗(R) denote the geometric deformation
functions for the exterior Schwarzschild solution (42). It is
essential to note that, if the exterior space–time is described
by a vacuum space–time, f ∗(R) and h∗(R) must be null.
Therefore, Eq. (51) becomes

p̂r (R) + β

[
f (R)

8π

(
ν′(R)

R
+ 1

R2

)
+ μ(R) h′(R)

8πR

]
= 0.

(52)

The condition (52) determines the size of the compact stellar
object. Besides, it is worth mentioning that conditions (44),
(45) and (52) describe the necessary and sufficient conditions
to determine all the constant parameters.

4 The embedding class one generator for anisotropic
stellar object

In this section we develop a generating equation in f (r)
and h(r) for the embedding class I space–time via gravita-
tional decoupling by means of EGD methodology. For this
purpose, we substitute the extended deformed gravitational
potentials ν(r) and λ(r) from Eq. (3) into embedding class I
condition (38), obtaining a differential equation, that involves
4-unknowns, namely f (r), g(r), ν(r) and λ(r),

(μ′ + β f ′) (ξ ′ + β h′) = (μ + β f ) (μ + β f − 1)

(2 ξ ′′ + 2 β h′′ + ξ ′2 + β2 h′2 + 2 β ξ ′ h′). (53)

The above Eq. (53) generalizes, all known spherically
symmetric embedding class I solutions in the context of
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extended gravitational decoupling via a extended geometric
deformation (EGD) approach. It is observed that Eq. (53) can
be written either as a first order non-linear ordinary differen-
tial equation (ODE) for f (r) or as a second-order non-linear
ODE for h(r). Besides, it is possible to generalize some pre-
viously known embedding class I solutions (an almost com-
plete list of such solutions can be found in [21]) through this
scheme. However, there are exceptions with some solutions
which have a fairly complex geometry. So the differential
equation (53) cannot be solved analytically.

5 Physical conditions of the anisotropic stellar object

The viability of any stellar compact object, describing a real-
istic stellar structure such as neutron stars, must satisfy some
physical and mathematical requirements [67]

– The gravitational functions, namely eν(r) and eλ(r) must
be positive, finite, free from singularities, and monotone
increasing functions with increasing r . Also, eν(r) and
eλ(r) must satisfy eν(0) > 0 and eλ(0) = 1.

– In considering the main thermodynamic variables namely
{ρ, pr , pt }, it is desirable that they are positive every-
where within the stellar interior for the stability reasons.
Since we are within a classical3 context, then the condi-
tion of positivity must be strictly fulfilled for ρ, not for
pr and pt . However, the presence of negative pressure
inside the system can be also allowed [69]. Besides, the
presence of this negative pressure leads to the appearance
of unstable states. Clearly, these states would impair the
hydrostatic balance of the system.

– The behavior of the thermodynamic observables, should
be monotonically decreasing one i.e., they keep their
maximum value at the center of the stellar model and
their minimum at the boundary.

– The radial and tangential pressures, must be matched at
the center. On the other hand, on the surface, the radial
pressure must vanish (this condition is not necessary to
be fulfilled for the tangential pressure).

– Within the compact stellar structure, the subliminal sound
velocities of the fluid in the principal directions i.e., along
the radial and tangential directions, must be less than
the speed of light c = 1, in order to satisfy causality
condition. Mathematically it can be denoted as: 0 ≤ v2

r =
dpr
dρ < 1 and 0 ≤ v2

t = dpt
dρ < 1.

– The energy–momentum tensor has to fulfill simultane-
ously the following conditions: DEC: ρ − pr ≥ 0 and
ρ − pt ≥ 0, and SEC: ρ + pr + 2pt ≥ 0.

3 As it is well known GR constitutes a classical field theory. That is
why one requires a positive defined density ρ. Nevertheless, negative
density values could be present at quantum level.

6 Extended gravitational decoupling solution via
embedding class I generator f(r)

Determining the solution of an ordinary first-order differen-
tial equation is usually easier than finding a solution of a
second-order differential equation. Therefore, we will solve
the Eq. (53) for f (r) by specifying a well-motivated ansatz
for h(r). The Eq. (53) can be written in the following form

d f

dr
+ f (1 − 2μ − β f ) {2(ξ ′′ + β h′′) + (ξ ′ + β h)2}

(ξ ′ + β h)

= μ′ (ξ ′ + β h) + μ (1 − μ) {2 (ξ ′′ + β h′′) + (ξ ′ + β h)2}
β (ξ ′ + β h)

.

(54)

The above Eq. (54) is called a generating equation in
f (r) (known as an embedding class I generator of the sys-
tem induced by EGD approach) describing all possible solu-
tions for the present self-gravitating system. In principle, it is
not a trivial task to integrate the above first order non-linear
differential equation (54) in f (r) for all kind of ξ(r), μ(r)
in conjunction with h(r), otherwise, a numerical approach
must be adopted. Nevertheless, it might be possible to solve
exactly this equation for a particular choice of ξ(r), μ(r)
and h(r). On the other hand, we must choose the ξ and μ

based on the facts proposed by [68,70,71] i.e., the gravita-
tional potential ξ(r) must satisfy ξ(0) = finite and constant,
ξ ′(0) = 0 and ξ ′′(0) > 0 for any realistic model. More-
over, the radial pressure and the energy density should be
non-negative and continuous inside the stellar model, then it
follows that r > 2m(r) [72,73]. So, pr ≥ 0 with r > 2m(r)
leads to ξ ′(0) �= 0. From all constraints of ξ(r) in the said
discussion, we observe that generic function ξ(r) must be
increasing monotonically function of r , and should attain its
minimum at the centre of the stellar model. On the other
hand, we should ensure that the gravitational potential μ for
the radial component must be of the form μ = 1 + O(r2)

near at r = 0. Therefore, by keeping all the above points in
our mind we have chosen the following simple embedding
class I space–time as seed solution (β = 0) as,

ds2 = −(1 + Ar2) dr2 − r2 (dθ2 + sin2 θ dφ2)

+ (B + C r2)2 dt2, (55)

where μ(r) = (1 + Ar2)−1, ξ(r) = 2 ln
[
B + Cr2

]
, and

the corresponding thermodynamic observables like pressures
and density are given by

p̂r = 4C − C A r2 − B A

8π
(
Cr2 + B

) (
Ar2 + 1

) , (56)

p̂t = 4C + CAr2 − B A

8π
(
Cr2 + B

) (
Ar2 + 1

)2 , (57)

ρ̂ = A
(
Ar2 + 3

)
8π

(
Ar2 + 1

)2 , (58)
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and the corresponding mass function m0(r) is given by,

m0(r) ≡ 4π

∫ r

0
ρ r2 dr = Ar3

2(1 + Ar2)
, (59)

where the constants A andC have units of [length]−2 and B is
dimensionless. Now we need to solve the embedding class I
generating Eq. (54) for determining the components of the θ -
sector. For this purpose, we specify a particular form of h(r),
specifically h(r) = D r2. This choice is physically motivated
and simple, since it is zero at the centre and increasing func-
tion with r . By plugging h(r), ν(r) and λ(r) into Eq. (54) we
get,

d f

dr
− 4 β f (1 + Ar2) f1(r) [1 − Ar2 + b f (1 + Ar2)]

β r (1 + Ar2)2[2C + β D (B + Cr2)]
= 2Ar2 [2C + β D (B + Cr2)] − f2(r)

β r (1 + Ar2)2[2C + β D (B + Cr2)] . (60)

where,

f1(r) = [2C + β2 D2r2(B + Cr2) + β D (B + 5Cr2)],
f2(r) = 2Ar2[2C + β2 D2r2(B + Cr2) + β D (B + 5Cr2)].
The above Eq. (60) is a first order non-linear differential
equation in f (r), which can be integrated in closed form
only if β = 1/2, otherwise we will get a complex solution.
Therefore, after integrating Eq. (60) by taking β = 1/2, we
obtain

f (r) = −2 r2
{
D e

Dr2
2 (B + Cr2) [8C + D(B + Cr2)] + 2AF + 16C2 e

Dr2
2

}
(1 + Ar2)

{
Dr2 e

Dr2
2 (B + Cr2) [8C + D(B + Cr2)] − 2F + 16C2r2 e

Dr2
2

} , (61)

where F is an integration constant with units of [length]2. We
would like to mention that the signature of the deformation
function f (r) and coupling constant β plays an important
role to decide the behavior of the metric function eλ(r) given
by Eq. (3). Since the metric function eλ(r) must be increasing
function within the star, in order to preserve the increasing
behavior of the mass function. Therefore, f (r) should satisfy
some constraints

1. f (r) > 0 (increasing function) and β > 0: In this situa-
tion, the growth of μ(r) must be faster than the decoupler
function f (r), in order to keep eλ(r) and the mass function
m(r) positive and increasing for all r ∈ [0, R].

2. f (r) < 0 (decreasing function) and β > 0: In this sce-
nario, the metric function eλ(r) will increase throughout
the compact object.

3. f (r) > 0 (increasing function) and β < 0: In order to
preserve the increasing behaviour of ν(r), the growth of
ξ(r) must be faster than the growth of h(r), however the
function eλ(r) and mass function m(r) will increase auto-
matically.

Fig. 1 The trend of decoupler function f (r) versus radial coordi-
nate r/R. The different curves describe the following compact objects
namely the red curve (solid) for 4U 1538-52, black curve (long-dashed)
for SAX J1808.4-3658, green color (small-dashed) for SMC X-1, ver-
milion color (dot-dashed) for LMC X-4. We have chosen D = 0.0022
and A = 0.0031 for plotting of these curves with different compactness
as 0.1355, 0.1384, 0.15 and 0.1682 corresponding to compact objects
4U 1538-52, SAX J1808.4-3658, SMC X-1 and LMC X-4, respectively

4. f (r) < 0 (decreasing) and β < 0: In this case, the growth
of ξ(r) and μ(r) must be faster than the growth of h(r)
and f (r), respectively.

Based on the above points, first we plot the deformation
function f (r) in Fig. 1 to see its behavior. From this Fig. 1, we
observe that the deformation function f (r) is negative and
decreasing. Since β = 1/2 is positive and temporal defor-
mation function h(r) is already positive and increasing.

Therefore, according to the above discussion it is suitable
to describe a realistic model. Now, the embedding class I
solution in the framework of extended gravitational decou-
pling by EGD approach can be given by the following line
element,

ds2 = −
(

(1 + Ar2)

1 + β (1 + Ar2) f (r)

)
dr2

−r2(dθ2 + sin2 θ dφ2) + (B + Cr2) eβ Dr2
dt2.

(62)

From the above Eq. (62), it is obvious that gravitational poten-
tial ν(r) is positive, increasing and free from singularity,
although we need to see the variation of potential λ(r) of
the Eq. (62). For this purpose we plot the Fig. 2 for eλ(r) and
observe that it is 1 at the centre and increasing throughout
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Fig. 2 The trend of metric function eλ(r) versus radial coordinate r/R.
We have described same set of values for different curves as motioned
in Fig. 1

within the stellar object. Now using Eqs. (18), (29) together
with Eq. (59), the mass function m(r) for EGD can be given
as,

m(r) = Ar3

2(1 + Ar2)
− β r

2
f (r). (63)

As can be seen, we have generalised the seed mass m0(r)
through the gravitational decoupling because the constant
β is positive and the deformation function f (r) is negative
throughout the stellar interior, and then this extra piecemβ(r)
will increase the total mass M of the object.

Next, we determine the expressions for components of
θ -sector namely θ tt , θrr and θ

ϕ
ϕ as

θ tt (r) = 2 (2(8C2e
Dr2

2 + AF)(B + 5Cr2) + D2e
Dr2

2

(B + Cr2)2(B + 5Cr2) + 2D(B + Cr2)(4 B C

e
Dr2

2 + F + 20C2e
Dr2

2 r2 + AFr2))/(8π (1 + Ar2)

(B + Cr2)(e
Dr2

2 r2[4C + D(B + Cr2)]2 − 2F)),

θrr (r) = 2(D4 eDr
2
r2(−1 + Ar2)(B + Cr2)4 + 2D3e

Dr2
2

r2 (B + Cr2)2 {8BCe
Dr2

2 (Ar2 − 1) + 8C2e
Dr2

2

r2(Ar2 − 1) + F (1 + Ar2)2} + 4 {64C4 eDr
2
r2

(Ar2 − 1) + A F2 (3 + Ar2) + 8C2 e
Dr2

2

F (3 + A2 r4)} + 16 DCe
Dr2

2 {B [16C2e
Dr2

2 r2(Ar2−1)

+F(3 + A2r4)] + Cr2[16C2 e
Dr2

2 r2(Ar2 − 1) +
F(7 + 8Ar2 + 5 A2r4)]} + 2 D2 e

Dr2
2 (B + Cr2)

{B [48C2 e
Dr2

2 r2(Ar2 − 1) + F(3 + A2r4)]

+Cr2[48C2 e
Dr2

2 r2 (Ar2 − 1) + F (15 + 24 Ar2

+13 A2r4)]})/(8π (1 + Ar2)2 (2 F − e
Dr2

2 r2 {4C
+a(B + Cr2)}2).

θϕ
ϕ = 1

32π(1 + Ar2)2(B + Cr2)
[{4 D A r2 (B + Cr2)

−2D(1 + Ar2) [8Cr2 + (4 + 3Dr2) (B + Cr2)]
− f (r) (1 + Ar2)2 [16C + D2 r2 (B + Cr2)

+4D(B + 3Cr2)]} − θ
ϕ0
ϕ0 ]

where,

θ
ϕ0
ϕ0 = 4[B(2 + Dr2) + Cr2(6 + Dr2)](1 + Ar2)−2

4(B + Cr2)

(
e

Dr2
2 r2[4C + D(B + C1r2)]2 − 2F

)2

{
D4AeDr

2
r4(B + Cr2)4 + D3e

Dr2
2 r2(B + Cr2)2

[F(1 + Ar2)2 + 16ACe
Dr2

2 r2(B + Cr2)] + 4[AF2

+64AC4eDr
2
r4 + 8C2e

Dr2
2 F(1 + A2r4)] + θ

ϕ1
ϕ1

}
;

θ
ϕ1
ϕ1 = 16DCe

Dr2
2 [B(F + 16AC2e

Dr2
2 r4 + A2Fr4) + Cr2

{16AC2e
Dr2

2 r4 + F(3 + 4Ar2 + 3A2r4)}] + 2D2

e
Dr2

2 (B + Cr2)[B(F + 48AC2e
Dr2

2 r4 + A2Fr4)

+Cr2{48AC2e
Dr2

2 r4 + F(7 + 12Ar2 + 7A2r4)}].
Then, the effective physical quantities like pressures, (pr )
and (pt ), density (ρ), and pressure anisotropy (Δ) for the
energy–momentum tensor Ti j can be given as,

pr (r) = 4C − C A r2 − B A

8π(Cr2 + B)(Ar2 + 1)
− β θrr , (64)

pt (r) = 4C + CAr2 − B A

8π(Cr2 + B)(Ar2 + 1)2 − β θϕ
ϕ (65)

ρ(r) = A(Ar2 + 3)

8π(Ar2 + 1)2 + β θ tt , (66)

Δ(r) = Ar2 (−2C + AB + AC r2)

8π (1 + Ar2)2(B + Cr2)
+ β (θrr − θϕ

ϕ ). (67)
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Now, to determine the constants, we use the junction con-
ditions (44) and (45) with coupling constant β = 1/2, yield-
ing to

4 ln(B + C R2) + D R2 = 2 ln

(
1 − 2M

R

)
, (68)

−R2
{
D e

DR2
2 (B + CR2) [8C + D(B + CR2)] + 2AF + 16C2 e

DR2
2

}

(1 + AR2)

{
DR2 e

DR2
2 (B + CR2) [8C + D(B + CR2)] − 2F + 16C2R2 e

DR2
2

} + 1

(1 + AR2)
= 1 − 2M

R
. (69)

Then from Eqs. (68) and (69) together with second funda-
mental form (52), we have determined the values of the con-
stants B, C and F (which are necessary to describe the com-
plete structure of the stellar model) as,

B = e
−DR2

2

4R(R − 2M)

{
−

√
e

DR2
2 M2 R(R − 2M) + e

DR2
4

√
1 − 2M

R
R (−9M + 4R − 2DMR2 + DR3)

}
, (70)

C = e
−DR2

2

4 R3 (R − 2M)

{√
e

DR2
2 M2 R (R − 2M)

−e
DR2

4

√
1 − 2M

R
R [D R3 − M (1 + 2DR2)]

}
, (71)

F = e
−DR2

4

2 (2M − R) R3

{√
1 − 2M

R

√
e

DR2
2 M2 R (R − 2M)

+M (R − 2M) e
DR2

4

}
. (72)

The variation of pressures (pr and pt ), density (ρ) and
anisotropy factor (Δ) are shown in Figs. 3 and 4.

6.1 Causality and hydrostatic equilibrium

In order to fulfill the physical requirements for realistic mod-
els, it is necessary to examine the causality and hydrostatic
equilibrium of the present self-gravitating system. First, we
discuss the causality condition of the model which says that
the velocity of sound must be less than the velocity of light
everywhere within the object. Mathematically we can write
as 0 < v2

r = dpr
dρ < 1 and 0 < v2

t = dpt
dρ < 1, where v2

r

and v2
t represent the square of radial and tangential velocity,

respectively. As we can see from Fig. 5, both v2
r and v2

t are
less than the speed of light (c = 1) and decreasing through-
out the structure. Moreover, the radial velocity dominates the
tangential one at each point inside the object. Therefore, it
is necessary to analyze whether the given model is stable
or not. To examine this situation, we use Abreu’s criteria

[74] which was initially created by Herrera, namely Herrera
cracking concept [43]. The Abreu’s criterion for the stability
analysis of compact objects states that the model is stable if
0 < v2

r −v2
t < 1 while −1 < v2

r −v2
t < 0 provides the unsta-

ble regions. From the Fig. 5 it is clear that our anisotropic
model is stable.

On the other hand, the analysis related to the hydrostatic
equilibrium under different forces can be analyzed by follow-
ing modified Tolman–Oppeneheimer–Volkoff (TOV) equa-

Fig. 3 The behavior of the radial pressure (pr ) tangential pressure
(pt ), and energy density (ρ) versus radial coordinate r/R. The different
curves describe the following compact objects namely the red curve
(solid) for 4U 1538-52, black curve (long-dashed) for SAX J1808.4-
3658, green color (small-dashed) for SMC X-1, vermilion color (dot-
dashed) for LMC X-4
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Fig. 4 The trend of the anisotropic factor (Δ) versus radial coordinate
r/R. The description and numerical values for the free parameters are
same as used Fig. 3

tion,

p̂′
r + ξ ′

2
( p̂r + ρ̂) − 2( p̂t − p̂r )

r
− β

[
(θrr )′ + 1

2
ν′(θrr − θ tt )

+2

r
(θrr − θϕ

ϕ ) − h′

2
( p̂r + ρ̂)

]
= 0. (73)

The equilibrium equation can be spread into three different
forces namely: the hydrostatic Fh , the gravitational Fg and
the anisotropic Fa forces in order to achieve this hydrostatic
balance. Moreover, the explicit form of these forces can be
written as

Fg = −ν′

2
( p̂r + ρ̂ − β θrr + β θ tt ) = −ν′

2
(pr + ρ), (74)

Fh = − p̂′
r + β (θrr )′ = −p′

r , (75)

Fa = 2( p̂t − p̂r )

r
+ β

2(θrr − θ
ϕ
ϕ )

r
= 2(pt − pr )

r
. (76)

It is important to note that the well-known TOV equation
[128,129] in the context of standard relativistic anistropic
self-gravitating system can be recovered, if β = 0.

From Fig. 6, it is clear that the anisotropic system is in
equilibrium under the said forces. As mentioned before, the
anisotropic force is repulsive in nature, then the gravitational
force is counterbalanced by the joint action of the hydro-
static and anisotropic forces. This avoids the system to col-
lapse below its Schwarzschild radius onto a point singularity.
Moreover, it is noted that the anisotropic force dominates the
hydrostatic one after some points inside the stellar model
which is showing that local anisotropies have a majority role
in the balance of the stellar configuration.

7 The compactness factor and surface red-shift

In this section, we discuss the influences induced by extended
gravitational decoupling by EGD approach on the compact-

Fig. 5 The trend of the square of radial velocity (v2
r ) (solid curves) and

tangential velocity (v2
r ) (dashed curves) versus radial coordinate r/R.

The description and numerical values for the free parameters are same
as used Fig. 3

Fig. 6 The trend of the different forces versus the radial coordinate
r/R. Top left and top right figures for 4U 1538-52 and SAX J1808.4-
3658, respectively while bottom left and bottom figures represent corre-
sponding to compact objects for SMC X-1, and LMC X-4. For plotting
of the above figures, we have chosen the same values of free parameters
as used in Fig. 5

ness factor u = m(r)
r within the stellar interior. In order to

provide a detailed explanation, we proceed through the mass
function in the EGD case as defined by Eq. (41). In the present
situation, the constant β is positive while deformation func-
tion f (r) is negative and decreasing outward. Therefore, the
mass function in EGD scenario will dominate the mass func-
tion in GR case, which can be clearly observed from Fig. 7.

Now the surface red-shift function of the compact star
model can be given by the following formula

zs = 1√{
1 − 2 u(r)

} − 1, where u(r) ≡ m(r)

r
. (77)
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Fig. 7 The trend of the compactness u = m(r)/r versus the radial
coordinate r/R. Each figure is showing the comparison between
GR+EGD and pure GR scenario for different compact objects. Top left
and top right figures for 4U 1538-52 and SAX J1808.4-3658, respec-
tively while bottom left and bottom figures represent corresponding to
compact objects for SMC X-1, and LMC X-4. For plotting of the above
figures, we have chosen the values of free parameters as D = 0.0022
and A = 0.0031

Fig. 8 The trend of the surface redshift function zs versus r . The differ-
ent curves describe the following compact objects namely the red curve
(solid) for 4U 1538-52, black curve (long-dashed) for SAX J1808.4-
3658, green color (small-dashed) for SMC X-1, vermilion color (dot-
dashed) for LMC X-4. For plotting of this figure, we have used same
data set of values as used in Fig. 7

It is well-known that the impact of anisotropies on the
surface red-shift zs has been widely discussed by several
authors. Bowers and Liang [33] proposed a hypothetical
model having a constant density ρ = ρ0 (incompressible
fluid) with a particular choice of the anisotropy factor Δ

and they determined that the surface red-shift can reach its
maximum value up to zs = 4.77 when Δ = 0. In addition

to above, the investigation, Ivanov [77] pointed out that the
maximum value of the surface red-shift can be zs = 3.842 if
the aniso- tropic star model (without cosmological constant)
satisfies the strong energy condition (SEC) with mass–radius
ratio 0.957, while for models obeying the dominant energy
condition (DEC) having a mass–radius ratio 0.974 reach up
to zs = 5.211 [36]. In this case, the surface red-shift function
is depicted in Fig. 8. As it is observed, zs is increasing with r
and attains its maximum value at the boundary. It is interest-
ing to note that the growth of the surface red-shift function, is
faster corresponding to the compact star having less value of
the compactness factor. On the other hand, from Table 1 one
can see that the surface red-shift value is increasing with an
increasing compactness factor. This implies that the surface
red-shift cannot be arbitrarily large due to the boundedness
of the compactness factor, which means that any massive
realistic compact object must satisfy the Buchdhal limit i.e.
M
R < 4

9 [75]. So, based on the above discussion the surface
red-shift for extended gravitational decoupling model will be
more than the pure GR model due to the compactness fac-
tor in the GR+EGD scenario is greater than the mass–radius
ratio in the pure GR case (Fig. 7).

8 Discussion and conclusion

In the present article, we have developed a generating scheme
to obtain solutions of Einstein field equations for mod-
elling compact stars. To achieve it, we have employed the
embedding class I generator, induced by an extended grav-
itational decoupling via Extended geometric deformation
(EGD) approach. In general this systematic approach can
be summarized as follows:

1. First, we define the modified energy–momentum tensor
Ti j , which is a combination of two sources namely T̂i j
and θi j . Here T̂i j is the energy–momentum tensor for the
standard anisotropic matter distribution while θi j denotes
an extra energy–momentum tensor that is coupled to T̂i j
via a dimensionless coupling parameter β.

2. Next, we write Einstein field equations for a spherically
symmetric line element (with metric functions eλ(r) for
the r − r component and eν(r) for the t − t component)
subject to Ti j .

3. Then, we split the resulting system of equations into
two subsystems, by using the following transformations
ν(r) �→ ξ(r)+β h(r) and e−λ(r) �→ μ(r)+β f (r), where
f (r) and h(r) denote the radial and temporal deformation
functions, respectively. In this way, the first subsystem
is called the Einstein system (which corresponds to set
β = 0) corresponding to matter distribution T̂i j and sec-
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Table 1 The numerical values of constant parameters B, C and F with A = 0.0031 (km−2), D = 0.0022 (km−2), and β = 0.5, where
M� = 1.475 km

Star M/M� R (km) u = M
R zs B C (km−2) F (km2)

4U 1538 − 52 (Rawls et al. [111]) 0.87 9.4705 0.1355 0.17121 0.7773 3.9513 × 10−4 −0.00151

SAX J1808.4 − 3658 (Elebert et al. [130]) 0.90 9.5918 0.1384 0.17590 0.7720 3.9617 × 10−4 −0.0015

SMC X − 1 (Rawls et al. [111]) 1.04 10.2267 0.1500 0.19523 0.7507 3.7477 × 10−4 −0.0014

LMC X − 4 (Rawls et al. [111]) 1.29 11.3124 0.1682 0.22757 0.7165 3.3432 × 10−4 −0.0013

ond subsystem corresponding to θ -sector is known as a
quasi-Einstein system.

4. Now, in order to solve these systems, the embedding class
I condition (38) is adopted. After plugging the transforma-
tions given by Eq. (3) into (38), we arrive to a non-linear
differential equation (53) in terms of the unknown func-
tions ν(r), λ(r), f (r) and h(r). The Eq. (53) is a gener-
ating equation that can generalize any known embedding
class I seed solution corresponding to compact star mod-
els, by taking a compatible ansatz for anyone generator
f (r) or h(r). Nonetheless, in general, to obtain the solu-
tion of a second-order non-linear differential equation is
more difficult than the first order. So, in this case, we
solved a first-order non-linear in f (r), choosing a known
embedding class I seed solution and a particular ansatz
for h(r). It is worth mentioning that the equation can be
solved in closed form only for β = 1/2.

For this specific model, we have obtained a negative and
decreasing deformation function f (r) (see Fig. 1). Nonethe-
less, its behavior does not damage the monotonic increasing
behavior of the eλ(r) metric potential. In effect, as can be
appreciated from Fig. 2, the radial metric potential behaves
as desired. Then, we can conclude that the resulting func-
tion f (r) is physically viable. So, the output model consti-
tutes a generalized embedding class I space–time solution,
driven by an anisotropic matter distribution, represented by
the energy–momentum tensor Ti j .

In considering the thermodynamic observables, namely
effective radial pressure (pr ), effective tangential pressure
(pt ) and effective energy density (ρ), they are shown by
Figs. 3 and 4, respectively. It is clear from both figures that
the radial pressure, tangential pressure and energy density
behaviors are positively, well-defined and decreasing inside
the stellar configuration, as well as both pressures are equal
at the centre. Moreover, all the above physical quantities are
attaining their maximum values at the center of the structure
and reaching their minimum values at the boundary r = R
of the stellar configuration. The variation of the anisotropy
factor Δ is presented in Fig. 4. As it is observed, the trend
of these curves show that the anisotropy is directed outward
at all points within the object, i.e. Δ(r) > 0 for 0 < r ≤ R.

The said features of the model indicate the physical validity
of the solutions.

Another important analysis, concerns the so-called causal-
ity condition. For this purpose, we have plotted both v2

r and
v2
t in Fig. 5. From this figure, it is clear that v2

r and v2
t are less

than the speed og light (c = 1) and decreasing throughout
the stellar model. Moreover, as can be seen, v2

r dominates
v2
t at each point inside the model. Therefore, according to

Herrera’s cracking concept as well as Abreu’s criteria [74],
the obtained solution is stable against radial perturbations
introduced by local anisotropies. Besides, the stability of the
model is quite involved with the hydrostatic balance of the
stellar system. In order to verify it, we have used the modified
Tolman–Oppenheimer–Volkoff (TOV) equation (75). In this
case the TOV equation is composed by three forces namely
Fg , Fh and Fa (given by Eqs. (74)–(76)) As Fig. 6 illustrates,
the Fg is balanced by combining Fh and Fa , what is more the
sum of all these components is zero i.e. Fg + Fh + Fa = 0,
which shows that the equilibrium of the system is achieved.

From the observational point of view, two very important
quantities are the mass–radius ratio and the surface red-shift.
As it is well-known, these two quantities are quite involved
and help to determine valuable information of stellar bodies.
In this regard, we have explored the incidence of the extended
gravitational decoupling by EGD on these important quan-
tifiers. From Fig. 7, we notice that the compactness for the
GR+EGD model is more than in the pure GR scenario, what
is more each star model is satisfying the Buchdhal limit. Con-
sequently, the surface red-shift will be greater in the context
of GR+EGD than in the case of pure GR. The Fig. 8 shows
that the growth of the surface red-shift function, is faster for
those stars having less value of the compactness factor.

To confirm and contrast the previous discussion, we have
obtained the numerical data of the physical parameters,
reported in Table 1. To obtain this information, the following
procedure has been used: Since the system has only three free
constant parameters namely R, M and D, therefore in order
to determine the values of all physical quantities, the con-
stant D and mass M (corresponding to real compact objects)
are fixed. After that, the radius R has been fitted in such
way that the model must satisfy all the physical and mathe-
matical requirements of the solution. It should be noted that,
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the obtained radii matches closely with the values reported
in M–R curve as proposed by Demorest et al. [133]. By
using this information and with the help of Eq. (77), the
surface red-shift and the compactness factor u were com-
puted. For the present model, we have obtained the follow-
ing results: zs = 0.17121 for 4U 1538-52, zs = 0.17590
for SAX J1808.4-3658, zs = 0.19523 for SMC X-1, and
zs = 0.22757 for LMC X-4 (see Table 1). It is remarkable
to note that the above values are within the range as pro-
posed in Refs. [76,77]. Also, we would like to mention that
the surface red-shift for the GR+EGD model will be more
than the pure GR model because the compactness factor in
the GR+EGD case is always larger than the compactness in
pure GR scenario. On the other hand, the values of central
pressure (pc), central density (ρc) and surface density (ρs) in
CGS unit for each model is presented in the Table 2. From
the Table 2, we see that the density of the model is larger than
the nuclear density (ρN = 2.3 × 1014 g/cm3).

Finally, we would like to mention that the present gener-
ating scheme via EGD approach is very useful to general-
ize embedding class I solutions for self gravitating compact
objects, within the framework of GR. Moreover, it would be
interesting to include new ingredients such as electric charge,
or translate the methodology into the context of modify grav-
ity theories such as f (R), f (R, T ) etc.
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Appendix A: The generating function

As was pointed out by Herrera et al. [68], all the spherically
symmetric and static models whose matter distribution is
described by an imperfect fluid (see [131,132] for isotropic
and charged case, respectively), can be acquired from two
generating functions. These two primitive generating func-
tions ζ(r) and Π(r) are given by

eν(r) = Exp

[∫ (
ζ(r) − 2

r

)
dr

]
⇒ ζ(r) = ν′(r)

2
+ 1

r
,

(A.1)

Π(r) = (pr − pt ) = −Δ(r). (A.2)

Then, by using Eqs. (62), (67) and (A.1)–(A.2) one arrives
at the following generators for the present model

ζ(r) = r
[
C + βD(B + Cr2)

]
eβDr2 + 1

r
, (A.3)

Π(r) = Ar2 (2C − AB − AC r2)

8π (1 + Ar2)2(B + Cr2)
− β (θrr − θϕ

ϕ ) (A.4)

At this point it should be noted that, the second generator
(A.4) contains an extra piece (second term in the right mem-
ber), which is naturally induced by gravitational decoupling.
So, if β = 0, the solution turn on the seed anisotropic solution
provided by the scheme given in [68].
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