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Abstract In the modern era of abundant X-ray detections
and the increasing momentum of gravitational waves astron-
omy, tests of general relativity in strong field regime become
increasingly feasible and their importance for probing gravity
cannot be understated. To this end, we study the characteris-
tics of slowly rotating topological neutron stars in the tensor-
multi-scalar theories of gravity following the static study of
this new type of compact objects by two of the authors. We
explore the moment of inertia and verify that universal rela-
tions known from general relativity hold for this new class
of compact objects. Furthermore, we study the properties of
their innermost stable circular orbits and the epicyclic fre-
quencies due to the latter’s hinted link to observational quan-
tities such as quasi-periodic X-ray spectrum features.

1 Introduction

Some of the most promising extensions of general rela-
tivity (GR) are based on the existence of additional fields
which may contribute to Gravity either as additional energy-
momentum sources or even through direct coupling to it.
While weak-field tests place strong restrictions to such exten-
sions [1], these fields may have a strong impact on the proper-
ties of compact objects such as neutron stars and black holes,
which places these objects among the best “laboratories”
for experimental tests of the strong field regime of gravity
[2–5]. The tensor-multi-scalar theories (TMST) are among
the most promising and natural such extensions of General
Relativity which are mathematically self-consistent and pass
all known experimental and observational constraints [6,7].
TMST have a solid theoretical background – they are moti-
vated for example by more fundamental theories, such as
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theories trying to unify all physical interactions. They pro-
vide a broader theoretical framework as compared to scalar-
tensor theories and posses richer phenomenology. A new type
of neutron stars called topological neutron star was shown
to exist in their framework [8] (see also [9] for the case of
scalarization in such theories). In addition to the properties of
classical neutron stars in GR, these compact objects carry an
integer topological charge and exhibit new quantitative and
qualitative properties. One of the most important properties
of these solutions is that the scalar charge is zero and thus
there is no scalar dipole radiation. This is in contrast with
the standard scalar-tensor theories which are severely con-
strained by the binary pulsar experiments due to the presence
of nonzero scalar dipole radiation. This shows once again
that allowing for multiple scalar fields brings nontrivial phe-
nomenology that reconciles the theory with the observations
for a large range of parameters. Following the study of the
static structure of this new type of compact objects, we fur-
ther consider their properties under slow rotation in order to
extract additional observational signatures.

One of the most important quantities which can be
obtained under rotation is the moment of inertia, which can
be computed to first order in the star’s angular velocity. Due
to the largely uncertain equation of state (EOS) for extremely
dense matter, it is beneficial to construct universal relations
which provide links between the parameters of neutron stars
independently of the EOS. We will focus on two types of uni-
versal relations connecting the suitably normalized moment
of inertia and the stellar compactness. These relations were
examined in the GR case in [10,11]. Later they were gen-
eralized to the case of f (R) and scalar-tensor theories with
a massive scalar field [12–14]. We follow their methodol-
ogy and compare the topological neutron star results with
the GR case for several EOS and at several theory parame-
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ters for two coupling functions in order to discover possible
observational traits of the former.

The modern and future X-ray observatories such as
NICER, LOFT and SKA [15,17] can give us invaluable data
for neutron stars possessing less compact companions such
as white dwarfs or main sequence stars, due to the high likeli-
hood of accretion in such systems. One of the most important
parameters that characterize such an accretion is the inner-
most stable circular orbit (ISCO) since it determines the
boundary region where the accreting matter can no longer
orbit the compact object under gravity alone. The epicyclic
frequencies for a given orbital radius are the characteris-
tic frequencies of oscillation for particles on stable circular
orbits undergoing some small perturbations. There are many
theories as to the origin of some quasi-periodic oscillations
(QPOs) observed in the X-ray light curves of accreting com-
pact objects, but there is no consensus which is the correct
one (see [45] for a comprehensive review). The oscillations
themselves are on the order of a few hundred Hz to kHz and
most models are based either on orbital and epicyclic motion
of matter [18,26] or oscillations and instabilities in an accre-
tion disc [27,31] both of which are expected to occur close
to the ISCO radius. Nevertheless, almost all QPOs models
are related in some way or another to the ISCO radius and
the epicyclic frequencies. Since ISCO is located close (or
on) the surface of neutron stars, the QPOs are a promis-
ing opportunity to probe the strong regime of gravity and
its potential modifications. The QPOs in scalar-tensor type
alternative theories of gravity were considered in [32–35]. In
the present paper we will address this problem in the context
of TMST and topological neutron stars.

We start with the standard static spherical metric, perturb-
ing it to first order in the angular velocity Ω and solving the
resulting system of reduced field equations. The final goal is
to extract the moment of inertia for the topological neutron
stars and compare two universal (independent of the EOS)
relations, known to be valid in GR [10,11] and some alter-
native theories of gravity [12,14]. Furthermore, we compute
the radius of the innermost stable circular orbit (ISCO), the
epicyclic frequencies and their dependence on topological
neutron star mass and angular velocity for the stable branches
of solutions for one of the coupling functions considered.

Inline with the previous work, we consider a gravita-
tional interaction mediated by the spacetime metric gμν and
N scalar fields ϕa with values in a coordinate patch of
an N-dimensional Riemannian (target) manifold EN with a
positive-definite metric γab(ϕ) defined on it. The Einstein
frame action of the theory is given by

S = 1

16πG∗

∫
d4√−g[R − 2gμνγab∇μϕa∇νϕ

b − 4V (ϕ)]
+ Smatter(A

2(ϕ)gμν, Ψmatter), (1)

where G∗ is the bare gravitational constant, Rand ∇μ are the
Ricci scalar and the covariant derivative with respect to the
Einstein frame metric gμν , and V (ϕ) ≥ 0 is the scalar fields
potential.

The matter fields are coupled only to the physical Jordan
frame metric g̃μν = A2(ϕ)gμν in order for the theory to
satisfy the weak equivalence principle. The conformal fac-
tor A2(ϕ), the target space metric γab and the scalar fields
potential V (ϕ) specify the TMST.

The variation of (1) with respect to the Einstein frame met-
ric components and the scalar fields gives the field equations
of the theory in the Einstein frame as follows

Rμν = 8πG∗
(
Tμν − 1

2
Tgμν

)

+2γab(ϕ)∇μψa∇νψ
b + 2V (ϕ)gμν,

∇μ∇μϕa = −γ a
bc(ϕ)gμν∇μϕb∇νϕ

c

+ γ ab(ψ)
∂V (ϕ)

∂ϕb
− 4πG∗γ ab(ϕ)

∂ ln A(ϕ)

∂ϕb
T,

(2)

where Tμν is the Einstein frame energy-momentum tensor of
the matter and γ a

bc(ϕ) are the Christoffel symbols with respect
to the target space metric γab, following closely the notation
in [8]. The conservation law for the energy-momentum tensor
obtained from the contracted Bianchi identities and the field
equations is

∇μT
μ
ν = ∂ ln A(ϕ)

∂ϕa
T∇νϕ

a, (3)

where once again the physical energy-momentum tensor in
the Jordan frame T̃μν and the Einstein frame one in (3) are
related through the conformal factor as Tμν = A2(ϕ)T̃μν .
The matter fields are described by a perfect fluid and by virtue
of this relation, the corresponding energy density, pressure
and 4-velocity transformations between the two frames are
given by ε = A4(ϕ)ε̃, p = A4(ϕ) p̃ and uμ = A−1(ϕ)ũμ.

2 Structure equations for the neutron stars and setting
the theory parameters

We perturb the static spherical solution by a term scaling as
O(Ω) in the Einstein frame

ds2 = −e2Γ dt2 + e2Λdr2 + r2(dθ2 + sin2 θdφ2)

−2r2ω sin2 θdtdφ + O(Ω2), (4)

where Γ , Λ and ω depend on the radial coordinate r only.
The function ω(r) is linear in the angular velocity Ω , which
is defined as usual, namely as the ratio Ω = uφ

ut of the φ and t
components of the fluid 4-velocity. Using the standard Hartle
procedure [38,39], one can obtain that at spatial infinity ω
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tends towards

ω(r) ∼= −2J

r3 , (5)

where J is the angular momentum of the star.
Following the previous work on topological neutron stars,

we consider the target space for the TMST to be the round
three-dimensional sphere S

3

γabdϕadϕb = a2
[
dχ2 + sin2 χ(dΘ2 + sin2 ΘdΦ2)

]
, (6)

defined by a radius a > 0 of S
3 and the standard angu-

lar coordinates χ , Θ , Φ on S
3. The motivation behind this

choice is the fact that S3 is among the simplest target spaces
that allow the existence of spherically symmetric topological
neutron stars. The assumption that the χ field depends only
on the radial coordinate (χ = χ(r)) and that the Θ and Φ

fields depend only on the corresponding angular coordinates
(Θ = Θ(θ) and Φ = Φ(φ)) leads to unique solutions of
the latter two, compatible with the spherical symmetry of the
structure equations. These solutions are Θ = θ and Φ = φ

as shown in [8].

2.1 Background structure equations

Under these simplifying assumptions, one can readily derive
the structure equations for the static configuration. Using the
field equations (2) and the conservation law (3), the reduced
field equations take the form:

2

r
e−2ΛΛ′ + 1

r2

(
1 − e−2Λ

)

= 8πG∗A4(χ)ε̃ + a2
(
e−2Λχ ′2 + 2

sin2 χ

r2

)
+ 2V (χ), (7)

2

r
e−2ΛΓ ′ − 1

r2

(
1 − e−2Λ

)

= 8πG∗A4(χ) p̃ + a2
(
e−2Λχ ′2 − 2

sin2 χ

r2

)
− 2V (χ), (8)

χ ′′ +
(

Γ ′ − Λ′ + 2

r

)
χ ′

=
[

2
sin χ cos χ

r2 + 1

a2

∂V (χ)

∂χ
+ 4πG∗

a2 A4(χ)
∂ ln A(χ)

∂χ
(ε̃ − 3 p̃)

]
e2Λ

(9)

p̃′ = −(ε̃ + p̃)

[
Γ ′ + ∂ ln A(χ)

∂χ
χ ′

]
, (10)

where the prime denotes differentiation with respect to the
radial coordinate r . Naturally, these equations must be com-
plemented by an appropriate equation of state (EOS) which
provides the required dependence between the physical pres-
sure and energy density ( p̃ = p̃(ε̃)) in order to complete the
system. Throughout the work we use a piecewise polytropic
approximation of several realistic nuclear matter equations
of state [41]. These are the APR4 and Sly, that fit very well
to the current observational constraints, as well as several
higher/lower stiffness and maximum mass equations of state

(MS1, MPA1, APR2, H4) in order to check the universality
of the relations.

Apart from the standard boundary conditions for the met-
ric functions derived from asymptotic flatness Γ (∞) =
Λ(∞) = 0 and regularity at the center Λ(0) = 0, one further
requires such regularity from the scalar field equations. This
leads to the conditions χ(∞) = kπ and χ(0) = nπ with
both k and n integer numbers k, n ∈ Z. The former condi-
tion can be set to zero without loss of generality (k = 0).
Since χ(∞) = 0, the extension of the map φ : Σ → S

3

is topologically equivalent to the map φ : S3 → S
3, and it

can be shown that n is its degree [8]. Thus the solutions with
n �= 0 are topologically nontrivial.

We focus on two different coupling functions character-
ized by a single dimensionless parameter β. The first one is
that originally used in [8] given by

A(χ) = eβ sin2 χ , (11)

while the second one is a monotonic function of χ

A(χ) = e
1
2 βχ2

. (12)

Solutions of the static topological neutron stars are obtained
by setting the appropriate central conditions for Λ, ε̃ and χ

and performing a shooting method to determine (dχ/dr)|0
and Γ (0) from the asymptotics of χ and Γ . For the numer-
ical integration of the differential equations we are using
the adaptive Dormand–Prince embedded error estimation
method [42].

As shown in the previous work [8], solutions exist only
for certain theory parameters. One of the main constraints is
the size of the target space a with topological neutron stars
emerging only for small values of it. The radius of the tar-
get space throughout this work has been set to a2 = 10−3.
There also exists a restricted range of β values at fixed
a which depends on the coupling function. Extending the
results obtained previously, several different values of β have
been used for the function (11). These include β = 0.08
which was already employed in [8,43] as well as β = 0.04,
β = −0.04 and β = −0.08. In the case of the coupling
function (12), solutions were restricted to an even smaller
interval of values for β and there is strong evidence that no
stable configurations exist for β > 0 in that case.

The mass–radius relations for topological neutron stars
is shown in Fig. 1 for the non-monotonic coupling function
(11). In this case stable solutions exist both for n = 1 and
n = 2 topological charges (excluding the case β = 0.04
where the n = 2 solutions appear after the branch’s maxi-
mum mass). Figure 2 on the other hand presents the mass-
radius relations for the monotonic coupling function (12)
where stable solutions exist only forn = 1 topological charge
and in a much smaller range of β (around β = −0.01). Since
we are working in slow rotation approximation keeping only
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Fig. 1 Mass-radius relations for the APR4 EOS and different values
of β for the coupling function (11). n = 1 solutions are shown with
solid lines while n = 2 solutions are indicated with dashed lines of the
same color
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Fig. 2 Mass-radius relations for the APR4 EOS and different values
of β for the coupling function (12). Only n = 1 stable solutions exist
for this coupling function

linear terms with respect to the angular velocity Ω , the mass
and the radius remain unchanged with respect to the non
rotating case. The results depicted in these two figures are
for the stable branch of topological neutron star solutions.
It was shown in [8] that other branches of solutions exist as
well for a fixed coupling function and values of n and β, but
all of them are unstable against radial perturbations [43] and
we will not comment them further.

It is easy to notice that in general the n = 1 branches
are more massive than their n = 2 counterparts (when the
latter exist). Considering Fig. 1, the overall effect of negative
β values is to increase the masses of the solutions with the
same radius (making them more compact) while the effect
of positive β values is the opposite. The actual shape of the
mass-radius relation, however, is also heavily influenced by
the value of the parameter and these effects are not easily
predictable or monotonic in nature.

In most cases the “end” of a branch (i.e. the highest pres-
sure for which solutions were found) has been chosen arbi-

trarily after the corresponding sequence’s maximum mass is
reached. However, in some cases the branch of solutions not
only appears at some minimal central pressure but also disap-
pears at another maximum central pressure. This maximum
pressure where solutions disappear might even occur before
the maximum of the mass is reached. Such is the case for
the solutions obtained for the monotonic coupling function
(12) which are found in a much more restricted range for
β and central pressures. No stable or physically meaningful
solutions were found for the n = 2 topological charge in this
case and each of the three stable branches shown on Fig. 2
disappears before it reaches the maximum of the mass.

2.2 Structure equations to first order in Ω

The only non-trivial equation to first order in Ω is that for the
Ricci tensor components R03 = R30, which after taking into
account the static equations (7)–(10) as equalities, simplifies
to

1

r4

d

dr

(
r4e−Γ −Λω̄′) + 4

r

d

dr
(e−Γ −Λ)ω̄

+ 4a2e−Γ −Λω̄χ ′2 + 4a2ω

r2 sin2 χeΛ−Γ = 0, (13)

where we have defined ω̄ = Ω − ω. The central values of
the functions are ω̄′(0) = 0 and ω̄(0) = ω̄c with the latter
determined through a shooting method in order to obtain the
desired angular velocity of the star Ω . Note that Ω is actually
the same in both Einstein and Jordan frames.

An important characteristic for compact objects is their
moment of inertia. Having integrated (13), one can use its
asymptotic form to extract the star’s angular momentum J =
IΩ and thus obtain the moment of inertia along the axis
of rotation. Alternatively, one can integrate the two sides
of (13) leading to a conserved quantity proportional to the
angular momentum. After a division by Ω , the asymptotic
and integral definitions are given by

Iasympt = lim
r→∞ −1

6
r4e−Γ −Λ

(
dω̃

dr

)
, (14)

Iintegral = 8πG∗
3

∫ rS

0
A4(χ)( p̃ + ε̃)eΛ−Γ r4(1 − ω̃)dr

−2a2

3

∫ ∞

0
r2ω̃eΛ−Γ sin2 χdr (15)

where ω̃ = ω/Ω = 1−ω̄/Ω is the reduced angular velocity.
Both definitions are implemented as part of the numerical
integration to further verify the fidelity of the results and
the obtained values differ from each-other with relative error
consistently on the order of 10−11 for the various branches.
Section 3 outlines our results for the moment of inertia and its
normalization conditions which lead to universal relations.
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2.3 ISCO, orbital and epicyclic frequencies

For a general stationary axially-symmetric metric with gμν =
gμν(r, θ) and a line element of the form

ds2 = gtt dt
2 + grrdr

2 + gθθdθ2 + 2gtφdtdθ + gφφdφ2,

(16)

the ISCO and epicyclic frequencies can be found by
analysing the orbital motion for massive test particles. It is
easy to show that there are two constants of motion gen-
erated by the timelike and axial killing vectors E = −ut
and L = uφ . Raising these we obtain for the contravariant
components of a particle’s 4-velocity

dt

dτ
= Egφφ + Lgtφ

g2
tφ − gtt gφφ

, (17)

dφ

dτ
= − Egtφ + Lgtt

g2
tφ − gtt gφφ

. (18)

The 4-velocity’s normalization condition for timelike
observers gμνuμuν = −1, can be rewritten in the form

grr ṙ
2 + gθθ θ̇

2 + E2U (r, θ) = −1, (19)

where we have defined the potential

U (r, θ) = gφφ + 2lgtφ + l2gtt
g2
tφ − gtt gφφ

, (20)

using the proper orbital angular momentum l ≡ L/E . In the
equatorial plane (θ = π/2) this result is further reduced to
an effective 1D problem ṙ2 = V (r) with effective potential

V (r) = g−1
rr

[
−1 − E2U

(
r, θ = π

2

)]
. (21)

For some fixed E and L , the stable circular orbit at some coor-
dinate radius r0 is given by the conditions V (r0) = V ′(r0) =
0 andV ′′(r0) > 0, while the radius of the ISCO is given by the
marginal stability condition V ′′(r0) = 0. The orbital angular
velocity of massive particles in the geometry can be found
from the geodesic equations written in their Lagrange-Euler
form

d

dτ

(
gμν

dxν

dτ

)
= 1

2
∂μgνσ

dxν

dτ

dxσ

dτ
. (22)

The radial component of these equations (μ = 1) reads

∂r gtt

(
dt

dτ

)2

+ 2∂r gtφ
dt

dτ

dφ

dτ
+ ∂r gφφ

(
dφ

dτ

)2

= 0, (23)

which is transformed into a quadratic algebraic equation for
the orbital angular velocity Ωp = dφ/dr = uφ/ut . The two
solutions are easily found to be

Ωp = dφ

dt
= −∂r gtφ ± √

(∂r gtφ)2 − ∂r gtt∂r gφφ

∂r gφφ

, (24)

corresponding to prograde and retrograde orbits with respect
to the star’s rotation. The follow-up computations are con-
sidered for the prograde case as the retrograde one’s angular
velocity is always lower and stability is lost further out from
the star.

For a particle on a stable circular orbit, small radial or
angular perturbations will cause periodic oscillations about
the potential’s minimum (with respect to r or θ respec-
tively). These frequencies are known as the radial and vertical
epicyclic frequencies and can be found by investigating time-
dependent perturbations of a stable equatorial circular orbit
in the form

r(t) = r0 + δr(t), θ(t) = π

2
+ δθ(t). (25)

Inserting (25) into the equation of motion (19) and assuming
δr ∝ eiωr t , δθ ∝ eiωθ t yields

ω2
r = (gtt + Ωpgtφ)2

2grr
∂2
r U

(
r0,

π

2

)
, (26)

ω2
θ = (gtt + Ωpgtφ)2

2gθθ

∂2
θU

(
r0,

π

2

)
, (27)

for the radial and vertical angular epicyclic frequencies
(ωi = 2πνi ). Given the interpretation of these frequencies
and the proportionality between ωr and ∂2

r U (r0, π/2), it is
clear that the radial epicyclic frequency must be zero at the
ISCO radius, real for r > rISCO and imaginary for r < rISCO.
Furthermore, the vertical epicyclic frequency is equal to the
orbital one ωθ = Ωp for the static case (Ω = 0).

Of course, realistic neutron stars possess magnetic fields
which can be far from negligible on the dynamics of charged
particles and recent studies show that those can be more com-
plicated than originally anticipated [44]. Nevertheless, since
plasma is electrically neutral on the scale of several Debye
radii, each “clump” of plasma would be held together by elec-
trostatic stresses between the constituting particles so even
though individual charged particles’ trajectories may differ
due to the magnetic field, the overall plasma motion is well
described by the considered dynamics.

The same general methodology is also followed for TMST
with one major difference – all derivatives and quantities in
the latter case must be computed using the physical (Jordan)
frame metric components g̃μν . This leads to a noteworthy
behavior in the orbital angular velocity Ωp as given by (24)
which can turn imaginary (i.e. no stable circular orbits exist)
in regions outside the star, before the appearance of a true
ISCO. This can be traced to the negative term under the square
root of Eq. (24). In GR the derivative ∂r gtt is always negative
outside of the star (the metric function gtt is monotonically
decreasing). However, the sign of the corresponding quantity
in the generalized theory ∂r (A2(χ)gtt ) = ∂r g̃t t is now deter-
mined not only by gtt but also by the coupling function A(χ).
It turns out that in the case of the non-monotonic coupling
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function (11) this leads to regions outside the ISCO where
stable circular orbits do not exist and where the accretion
disc may be split. This effect presents considerable interest
in terms of potential observational traits but requires a more
detailed study. For that reason it will be explored in a sep-
arate work. In Sect. 4 therefore, we outline our results for
the radius of ISCO, the orbital frequency at ISCO as well
as the maximum value of the radial epicyclic frequency for
the n = 1 stable topological neutron stars of the monotonic
coupling function (12) at three different β values and three
different rotation rates, comparing them to the results for GR.

3 Moment of inertia and universal relations results

In this section we present the results obtained for the moment
of inertia as well as our study of two relations known to be
universal (independent of EOS). These are relations between
the dimensionless compactness M/R and two normalizations
of the moment of inertia Ĩ = I/MR2 and Ī = I/M3. The
functional forms were fitted with a polynomial though least
squares. Several EOS were used and the error of those fits
was evaluated in order to verify their validity. As discussed,
we focus only on the astrophysically relevant stable branch
of topological neutron stars without commenting on the other
unstable branches discovered in [8]. A comparison is made
between GR and the branches with n = 1 and n = 2 topolog-
ical charges (where present) using APR4, Sly, MS1, MPA1,
APR2 and H4 equations of state for several different theory
parameters.

Before considering these results for the different EOS, the
following Figs. 3 and 4 show the moment of inertia as a func-
tion of the neutron star masses. These results are obtained for
APR4 EOS and several combinations of n and β in order to
provide some intuition on the effect of the coupling func-
tion and the β value. As a matter of fact these are the same
branches of solutions depicted in Figs. 1 and 2.

The behavior of the moment of inertia evidently follows
what was already outlined for the mass–radius relation. The
higher topological charge leads to lower masses and thus
lower moment of inertia. Negative β increases the overall
compactness and positive β acts in the opposite way (for
the non-monotonic coupling function (11). A complete lack
of maximum of I (M) is observed in the case of the mono-
tonic coupling function. It is important to note, that up to first
order of the angular velocity, the moment of inertia for a star
is independent of Ω as no deformations are taken into con-
sideration. We have confirmed that the value for I is indeed
numerically independent of the different Ω values set in our
integrator.

Let us now turn to the universal relations. While in the case
of mass–radius relations the plots are qualitatively different
in shape from those of the GR case (see Figs. 1 and 2, the
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Fig. 3 Moment of inertia-mass relations for the APR4 EOS and differ-
ent values of β for the coupling function (11). n = 1 solutions are shown
with solid lines while n = 2 solutions are indicated with dashed lines
of the same color. These are the same branches of solutions depicted in
Fig. 1
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Fig. 4 Moment of inertia-mass relations for the APR4 EOS and dif-
ferent values of β for the coupling function (12). Only n = 1 stable
solutions exist for this coupling function. These are the same branches
of solutions depicted in Fig. 2

normalized moment of inertia for all theory parameters fol-
lows a very similar dependency. The functional shape is very
similar with an overall translation depending on the values of
the free parameters (with the exception of β = 0.08, n = 1
for the non-monotonic function).

The fourth order polynomial with zero second and third
order terms is now a standard fit for the normalized moment
of inertia Ĩ = I/MR2 as a function of the compactness M/R
[10,11]

Ĩfit = ã0 + ã1
M

R
+ ã2

(
M

R

)4

. (28)

We will first give plots of the universal relations polyno-
mial fits for different combinations of the free parameters in
order to gain intuition on the possible deviations from GR and
only afterwards we will comment on the deviation from EOS
university. Let us just point out, that this universality is more
or less preserved for topological neutron stars as well. Fig-
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Fig. 5 Comparison between the Ĩ fits obtained through (28) for differ-
ent theory parameters considered. The olive curve is that obtained for
the monotonic coupling function (12) while the remaining four curves
show the qualitative difference in results for positive and negative beta
in the case of non-monotonic coupling (11)

ure 5 compares the fits Ĩfit for β = −0.01 of the monotonic
coupling function (12), GR and the non-monotonic coupling
function (11) at values β = −0.08 and β = 0.08. These fits
are obtained using an equal number of points for each of the
6 EOS (APR4, SLy, MS1, MPA1, APR2 and H4) and fitting
the functional form (28) through least squares. In Table 1
the numerical values of the fitting coefficients, as well as
the fitting error, for some representative combinations of the
parameters are displayed.

It is evident both from the table and the plot that there
is very little difference between the polynomial fits for GR
and the TMST for the monotonic coupling function Amon(χ)

given by (12). This is not the case, though, for the non-
monotonic function Anmon(χ) given by Eq. (11) where sig-
nificant differences are observed. In this case the normalized
moment of inertia is significantly higher or lower as com-
pared to GR both for n = 1 and n = 2. For example in the
β = −0.08 case the polynomial fit is consistently around 20
% higher as compared to GR. The n = 1 fit for the positive
β = 0.08 has a slightly different shape from GR partic-

ularly at lower compactness but would be hard to discern
within experiments available today. The n = 2 solutions of
the same value β = 0.08, however, lead to values of Ĩ con-
sistently lower by about 7%.

The second alternative normalization of the moment of
inertia we consider, namely Ī = I/M3, is fitted with a poly-
nomial function of the form [11]

Īfit = ā1

(
M

R

)−1

+ ā2

(
M

R

)−2

+ā3

(
M

R

)−3

+ ā4

(
M

R

)−4

. (29)

The numerical values of the fitting coefficients, as well as the
fitting error, can be found once again in Table 1 for certain
representative cases.

Figure 6 compares the Īfit obtained using the above for-
mula for the same values of the parameters and equations
of state as in Fig. 5. Once again, the curve for the coupling
function (12) is virtually indistinguishable from the GR one
and the most significant deviation is observed for the non-
monotonic coupling (11) with n = 1 topological charge at
β = −0.08 (about 20 % higher) and with n = 2 topological
charge at β = 0.08 (about 7 % lower).

The following two Figs. 7 and 8 show the actual data
points for each of the six EOS considered as well as the fits
obtained from them. Only the value of β = −0.08 of the
non-monotonic coupling function (11) has been shown for
the purpose of better visualization. This value of β has been
chosen since it presents the highest difference as compared
to GR. The n = 1 and n = 2 solutions are depicted with
pluses and crosses and follow the colors of the GR solutions
for the different EOS. The highest relative error of the fits is
displayed in the bottom of the figure and it is no greater than
6% (highest for the H4 EOS). Based on the relative error of
the fits, we can conclude that the EOS universality of Ĩ as
a function of the stellar compactness is fulfilled in TMST at
least as well as in GR, and the differences between GR and

Table 1 The table summarizes all the {ã j } and {ā j } coefficients
obtained from the fits of the data with polynomials of the form (28)
and (29). We have chosen some representative combinations of param-
eters for both coupling functions, where Amon denotes the monotonic

coupling (12) and Anmon – the non-monotonic coupling (11). Each set of
values was obtained by taking an equal number of points for each EOS
(in order to obtain the same weight) for mass range starting at 1 M�
and ending at the maximum mass for the corresponding sequence

Theory parameters ã0 ã1 ã2 Ĩχ2 ā1 ā2 ā3 ā4 Īχ2

General Relativity 0.21 0.80 2.61 5.8 × 10−5 0.97 0.16 0.66 × 10−2 −0.03 × 10−2 6.3 × 10−2

Amon, β = −0.01, n = 1 0.21 0.82 2.43 5.7 × 10−5 0.80 0.25 −0.82 × 10−2 0.04 × 10−2 6.9 × 10−2

Anmon, β = −0.08, n = 1 0.31 0.62 4.11 7.0 × 10−5 1.05 0.15 2.02 × 10−2 −0.09 × 10−2 4.9 × 10−2

Anmon, β = −0.08, n = 2 0.27 0.72 2.12 9.3 × 10−5 1.33 −0.06 6.19 × 10−2 −0.39 × 10−2 5.3 × 10−2

Anmon, β = 0.08, n = 1 0.27 0.49 5.79 5.5 × 10−5 1.29 −0.06 4.65 × 10−2 −0.22 × 10−2 3.7 × 10−2

Anmon, β = 0.08, n = 2 0.21 0.71 2.82 4.8 × 10−5 1.32 −0.11 5.84 × 10−2 −0.38 × 10−2 1.9 × 10−2
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Fig. 6 Comparison between the Ī fits obtained through (29) for differ-
ent theory parameters considered. The olive curve is that obtained for
the monotonic coupling function (12) while the remaining four curves
show the qualitative difference in results for positive and negative beta
in the case of non-monotonic coupling (11)

Fig. 7 The normalized moment of inertia Ĩ as a function of the com-
pactness for GR and topological neutron stars with a coupling function
(12), where we have chosen β = −0.08. Dots show results for GR
while pluses and crosses show results for the topological neutron stars
ofn = 1 andn = 2 respectively, with the same color scheme for the EOS
as in GR. Solid, dashed and dash-dotted lines show the corresponding
fits following Eq. (28)

TMST fits are significant at least for some of the β and n
values.

Similarly, as seen on the following Fig. 8, the error
between the actual results and the fit for the second nor-
malization Ī does not exceed 6% with the highest maximum
of the error once again visible for H4 EOS which confirms
the universality of Ī as well for β = −0.08. The fits for
the remaining β values and the monotonic coupling function
have a relative error of the same order, confirming that the
topological neutron stars of both charges n = 1 and n = 2
indeed satisfy the proposed universal relations and in some
cases the predicted difference in the obtained fit is significant
as compared to GR.

Fig. 8 The normalized moment of inertia Ī as a function of the com-
pactness for GR and topological neutron stars with a coupling function
(12), where we have chosen β = −0.08. Dots show results for GR
while pluses and crosses show results the Topological Neutron Stars
of n = 1 and n = 2 respectively with the same color scheme for the
EOS. Solid, dashed and dash-dotted lines show the corresponding fits
following (29)

It is evident from the values of Ĩχ2 and Īχ2 displayed
in Table 1 that the topological neutron stars exhibit a good
degree of EOS universality with respect to the two normal-
izations of the moment of inertia Ĩ = I/MR2 and Ī = I/M3

and therefore, these relations are well described by the stan-
dard fits (28) and (29). The obtained fits for the monotonic
coupling function (12) are practically indistinguishable from
GR. The non-monotonic coupling function (11), however,
leads to quantitatively significant differences between GR,
the n = 1 and the n = 2 topological neutron stars indepen-
dently of the EOS.

4 ISCO, orbital and epicyclic frequencies results

In this section we outline our results for the ISCO as well as
the orbital and epicyclic frequencies. The results are obtained
for static as well as f = 80 Hz and f = 160 Hz rotating
neutron stars. Both of these values for the frequency place
the stars at the slowly rotating regime. Unlike the moment
of inertia, which is not influenced to the first order in Ω , the
innermost stable circular orbit (ISCO) as well as the orbital
νp and epicyclic frequencies νr , νθ are modified based on
the star’s rotation. Since ISCO is the limiting radius where
particles can orbit stably, it has important applications to
determining the inner edge of accretion discs around com-
pact objects. We should note that all the results presented
in this section are the corresponding physical Jordan frame
quantities.

As discussed in Sect. 2.3, the ISCO computation in the
case of a non-monotonic coupling function such as (11) is
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Fig. 9 ISCO radius (physical) as a function of the gravitational mass
for GR and TMST with the monotonic coupling function (12), forn = 1,
different β values and f = 0 Hz
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Fig. 10 Orbital frequency at the ISCO radius as a function of the grav-
itational mass for GR and TMST with the monotonic coupling function
(12), for n = 1, different β values and f = 0 Hz

not trivial and can lead to a splitting of the accretion disc
outside of the star. For the present section, therefore, we have
considered only the monotonic coupling function (12) while
the more complicated case of non-monotonic A(χ) requires
much more profound investigations and will be discussed in
a future publication.

Figure 9 displays the static ISCO radius (in the physical
Jordan frame) for the stable branch of topological neutron
stars with n = 1 at different β parameters for the APR4
EOS and compares them to GR. Whenever the ISCO radius
is less than the stars’ radius, the latter is used (thus the visi-
ble discontinuity of the derivatives around 1.25 M�). Stable
solution for n = 2 do not exist for this coupling function and
as previously discussed, the maximum mass that the neutron
stars with n = 1 and β = −0.012 can reach, is much lower
compared to those for the additional β values. It is obvious
that all results follow closely GR and deviations of the ISCO
for any physical radii between the considered set of param-
eters and GR are marginal.
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Fig. 11 Maximum absolute value of the radial epicyclic frequency νr
as a function of the gravitational mass for GR and TMST with the
monotonic coupling function (12), for n = 1, different β values and
f = 0 Hz

More important than the actual radius of the ISCO from
observational standpoint is the orbital frequency obtained at
its radius. Figure 10 presents the results for the three cases of
β studied following the computation of Eq. (24) in the Jordan
frame of the theory at f = 0 Hz. Once again, deviations from
GR are minor. For masses exceeding 1.3 M�, the dependence
for the topological neutron stars is essentially the same as that
for the GR case, while for lower masses, particularly around
1 M�, the frequencies can be up to 3 % higher than those
predicted in GR. These results are not surprising since the
deviation is in the region where ISCO is at the star’s surface
and Fig. 2 clearly indicates that the topological branch of
neutron stars are more compact than their GR counterparts
particularly at lower masses. This small difference, however,
does not appear to be experimentally significant.

The radial epicyclic frequency’s maximum value outside
of the star at f = 0 Hz is given in the following Fig. 11.
The highest deviation is once again around 1 M� reaching
as much as 6% and once again becoming negligible at higher
masses. Since neutron stars with masses lower than that
are not observed and currently considered as non-existing,
the radial epicyclic frequency does not offer any significant
observational difference between GR and topological neu-
tron stars similarly to the orbital one.

The following three figures display the same quantities in
the case of slow rotation. The color schemes are the same
as on Figs. 9, 10 and 11 with the solid lines corresponding
to the f = 0 Hz case, while the dashed and dash-dotted
lines give the same dependencies at f = 80 Hz and f =
160 Hz. The results are obtained in the slow rotation regime
but the majority of observed neutron stars fall within this
approximation. There is also reason to believe that results at
higher order of Ω are not qualitatively different [13]. The
ISCO for prograde orbit in all cases is shown on Fig. 12,
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Fig. 12 ISCO radius as a function of the gravitational mass for GR
and TMST with the monotonic coupling function (12), for n = 1 and
different β values. Solid lines denote static configuration while dashed
and dash-dotted lines correspond to the f = 80 Hz and f = 160 Hz
cases. Color scheme follows Fig. 9
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Fig. 13 Orbital frequency at the ISCO radius as a function of the grav-
itational mass for GR and TMST with the monotonic coupling function
(12), for n = 1 and different β values. Solid lines denote static config-
uration while dashed and dash-dotted lines correspond to the f = 80
Hz and f = 160 Hz cases. Colors scheme follows Fig. 10

followed by the orbital frequency and the radial epicyclic
frequency on Figs. 13 and 14.

The decrease in ISCO radius due to the star’s rotation
leads to an overlap between the plots in an even larger region
making the GR and the topological cases harder to discern
without knowing the rotational frequency precisely. For each
of the rotational cases by itself, no significant distinction is
possible once again.

As far as the orbital and maximum radial epicyclic
frequencies are concerned – no major difference can be
seen between GR and the n = 1 topological neutron star
branch with coupling function (12) for masses higher than
∼= 1.2−1.3M�. Once again, in the region 1−1.25M� minor
quantitative differences on the order of 6 % and less can be
observed for both but these do not appear to be significant
experimentally.
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Fig. 14 Maximum absolute value of the radial epicyclic frequency νr
as a function of the gravitational mass for GR and TMST with the
monotonic coupling function (12), for n = 1 and different β values.
Solid lines denote static configuration while dashed and dash-dotted
lines correspond to the f = 80 Hz and f = 160 Hz cases. Colors
scheme follows Fig. 11

It appears that the monotonic coupling function (12) does
not predict significant qualitative or quantitative deviations
from GR as far as the X-ray observations are concerned.
As discussed, other coupling functions, such as the non-
monotonic one given by Eq. (11), predict both qualitatively
and quantitatively significantly different results from GR.
The new effects that appear poses considerable interest and
so it will be investigated further in a follow-up work.

5 Conclusions

In the present work we have further explored the proper-
ties of topological neutron stars (TNS) that is a new and
very interesting class of compact objects in the Tensor Multi-
Scalar Theories (TMST) of gravity. We considered the case
of slow rotation and in addition we expanded the study of
these objects’ dependence on theory parameters, topological
charge and coupling functions. The main focus of the paper
was on the investigation of their moment of inertia and the
quantities related to accretion under slow rotation.

We have confirmed the EOS independence between the
suitably normalized moment of inertia for the TNS and their
compactness, comparing the obtained results with those for
neutron stars in General Relativity. It turns out that for one
of the coupling functions, showing a monotonic behavior
with respect to the scalar field, these universal relations are
almost indistinguishable from GR, making them not only
EOS independent, bus also theory of gravity independent up
to a large extend. For more complicated non-monotonic func-
tions, though, the deviations can be signification allowing not
only to distinguish between GR and TMST, but also between
solutions with different values of the topological charge. This
demonstrates that the future observations can help us test the
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very interesting hypothesis that neutron stars can posses a
new property that is the topological charge.

We have also obtained accretion-relevant properties such
as the ISCO radius, orbital and epicyclic frequencies for TNS
at different rotation rates, comparing them once again to the
GR results. The obtained TNS quantities differ significantly
from those in GR only for some coupling functions and theory
parameter values which leaves several observational traits to
be sought after and explored. In the case of monotonic cou-
pling function there are no qualitative difference between GR
and TMST and in addition, the qualitative deviations from
GR are very small, practically not measurable. Some inter-
esting qualitative differences appear in particular for non-
monotonic coupling function for the ISCO-related quantities,
where the quantitative deviations can be large as well, that
will be further explored in a dedicated work as they require
more profound investigations. This provides a firm reason to
pursue more accurate observations and systematic studies in
order to constraint alternative theory parameters in the strong
regime of gravity.

Further study of the higher order corrections to rotational
neutron stars will additionally allow us to get their quadrupole
moment and explore potential I-love-Q relations [46,47] also
opening new prospects of experimental confirmation through
the gravitational waves observation data which is promising
to become more abundant in the near-future [48,49]
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