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Abstract A novel 4D Einstein–Gauss–Bonnet gravity was
recently formulated by Glavan and Lin [Phys. Rev. Lett. 124,
081301 (2020)]. Although this theory may run into trouble
at the level of action or equations of motion, the spherically
symmetric black hole solution, which can be successfully
reproduced in those consistent theories of 4D EGB gravity,
is still meaningful and worthy of study. In this paper, we
investigate Hawking radiation in the spacetime containing
such a de Sitter black hole. Both the greybody factor and
the power spectra of the Hawking radiation of the massless
scalar are studied numerically for the full range of various
parameters, including the GB coupling constant α, the cos-
mological constant � and the coupling constant related to
the scalar filed ξ . In particular, we find a negative α leads
to a larger greybody factor than that of a α ≥ 0. While, for
the power spectra of the Hawking radiation the situation is
quite the opposite. The reason is that the temperature of the
black hole would be very high when α < 0. Actually, we
observe that the temperature would be arbitrarily high when
α approaches to the lower bound.

1 Introduction

Hawking radiation is one of the most important discoveries in
quantum gravity, although it was derived semi-classically [1]
in virtue of quantum field theory in cured spacetime. Since
then, people believed black holes do have temperatures and
satisfy the laws of thermodynamics [2]. On the other hand,
Hawking radiation plays a central role in the study of the
black hole information paradox, which may be the tough-
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est obstacle in the way to understand quantum gravity thor-
oughly [3]. Based on the awareness of its importance and
necessity, a lot of significant progresses have been made in
the previous studies both experimentally and theoretically.
On the experimental side, it was found that the Hawking
radiation of tiny black holes may be observed by particle
colliders through LHC [4–7], while Hawking radiation is too
small to be directly detected through astronomical observa-
tions. Instead, Hawking radiation was proved to work in the
laboratory analogues in terms of the theory of analogue grav-
ity [8]. Further, some analogues of black-hole horizons in the
laboratory have been realized and many evidences came into
being to support the universality of Hawking radiation [9,10],
see Ref. [11] for more complete review . On the purely the-
oretical side, Hawking radiation also has drawn attentions
on many aspects of gravity, mainly including quantum infor-
mation theory of black hole [12], holographic dual in the
framework of AdS/CFT correspondence [13] and Hawking
emission spectrum described in terms of the greybody fac-
tor in general relativity, extra-dimension models and other
alternative gravity theories [14–43].

Thereinto, the Einstein–Gauss–Bonnet (EGB) gravity is
known to be one of the most promising candidates for modi-
fied gravity [44]. A well-defined black hole solution for any
dimension (D ≥ 5) has been found [45] and many non-trivial
effects indicate the study of EGB gravity not only helps us
understand black holes and black branes more deeply [46–
49] but also advances the development of the holographic
gravity in the AdS/CFT correspondence [50]. Among these
studies, many important results related to Hawking radiation
in EGB gravity were also obtained and aroused a lot of con-
cerns and discussions [19,20]. Despite the achievements, so
far all the studies concerning the EGB gravity are limited to
dimensions higher than four, so a connection with real black
holes cannot be built.
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Recently, a novel 4D EGB gravity was formulated by
rescaling the GB coupling constant which completed the
missing piece of the EGB gravity. What is even more exciting
is a spherically symmetric black hole solution in this theory
derived by Glavan and Lin [51] is free of the singularity prob-
lem [52–54]. In fact, the same solution has been already found
in other theories. For the first time it was discovered from the
gravity with a conformal anomaly [52] and then it was recov-
ered in the gravity with quantum corrections [53,54]. This
4D EGB gravity has aroused great interest since its publica-
tion [55–69]. Particularly, as many works have pointed out
the procedure of taking D → 4 limit in [51] may not be
consistent [70–76]. On the other hand, some proposals have
been raised to circumvent the issues of the novel 4D EGB
gravity, including adding an extra degree of freedom to the
theory [55,56,77,78] or breaking the temporal diffeomor-
phism invariance [79]. While, the novel 4D EGB gravity
formulated in [51] may run into trouble at the level of action
or equations of motion, the spherically symmetric black hole
solution derived in [51] and in early literatures [52–54] can
be successfully reproduced in those consistent theories of 4D
EGB gravity, which means the spherically symmetric black
hole solution itself is meaningful and worthy of study.

It’s worth mentioning that, in [59], the authors first dis-
cussed the negative GB coupling constant case in details and
found a negative GB coupling constant is allowed to retain a
black hole solution, and some appealing features in this case
were obtained. However, one doesn’t know yet if a negative
coupling constant still works when a positive cosmological
constant is added in. Furthermore, the works on Hawking
radiation are also absent.

In this paper, we focus on the 4D spherically symmetric
EGB-dS black hole solution and investigate the full range of
the GB coupling constant to retain a dS black hole. Because
of the positive cosmological constant, we found a negative
GB coupling constant is also allowed with both the GB cou-
pling constant and cosmological constant are constrained
non-trivially. After having the preparation, we perform a
complete study on the greybody factor of the Hawking radi-
ation firstly and proceed to the power spectra of the Hawk-
ing radiation of the massless scalar in the 4D GB-dS black
hole background. The effects of various parameters, includ-
ing the GB coupling constant, the cosmological constant as
well as the coupling constant related to the scalar field, on
both aspects of Hawking radiation are analyzed in detail. In
particular, some new features are found when the GB cou-
pling constant is negative.

The paper is organized as follows. In Sect. 2, we give a
short review on the novel 4D EGB gravity and find the full
range of the GB coupling constant and cosmological constant
when the spacetime contains a dS black hole. In Sect. 3,
we introduce the scalar field perturbation. Next, we turn our
attention to the greybody factor in Sect. 4. And the energy

emission rate of Hawking radiation are discussed in Sect. 5.
We close our paper with a conclusion in Sect. 6.

2 The 4-dimensional EGB-dS black hole solution

The Einstein–Gauss–Bonnet gravity with a positive cosmo-
logical constant in D-dimensional spacetime has the action
of the form

SG = 1

16πG

∫
dDx

√−g [R − 2� + αLGB] , (2.1)

where G is the D-dimensional Newton’s constant, R is
the Ricci scalar, � is the cosmological constant, and α

is the Gauss–Bonnet (GB) coupling constant of dimension
(length)2. The Gauss–Bonnet term is given by

LGB = Rμνρσ R
μνρσ − 4RμνR

μν + R2, (2.2)

which is a total derivative in four dimensional spacetime and
thus has no contribution to the dynamics in general. Surpris-
ingly, a novel theory was discovered recently by rescaling
the coupling constant as

α → α

D − 4
. (2.3)

and taking the limit D → 4. Then the Lovelock’s theorem
is circumvented and a new spherically symmetric black hole
solution was found [51].

The spherically symmetric GB-dS black hole solution of
(2.1) in four dimensional spacetime can be described by

ds2 = − f dt2 + dr2

f
+ r2d	2

2, (2.4)

f = 1 + r2

2α

(
1 −

√
1 + 4αm

r3 + 4α�

3

)
.

Here d	2
2 is the line element of the 2-dimensional unit sphere

S2. The parameter m is related to the black hole mass M by
m = 2GM . As we mentioned before, the above procedure
to obtain the novel theory has been called into question by
many follow-up works [70–76]. Whereas the above black
hole solution (2.4) can be reproduced from those consistent
4DEGB gravity theories [55,56,77–79] and thus is exempted
from being meaningless. In the following all our discussion
will be based on the black hole solution (2.4), which can be
independent of the original gravity theory [51].

This solution has the same form as its higher dimensional
companions. But there are important differences. The four
dimensional solution (2.4) can have three horizons in some
parameter region, while the higher dimensional solutions
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have at most two horizons. The center singularity of (2.4) is
repulsive, while it is attractive in higher dimensions. Thus the
four dimensional solution is free from the singularity prob-
lem. Motivated by these differences, we study the Hawking
radiation of the solution (2.4) in this paper.

We fix rh = 1 for convenience, then the mass parameter
m can be expressed in terms of α and � as

m = 1 + α − �

3
> 0. (2.5)

As a consequence, the free parameters of the background are
α,� now. In this paper, we focus on the parameter region
where both the black hole event horizon and cosmological
horizon exist. In addition, after plugging the Eq. (2.5) into
f (r), we find

f (∞) = −∞, f (0+) = 1, f ′(0+) < 0 (2.6)

for α > 0, while for α < 0, one has

f (∞) = −∞, 0 < r0 < 1, (2.7)

where r0 is the root when the quadratic radical of the metric
function f (r) is vanishing and we have taken into account
the condition m > 0 for the inequalities. By using these
conditions in combination and following the similar analysis
in [58], we conclude f (1) = 0 and f ′(1) > 0 give the
necessary and sufficient condition that this spacetime always
contains a dS black hole, that is, both the event horizon and
the cosmological horizon exist. Thus, we find the allowed
region and show it in Fig. 1.

Fig. 1 The parameter region where both the event horizon and cosmo-
logical horizon exist. The region is bounded by α > −0.5, � > 0 and
α + � < 1. The metric function is real for all r > 0 in region A, while
becomes complex for small r in region B

3 The scalar field perturbation

We focus on the Hawking radiation of a massless scalar field

 in the background (2.4). The scalar field 
 couples to
gravity minimally or non-minimally with coupling constant
ξ . The corresponding equation of motion is [25,26]

∇μ∇μ
 = ξ R
. (3.1)

For fluctuations of order O(ε), the induced changes of the
spacetime geometry are of the order O(ε2). Thus the effect
of 
 on the background spacetime is negligible [43]. The
above equation can be solved in a fixed background given by
(2.4).

For stationary spherically symmetric background, the
scalar wave function can be decomposed as


(t, r,	) =
∫

dω
∑
lm

e−iωtφ(r)Ylm(	), (3.2)

where Ylm(	) are spherical harmonics of the scalar wave
function on S2. The angular and radial part are decoupled
and the radial master equation reads

1

r2

d

dr

(
f r2 dφ

dr

)
+

[
ω2

f
− l(l + 1)

r2 − ξ R

]
φ = 0, (3.3)

in which the Ricci scalar can be written as

R = −∂2
r f + 2

r2 (−2r∂r f + 1 − f ) . (3.4)

The Eq. (3.3) can be written in the Schrödinger-like form

d2u

dr2∗
+ (ω2 − Veff)u = 0, (3.5)

where r∗ is the tortoise coordinate defined bydr∗ = 1
f dr , and

the new variable u(r) = rφ(r) is introduced. The effective
potential

Veff = f

(
l(l + 1)

r2 + ξ R + 1

r
∂r f

)
, (3.6)

vanishes at the horizons of the spacetime and has a potential
barrier between the event horizon rh and the cosmological
horizon rc. The effective potential encodes the information
of the background and the scalar field 
, such as the angular
momentum number l, scalar coupling constant ξ , cosmolog-
ical constant � and GB coupling constant α. We will study
the effects of these parameters on the Hawking radiation in
detail in this paper.
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Fig. 2 Effects of α on the greybody factor for different modes l (left) and the corresponding effective potential (right). Dotted lines, solid lines
and dashed lines denote α = −0.3, α = 0 and α = 0.3, respectively. We fix � = 0.1 and ξ = 0 here

The radial equation (3.5) has asymptotic behavior

u→
{
T e−iωr∗ + Oeiωr∗ = T (r − rh)

i ω
κh + O(r − rh)

−i ω
κh , r → rh,

Re−iωr∗ + Ieiωr∗ = R(r − rc)
i ω

κc + I(r − rc)
−i ω

κc , r → rc,
(3.7)

near the event horizon and cosmological horizon. Factors κh
and κc are the surface gravity on rh and rc, respectively. The
coefficients I,R and T are the amplitudes of the incident,
reflected and transmitted waves, respectively. The O term
describes an outgoing wave at the event horizon and will be
set to zero hereafter. Once these coefficients are worked out,
we can get the greybody factor of the Hawking radiation by
the definition

|γωl |2 = 1 − |R|2/|I|2. (3.8)

In general, the radial equation is hard to solve analyti-
cally. We thus turn to solve the radial equation numerically.
We impose the ingoing boundary condition near the event
horizon rh and integrate the radial equation (3.3) towards
the cosmological horizon rc. By comparing with the asymp-
totic behavior (3.7) near rc, we can get the coefficients R,
I and therefore the greybody factor (3.8). There exist vari-
ous numerical methods to solve the radial equation. Here we
adopt the method developed in [23–26].

4 The greybody factor of Hawking radiation

The free parameters appearing in (3.8) are α,� and ξ, l. We
study their effects on the greybody factor in detail in this
section.

4.1 Effects of α and l on the greybody factor

Whenα → 0, the solution (2.4) reduces to the Schwarzschild-
dS (SdS) black hole. As α increases, the geometry is changed
significantly due to the appearance of an inner horizon in the
black hole. One may expect that the greybody factor of the
Hawking radiation will also be affected significantly.

We show the effects of α on the greybody factor for differ-
ent modes l in the left panel of Fig. 2. The greybody factor is
enhanced for all modes l as α increases, and is suppressed by
l when the other parameters are fixed. This phenomenon can
be understood intuitively from the viewpoint of the effec-
tive potential, which is shown in the right panel of Fig. 2.
The larger l, the higher potential barrier, so the wave is more
likely to be reflected, which leads to a smaller greybody fac-
tor according to (3.8). On the other hand, the potential barrier
decreases with α when the other parameters are fixed. Then
the wave is unlikely to be reflected, which leads to a larger
greybody factor. In fact, it can be shown numerically that the
maximum of the effective potential increases monotonically
with l and decreases monotonically with α. Thus l always
suppresses the greybody factor and α always enhances it.

We would like to stress that a positive α makes the peak of
the effective potential smaller, while a negative α increases
the peak of the effective potential, which implies the exis-
tence of a negative α would make it harder for Hawking radi-
ation to get through the barrier. This is a new phenomenon
for which one may think the black holes with a negative GB
coupling constant are harder to evaporate from the point of
view of the greybody factor. But this is not true since the
proper way to characterize the evaporation of black holes is
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Fig. 3 Effects of ξ on the greybody factor for different l. Solid lines
for ξ = 0 and dashed lines for ξ = 0.3. We fix � = 0.1 and α = 0.3
here

via the energy emission rate which will be investigated in the
next section.

Note that for the dominant mode l = 0, the greybody
factor does not vanish when ω → 0. This is a character-
istic feature of the minimally coupled massless scalar field
propagating in the dS spacetime [16,18]. We can see that the
presence of a GB term does not change this picture qual-
itatively. In the following subsection, we will see that this
feature is changed qualitatively for nonminimally coupled
scalar field.

4.2 Effect of ξ on the greybody factor

The effects of ξ on the greybody factor are shown in Fig. 3.
We see that ξ decreases the greybody factor when the other

parameters are fixed. Similarly, this phenomenon can also be
understood intuitively from the effective potential. Now we
know that a positive α increases the greybody factor, while
ξ decreases it. There must be competition between α and
ξ . However, we find that the effect of α is much weaker
than that of ξ . In the presence of α, the derivative of the
maximum of the effective potential with respect to ξ depends
on the sign of curvature R, as can be seen from (3.6). To
increase the greybody factor, this derivative must be negative
which is possible only when � < 3/56. Above this threshold,
the greybody factor always decreases with ξ in the whole
allowed range of α. This phenomenon exists also in higher
dimensional spacetimes. For example, the threshold is � <

1/7 when D = 5 and � < 40/143 when D = 6. The fact
that the threshold is larger in higher dimensions implies the
effect of α gets stronger in higher dimensions.

Another interesting property of ξ is that it introduces an
effective mass for the scalar field, according to (3.1). Thus for
the dominant mode l = 0 with frequency ω = 0, the scalar
field cannot pass through the effective potential barrier, so it
leads to a vanishing greybody factor. This can be seen in Fig.
3.

4.3 Effect of � on the greybody factor

In the previous subsection, we see that the cosmological con-
stant plays a subtle role for greybody factor. We study its
effect on the greybody factor in detail in this subsection. From
Fig. 4, we see that for positive α, when ξ is small, � increases
the greybody factor. When ξ is large, � decreases the grey-
body factor. Similar behavior has been observed in higher
dimensions [23–26]. On the other hand, � can be under-
stood as an homogeneously distributed energy in the space-
time and boosts the particles to cross the effective potential
barrier. However, it also contributes to the effective mass
through (3.1) and so hinders the particles from crossing the
barrier. The first effect dominates when ξ is small and the

Fig. 4 Effect of � on the greybody factor. We fix l = 0, α = 0.3 here
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Fig. 5 The dependence of the effective temperatures of the black hole (2.4) on � (left, with fixed α = 0.3) and α (right, with fixed � = 0.1). The
extremal black hole satisfies α + � = 1 and α > −0.5

second effect dominates when ξ is large. When α is nega-
tive enough, we find that � increases the greybody factor in
almost the whole frequency region. The effects of � on the
effective mass is always weaker.

5 The power spectra of Hawking radiation

Once the greybody factor is worked out, the power spectra
for Hawking radiation can be obtained by definition [17,18]

d2E

dtdω
= 1

2π

∑
l

Nl |γωl |2ω
eω/T − 1

, (5.1)

where T is the temperature of the black hole and Nl =
(2l+d−3)(l+d−4)!

l!(d−3)! is the multiplicity of the states that have the
same l. As we have learned in the last section that the grey-
body factor of higher mode l is non-vanishing only when the
frequency is high enough. While the power spectral is sup-
pressed exponentially at high frequency according to (5.1).
Thus only the lower modes l contribute to the total power
spectra significantly. We take l ≤ 6 for the numerical calcu-
lations hereafter.

For black holes in dS spacetime, the temperature of the
system is subtle. One can define the temperature T0 =
κh
2π

on the event horizon and Tc = − κc
2π

on the cosmo-
logical horizon. T0 is different with Tc in general such
that the system is not in equilibrium. Inspired from the
black hole thermodynamics, various effective temperatures

were proposed [24,31,32], such as Teff- =
(

1
Tc

− 1
T0

)−1
,

Teff+ =
(

1
Tc

+ 1
T0

)−1
, TeffEIW = r4

h Tc+r4
c T0

(rh+rc)(r3
c −r3

h )
and TBH =

T0√
f (r0)

, TeffBH =
(

1
Tc

− 1
TBH

)−1
. Here r0 is position where

∂r f |r=r0 = 0. Around this position, the black hole attraction
balances the cosmological repulsion.

The dependence of these effective temperatures on � is
shown in the left panel of Fig. 5. We see that TBH increases
with �, while T0 and TeffEIW decrease with � monotonically.
TeffBH and Teff+ have a maximum. Teff- diverges at � =
0.265. The dependence of the effective temperatures on α is
shown in the right panel of Fig. 5. Very interestingly, we find
the three effective temperatures go to Tc when α = −0.5.
The reason is that the temperature of the event horizon of
the black hole TBH and the temperature defined on the event
horizon T0 approach to infinity for α = −0.5, that is to
say, the black hole is unlimited hot for this case which is
worthy of further study. Also, we see that TBH , T0, TeffEIW

and Teff+ decrease with α. It’s worth taking a moment to flag
the fact all the temperatures are continuous across α = 0
although the black hole for a positive and negative α seem
different. In addition, we find Teff- diverges at α = 0.443
and TeffBH diverges at α = 0.668. To get reasonable result
for the power spectra, we should abandon Teff- and TeffBH.
For both small � and large �, Teff+ tends to zero, which
will lead to vanishing power spectra according to (5.1). This
is unreasonable and thus we also abandon Teff+. It has been
shown in higher dimensions that only TBH leads to significant
radiation in the whole parameter space [26]. In this section,
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Fig. 6 The effects of α (left panel, solid lines for ξ = 0, dashed lines for ξ = 0.3) and ξ (right panel, with fixed α = 0.1) on the power spectra of
Hawking radiation

Fig. 7 Effect of � on the power spectra of Hawking radiation. Solid lines for ξ = 0.1, dashed lines for ξ = 0.6

we therefore take TBH to study the power spectra of Hawking
radiation.

5.1 Effects of α and ξ on the power spectra

The effects of α on the power spectra of Hawking radiation
are shown in the left panel of Fig. 6. For both minimally
and nonminimally coupled scalar field, the power spectra is
suppressed as α increases, which is contrast with its effect
on the greybody factor. In particular, we find that line of the

power spectra with α < 0 is above other lines with α ≥ 0. In
other words, the intensity of Hawking radiation is much high
with a negative α, although the greybody factor is lower. The
reason comes from that the temperature of the black hole is
very high when α becomes negative. In fact, the temperature
plays a more important role here. TBH decreases with α,
and the power spectra also decreases with α according to
(5.1). Note that for minimally coupled scalar field, the power
spectra at low frequency are non-vanishing due to the finite
greybody factor there. For nonminimally coupled scalar field,
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the power spectra at low frequency tends to zero. The peak of
the power spectra moves to lower frequency as α increases,
which is consistent with Fig. 4.2 where the greybody factor
moves to the left as α increases.

The effects of ξ on the power spectra are shown in the
right panel of Fig. 6. The power spectra are suppressed by ξ

in the whole frequency region. We have learned that in Sect.
4.2, the greybody factor can be enhanced at high frequency
when � < 3/56. However, (5.1) tells us that the power spec-
tra are exponentially suppressed in high frequency. Thus the
qualitative behavior that ξ suppresses the power spectra is
independent of α. Note that the peak of the power spectra
for nonminimally coupled scalar field moves to higher fre-
quency when ξ increases. This is consistent with Fig. 3 where
the greybody factor moves to the right as ξ increases.

5.2 Effect of � on the power spectra

The effect of � on the power spectra of the Hawking radia-
tion is more subtle. For positive α, as shown in the left panel
of Fig. 7, the cosmological constant � enhances the power
spectra in the whole frequency region when ξ is small. When
ξ is large, � enhances the power spectra only in the high fre-
quency region. In the low frequency region, it suppresses
the power spectra, as shown by the dashed lines in Fig. 7.
This behavior is consistent with Fig. 4, where the cosmolog-
ical constant enhances the greybody factor when ξ is small
and suppresses the greybody factor when ξ is large. How-
ever, when α is negative enough, the cosmological constant
enhances the power spectra in almost the whole frequency
region no matter how large ξ is, as shown in the right panel
of Fig. 7.

6 Summary

The four dimensional Einstein–Gauss–Bonnet black holes
found recently have some distinct properties compared to
their higher dimensional companions. For example, the
spherically symmetric neutral 4D black hole solutions in
asymptotically de Sitter spacetime can have three horizons,
while the solutions in higher dimensional spacetime have
only two horizons. On the other hand, we also found the
spacetime contains a black hole when the GB coupling con-
stant is negative. Furthermore, the EGB black hole in 4D
can be directly compared with the Schwarzschild black hole
which is the most common model used to describe a real
black hole in our universe. At this point, 4D EGB black hole
has a significant advantage over the GB black holes in higher
dimensions. One thus expect that the Hawking radiation may
also have distinct properties compared to the higher dimen-
sional case.

We studied the greybody factor of the Hawking radia-
tion firstly. The greybody factor is suppressed heavily by
the angular momentum number l of the scalar mode. The
Gauss–Bonnet coupling constant enhances the greybody
factor, while the nonminimally coupling constant ξ of the
scalar field decreases it. In particular, we found compared to
Schwarzschild-dS black hole (α = 0), the 4D EGB black
hole with a negative α has a larger greybody factor. When
the frequency of the mode tends to zero, the greybody fac-
tor vanishes for nonminimally coupled massless scalar field
while has a finite value for minimally couple massless scalar
field. The role of cosmological constant in greybody factor
depends on ξ . It enhances the greybody factor when ξ is
small, and decreases it when ξ is large. These behaviors are
similar to the higher dimensional cases qualitatively, and can
be understood intuitively from the viewpoint of the effective
potential.

We then studied the power spectra of the Hawking radia-
tion of the massless scalar field in the 4D GB-dS background.
We analysed various definitions of temperature in asymptot-
ically dS spacetime and adopted the most reasonable one to
calculate the power spectra of the Hawking radiation. We
found that both ξ and α suppress the power spectra. In par-
ticular, the power spectra with a negative α is over those with
α ≥ 0, which means the intensity of Hawking radiation with
α < 0 is higher than others with α ≥ 0, although the grey-
body factor is opposite. The cosmological constant enhances
the power spectra when ξ is small and suppresses it when ξ

is large. The power spectra vanish for nonminimally coupled
scalar field while have a finite value for minimally couples
scalar field.

The method used in this work can be developed to study
the amplitude of the superradiance of the charged black holes
in 4D Einstein–Gauss–Bonnet gravity. It is known that RN-
dS black holes are linearly unstable to spherical charged
scalar perturbations [42]. It can be expected that the charged
4D GB-(A)dS black holes have also superradiant instability.
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