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Abstract We report the first measurement of the absolute
branching fraction of the inclusive decay �+

c → K 0
S X . The

analysis is performed using an e+e− collision data sample
corresponding to an integrated luminosity of 567 pb−1 taken
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at
√
s = 4.6 GeV with the BESIII detector. Using eleven

Cabibbo-favored �̄−
c decay modes and the double-tag tech-

nique, this absolute branching fraction is measured to be
B(�+

c → K 0
S X) = (9.9±0.6±0.4)%, where the first uncer-

tainty is statistical and the second systematic. The relative
deviation between the branching fractions for the inclusive
decay and the observed exclusive decays is (18.7 ± 8.3)%,
which indicates that there may be some unobserved decay
modes with a neutron or excited baryons in the final state.

The lightest charmed baryon �+
c was first observed in e+e−

annihilation at the Mark II experiment [1]. Hadronic �+
c

decays offer an ideal platform to understand both strong
and weak interactions. Most branching fractions (BFs) of
�+

c decays were previously measured relative to the BF of
�+

c → pK−π+ [2]. In recent years, the BESIII experi-
ment reported a series of absolute measurements of exclu-
sive decays of the �+

c baryon [3–10]. The precision of BFs
for the known decay modes was significantly improved and
some new decay modes were observed. Using the statistical
isospin model [11], it is estimated that about 90% of the �+

c
decay modes are now known. Measurements of the BFs for
inclusive decays of the �+

c baryon are important to under-
stand its decay mechanisms and indicate the size and type
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of unmeasured decays by comparing with the BFs for the
corresponding exclusive decays.

The Cabibbo-favored (CF) decays of charmed mesons
have been well studied [2]. However, the information of the
CF decays of charmed baryons is relatively limited. The �+

c
CF decays are dominantly modes involving �, � and K̄ in
the final state. According to the statistical isospin model,
the total BF of the observed and extrapolated CF decays
of �+

c baryon is (83.2 ± 4.9)% [11]. Measurements of the
BF of the inclusive decays will help to characterize �+

c CF
decays. Recently, BESIII measured the absolute inclusive BF
B(�+

c → �X) = (38.2+2.8
−2.2 ± 0.9)% [12], which appears

to be larger than the total observed and extrapolated BFs for
exclusive � decays (31.7±1.4)% [11]. The total BF of exclu-
sive K̄ 0/K 0 decays of �+

c is estimated to be (22.4 ± 0.9)%
by the statistical isospin model [11], as listed in Table 1,
while the total observed BF for decays to K̄ 0/K 0 only sum
to (16.1 ± 0.8)%. Determining the absolute BF of inclusive
�+

c decays to K̄ 0/K 0 will help to quantify the missing decay
modes and test the predicted BFs of decay modes extrapo-
lated by the statistical isospin model.

In this paper, we measure the absolute BF of the inclusive
decay of the �+

c to K 0
S (�+

c → K 0
S X ) for the first time,

where X indicates all possible particle combinations. This
analysis uses 567 pb−1 of data [13] collected at the center-
of-mass energy

√
s = 4.6 GeV with the BESIII detector.

The measurement is performed using the double-tag (DT)
technique [14], since there is no additional hadrons accom-
panying �+

c �̄−
c pair produced at this energy. First, the �̄−

c
baryons are reconstructed with exclusive hadronic decay
modes which are called the single-tag (ST) modes. Then
the �+

c → K 0
S X mode is reconstructed in the �̄−

c recoil-
ing side, called the signal mode or the DT mode. The ST
�̄−

c baryons are reconstructed including the following eleven
hadronic decay modes: p̄K 0

S , p̄K+π−, p̄K 0
Sπ

0, p̄K 0
Sπ

+π−,
p̄K+π−π0, �̄π−, �̄π−π0, �̄π−π+π−, �̄0π−, �̄−π0, and
�̄−π+π−, with a total BF of (35.0±0.7)%. Throughout this
paper, charge-conjugate modes are implicitly assumed unless
explicitly stated.

The BESIII detector is described in detail in Ref. [15]. It
has an effective geometrical acceptance of 93% of 4π . The
cylindrical core of the BESIII detector consists of a small-
cell, helium-based (40% He, 60% C3H8) multi-layer drift
chamber (MDC), a plastic scintillator time-of-flight system
(TOF), a CsI(Tl) electromagnetic calorimeter (EMC), and a
muon system containing resistive plate chambers in the iron
return yoke of a 1 T superconducting solenoid. The momen-
tum resolution for charged tracks is 0.5% at a momentum
of 1 GeV/c. Charged particle identification (PID) is accom-
plished by combining the energy loss (dE/dx) measure-
ments in the MDC and flight times in the TOF. The photon
energy resolution at 1 GeV is 2.5% in the barrel and 5% in
the end caps.

Table 1 Observed and extrapolated BFs for exclusive K̄ 0/K 0 decays
of �+

c CF decays [2,11]. Here, observed BFs are referred from Particle
Data Group (PDG) [2] and extrapolated BFs are referred from Ref. [11].
BFs of the K̄ 0/K 0 decay modes are obtained by doubling those quoted
for K 0

S decay modes. The total uncertainty is obtained as the sum in
quadrature

Mode Value (%) Mode Value (%)

Observed BF Extrapolated BF

pK̄ 0 3.18±0.16 nK̄ 0π+π0 3.07±0.16

pK̄ 0π0 3.94±0.26 pK̄ 0π0π0 1.36±0.07

pK̄ 0π+π− 3.20±0.24 nK̄ 0π+π+π− 0.14±0.09

nK̄ 0π+ 3.64±0.50 pK̄ 0π+π−π0 0.22±0.14

pK̄ 0η 1.60±0.40 nK̄ 0π+π0π0 0.10±0.06

�K+ K̄ 0 0.57±0.11 pK̄ 0π0π0π0 0.03±0.02

(�K )+ K̄ 0 0.68±0.34

�0K 0π+ 0.62±0.06

Total 16.1 ± 0.8 Total 6.3 ± 0.4

Total 22.4±0.9

A Monte Carlo (MC) simulation based on GEANT4 [16]
includes the geometric description of the BESIII detector
and its response. We generate high-statistics MC samples
to study the background and estimate the detection efficien-
cies; initial-state radiation (ISR) [17] and final-state radia-
tion [18] are also included in the MC simulation. �+

c �̄−
c

pairs, D(∗)
(s) D̄

(∗)
(s) X production, ISR production of ψ states,

and continuum qq̄ processes are simulated with generic MC
samples generated using the KKMC generator [19,20]. The
known decay modes are simulated with EVTGEN [21,22]
using BFs taken from PDG [2], and the remaining unknown
decays are simulated with the LUNDCHARM model [23].

Charged tracks are detected in MDC. For prompt tracks,
the polar angle (θ ) is required to satisfy | cos θ | < 0.93,
and the point of closest approach to the interaction point
(IP) is required to be less than 10 cm in the beam direction
and less than 1 cm in the transverse plane. Secondary tracks
used to reconstruct K 0

S or �̄ candidates are subject to dif-
ferent IP requirements as detailed below. Particle identifica-
tion (PID) for charged tracks combining the measurements
of the energy loss dE/dx in the MDC and the flight time
information is employed to calculate a likelihood L(h) for
each hadron (h = p, K , or π ) hypothesis. Protons, kaons
and pions are identified by requiring that the likelihood for
the given hypothesis is larger than for both of the other two
hypotheses.

Photon candidates are reconstructed by clustering electro-
magnetic calorimeter (EMC) crystal energies. The deposited
energy is required to be greater than 25 MeV in the EMC
barrel region (| cos θ | < 0.80) and 50 MeV in the EMC end
cap region (0.86 < | cos θ | < 0.92). To eliminate showers
from charged particles, the angle between the photon and the

123



Eur. Phys. J. C (2020) 80 :935 Page 5 of 7 935

Table 2 Requirements on 	E ,
ST yields in data (N tag

i ), ST

(εtag
i ) and DT (εtag,sig

i )
efficiencies for the tag mode i .
Uncertainties on N are statistical
only, while uncertainties on
efficiencies are due to the MC
statistics. The quoted
efficiencies do not include any
BFs of subsequent decays

Mode 	E (MeV) N tag
i ε

tag
i (%) ε

tag,sig
i (%)

p̄K 0
S (−20, 19) 1222±37 55.3±0.2 26.6±0.4

p̄K+π− (−20, 15) 6024±85 49.2±0.1 24.9±0.2

p̄K 0
Sπ

0 (−30, 20) 498±29 18.9±0.1 8.7±0.2

p̄K 0
Sπ

+π− (−20, 20) 376±24 15.5±0.1 7.1±0.2

p̄K+π−π0 (−30, 20) 1544±57 16.1±0.1 7.8±0.1

�̄π− (−20, 20) 693±30 42.1±0.2 22.4±0.4

�̄π−π0 (−30, 20) 1362±47 14.1±0.1 6.9±0.1

�̄π−π+π− (−20, 20) 569±30 11.5±0.1 5.4±0.1

�̄0π− (−20, 20) 438±26 25.2±0.1 12.0±0.4

�̄−π0 (−50, 30) 291±32 23.0±0.2 12.1±0.4

�̄−π+π− (−30, 20) 1111±50 23.7±0.1 11.9±0.2

nearest charged track is required to be greater than 20◦. Tim-
ing requirements are used to suppress electronic noise and
energy deposits in the EMC unrelated to the event. π0 candi-
dates are reconstructed from photon pairs with an invariant
mass in the range 0.115 < Mγ γ < 0.150 GeV/c2. A mass-
constrained fit to the π0 nominal mass [2] is performed to
improve the momentum resolution.

K 0
S and �̄ candidates are reconstructed by combining pairs

of oppositely charged tracks (π+π− for K 0
S and p̄π+ for �̄)

satisfying | cos θ | < 0.93 for the polar angle. The distance to
the IP in the beam direction is required to be within 20 cm.
No distance constraints in the transverse plane are required.
Charged pions from these decays are not subjected to the PID
requirement, while proton PID is applied in order to improve
signal significance. The two charged tracks are constrained
to originate from a common decay vertex by requiring the χ2

of the vertex fit to be less than 100. Furthermore, the decay
vertex is required to be separated from the IP by a distance of
at least twice the uncertainty of the vertex fit. To select K 0

S ,
�̄, �̄0, and �̄−, the invariant mass of π+π−, p̄π+, p̄π+γ

and p̄π0 are required to be within (0.487, 0.511) GeV/c2,
(1.111, 1.121) GeV/c2, (1.179, 1.203) GeV/c2 and (1.176,
1.200) GeV/c2, respectively.

For the ST modes p̄K 0
Sπ

0, p̄K 0
Sπ

+π− and �̄−π+π−,
background events containing a �̄ are rejected by veto-
ing candidate events with M( p̄π+) in the interval (1.110,
1.120) GeV/c2. K 0

S backgrounds for the ST modes �̄π−π+π−,
�̄−π0 and �̄−π+π− are suppressed by requiring M(π+π−)

or M(π0π0) to be outside of (0.480, 0.520) GeV/c2. To
remove �̄− background in the ST mode p̄K 0

Sπ
0, candidates

within the range 1.170 < M( p̄π0) < 1.200 GeV/c2 are
excluded.

The quantities MBC =
√
E2

beam − | �p�̄−
c
|2 and 	E =

E�̄−
c

− Ebeam are used to identify ST �̄−
c candidates, where

Ebeam is the beam energy and E�̄−
c

and �p�̄−
c

are energy

and momentum of the �̄−
c candidate. To improve the sig-

nal purity, |	E | requirements corresponding to about three
times the resolutions are imposed on �̄−

c candidates; details
are given in Table 2. If there is more than one candidate per ST
mode, the one with minimum |	E | is chosen. The �̄−

c sig-
nals are clearly visible in the MBC distributions of the eleven
tag modes, as shown in Fig. 1. Peaking backgrounds are neg-
ligible according to MC studies [24]. Unbinned maximum
likelihood fits to MBC distributions are used to determine
the ST yields for each tag mode, where the signal shape
is described by the MC-simulated shape convolved with a
Gaussian function to better match the resolution found in
data, and the background shape is described by an ARGUS
function [25]. The resultant ST yields in the signal region
2.282 < MBC < 2.300 GeV/c2 and the corresponding detec-
tion efficiencies are listed in Table 2.

We select K 0
S candidates among the remaining tracks on

the recoiling side of the tagged �̄−
c . The selection criteria

of K 0
S are the same as those used in the ST �̄−

c selection.
If there is more than one K 0

S candidate, the one with the
minimum vertex fit χ2 is selected for further analysis. Fig-
ure 2a shows the distribution of MBC versus the invariant
mass of π+π− pairs, M(π+π−), of the accepted candidates
for all eleven tag modes. There is a clear �+

c → K 0
S X signal

in the intersection of the K 0
S and the ST �̄−

c signal bands.
A two-dimension (2D) fit to the distribution of MBC versus
M(π+π−) is performed to determine the signal yield, as
shown in Fig. 2. The signal function is the product of the �̄−

c
signal function and K 0

S signal function. There are three kinds
of background: the background peaking neither in the MBC

distribution nor in the M(π+π−) distribution is described by
the product of �̄−

c background function and K 0
S background

function; the background peaking around the �̄−
c mass in

the MBC distribution is described by the product of �̄−
c sig-

nal function and K 0
S background function; the background

peaking around the K 0
S mass in the M(π+π−) distribution

is described by the product of �̄−
c background function and

K 0
S signal function. The �̄−

c signal is described by the MC-
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Fig. 1 Fits to the distributions of MBC in data sample for different ST
�̄−

c modes, where the black dots with error bars are data, the blue lines
are the fit results, the dashed red lines are signal shapes, and the dashed
green lines are background shapes

(a) (b)

(c) (d)

Fig. 2 a, b Distributions and c and d projections of MBC versus
M(π+π−) of the DT candidate in a data and b the 2D fit result, where
the black dots with error bars are data, the blue solid curves are the
fit results, the red-dashed lines are signal function, the black-dashed
lines are background neither peaking in the M(π+π−) distribution nor
the MBC distribution, the green-dotted lines are background peaking
around the �̄−

c mass in the MBC distribution, and the cyan-dash-dotted
lines are background peaking around the K 0

S mass in the M(π+π−)

distribution

simulated shape convolved with a Gaussian function, while
background is ARGUS function. The K 0

S signal and back-
ground functions are described by a Gaussian function and a
first-order polynomial, respectively. The signal yield is fitted
to be 478 ± 27, where the uncertainty is statistical.

Table 3 Systematic uncertainties in the measurement of the BF of
�+

c → K 0
S X

Source Uncertainty (%)

ST related 1.2

K 0
S reconstruction 1.5

B(K 0
S → π+π−) 0.1

Signal yield 3.4

Total 3.9

The absolute BF Bsig = B(�+
c → K 0

S X) is determined
by

Bsig = N sig

B(K 0
S → π+π−) · ∑

i N
tag
i · ε

tag,sig
i /ε

tag
i

, (1)

where ε
tag,sig
i is the DT efficiency for the tag mode i , as listed

in Table 2. The absolute BF of �+
c → K 0

S X is calculated
to be B(�+

c → K 0
S X) = (9.9 ± 0.6)%, the uncertainty is

statistical only. The reliability of the analysis method used
in this work has been validated by analyzing the generic MC
sample.

Systematic uncertainties from the ST side mostly cancel in
the BF measurement with the DT method. Other systematic
uncertainties for measuring B(�+

c → K 0
S X) are described

below and summarized in Table 3.
We refer to the systematic uncertainty for

∑
N tag
i ·

ε
tag,sig
i /ε

tag
i as ST-related systematic uncertainty. The sys-

tematic uncertainty of the ST yields (N tag
i ) is studied by

altering the signal shape, fitting range, and end point of
the ARGUS function. The uncertainty due to limited MC
statistics is taken as the uncertainty of the ST and DT effi-
ciencies (εtag

i and ε
tag,sig
i ). The total relative ST-related sys-

tematic uncertainty is calculated to be 1.2%. The system-
atic uncertainty of the K 0

S reconstruction is determined to
be 1.5% by studying control samples of J/ψ → K ∗∓K±
and J/ψ → φK 0

S K
±π∓ and weighting over the momen-

tum of the K 0
S [26]. The systematic uncertainty for B(K 0

S →
π+π−) is 0.1% from PDG [2]. The systematic uncertainty
of the signal yield is estimated by altering the K 0

S signal
function, background function and the 2D fit range, The rel-
ative changes (3.4%) in the BF are taken as systematic uncer-
tainties. Assuming no correlations between sources, the total
systematic uncertainty is obtained as the sum in quadrature.

In summary, the absolute BF of the inclusive decay �+
c →

K 0
S X is measured for the first time by using an e+e− data

sample of 567 pb−1 taken at
√
s = 4.6 GeV with the BESIII

detector. The result isB(�+
c → K 0

S X) = (9.9±0.6±0.4)%,
where the first uncertainty is statistical and the second sys-
tematic. The BF of the inclusive decay �+

c → K̄ 0/K 0X is
(19.8 ± 1.2 ± 0.8 ± 1.0)% where the third uncertainty of
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±5% is included to account for possible differences between
B(�+

c → K 0
S X) and B(�+

c → K 0
L X) [27], which is consis-

tent with calculations with the statistical isospin model within
1.3σ . The relative BF deviation of (18.7±8.3)% between the
inclusive K̄ 0/K 0 decay and the observed exclusive decays of
�+

c , can be addressed by the extrapolated exclusive decays
of �+

c listed in Table 1. Experimentally, only one decay
mode involving a neutron in the final state was observed at
BESIII [9]. More decay modes involving neutrons or hyper-
ons in the final states can be experimentally pursued, espe-
cially decays with a large BF, e.g. �+

c → nK̄ 0π+π0 whose
BF is calculated to be (3.07±0.16)% by the statistical isospin
model. Recently, the BF of �+

c → �0K 0π+ was calcu-
lated to be (8.70 ± 1.70)% by the SU(3) flavor symmetry
model [28], while it is only (0.62 ± 0.06)% in the statistical
isospin model. Measuring the BF of �+

c → �0K 0π+ will
test these two models.
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