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Abstract We perform a lattice QCD calculation of the
hadronic light-by-light contribution to (g− 2)μ at the SU(3)
flavor-symmetric point mπ = mK � 420 MeV. The rep-
resentation used is based on coordinate-space perturbation
theory, with all QED elements of the relevant Feynman dia-
grams implemented in continuum, infinite Euclidean space.
As a consequence, the effect of using finite lattices to evaluate
the QCD four-point function of the electromagnetic current
is exponentially suppressed. Thanks to the SU(3)-flavor sym-
metry, only two topologies of diagrams contribute, the fully
connected and the leading disconnected. We show the equiv-
alence in the continuum limit of two methods of computing
the connected contribution, and introduce a sparse-grid tech-
nique for computing the disconnected contribution. Thanks
to our previous calculation of the pion transition form factor,
we are able to correct for the residual finite-size effects and
extend the tail of the integrand. We test our understanding of
finite-size effects by using gauge ensembles differing only by
their volume. After a continuum extrapolation based on four
lattice spacings, we obtain ahlbl

μ = (65.4±4.9±6.6)×10−11,
where the first error results from the uncertainties on the indi-
vidual gauge ensembles and the second is the systematic error
of the continuum extrapolation. Finally, we estimate how this
value will change as the light-quark masses are lowered to
their physical values.

1 Introduction

Electrons and muons carry a magnetic moment aligned with
their spin. The proportionality factor between the two axial
vectors is parameterized by the gyromagnetic ratio g. In
Dirac’s theory, g = 2, and for a lepton family � one char-
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acterizes the deviation of g from this reference value by
a� = (g − 2)�/2. Historically, the ability of quantum elec-
trodynamics (QED) to quantitatively predict this observable
played a crucial role in establishing quantum field theory as
the framework in which particle physics theories are formu-
lated.

Presently, the achieved experimental precision on the mea-
surement of the anomalous magnetic moment of the muon
[1], aμ, is 540 ppb. At this level of precision, such a measure-
ment tests not only QED, but also the effects of the weak and
the strong interaction of the Standard Model (SM) of particle
physics. Currently there exists a tension of about 3.7 standard
deviations between the SM prediction and the experimental
measurement. The status of this test of the SM is reviewed in
[2–5]. At the time of writing, the E989 experiment at Fermi-
lab is performing a new direct measurement of aμ [6], and a
further experiment using a different experimental technique
is planned at J-PARC [7]. The final goal of these experiments
is to reduce the uncertainty on aμ by a factor of four. A com-
mensurate reduction of the theory error is thus of paramount
importance.

The precision of the SM prediction for aμ is completely
dominated by hadronic uncertainties. The leading hadronic
contribution enters at second order in the fine-structure con-
stant α via the vacuum polarization and must be determined
at the few-permille level in order to match the upcoming
precision of the direct measurements of aμ. The most accu-
rate determination comes from the use of e+e− → hadrons
data via a dispersion relation, although lattice QCD calcula-
tions have made significant progress in computing this quan-
tity from first principles [5,8]. The hadronic light-by-light
(HLbL) scattering contribution ahlbl

μ , which is of third order
in α, currently contributes at a comparable level to the theory
uncertainty budget and is being addressed both by dispersive
and lattice methods; see [9–11] and references therein.
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Our approach for determining ahlbl
μ is based on coordinate-

space perturbation theory where the QED elements of the
Feynman diagrams yielding ahlbl

μ are precomputed in infinite
volume, and only the four-point amplitude of the electro-
magnetic current is actually computed on the lattice. Here we
compute the lattice contribution at a point in the space of light
quark masses corresponding to QCD with exact SU(3)-flavor
(denoted SU(3)f in the rest of this work) symmetry. Further-
more, the sum of the three light quark masses is approxi-
mately the same as in nature. These two conditions leads to a
degenerate mass of pions, kaons and the eta meson of about
420 MeV.

Our motivation for calculating ahlbl
μ at the SU(3)f -

symmetric point is twofold. First, the lattice calculation itself
is simplified in that only two out of five classes of Wick con-
tractions contribute, due to the vanishing trace of the quark
electric charge matrix. In addition, the overall lattice calcu-
lation is computationally far cheaper than for physical quark
masses, so that more tests of systematic errors can be per-
formed. Second, the interpretation of the results is simpli-
fied: the SU(3)f -symmetry reduces the number of unknown
parameters in model estimates based on the exchange of
the lightest mesons. In particular, the transition form fac-
tor (TFF) of the pion, which describes the coupling of the
neutral pion to two virtual photons, has been calculated [12]
on the lattice ensembles that we use. The TFF of the eta
meson coincides with the TFF of the pion up to a simple
overall charge factor. Of the pseudoscalar mesons, only the
TFF of the η′ remains independent and is largely unknown
at the SU(3)f -symmetric point, however experimental infor-
mation is available for the two-photon decay width (which
provides the coupling strength to two real photons) and some
experimental results are available for the singly as well as the
doubly-virtual form factor [13–15], although only for rela-
tively large virtualities above 1.5 GeV2.

The simplified connection to model estimates enables our
work to provide a valuable cross-check for the predictions of
hadronic models and dispersive methods; this work is thereby
complementary to lattice calculations directly aiming at ahlbl

μ

for physical quark masses [16]. At the same time, this study
allows us to learn about the size of various sources of system-
atic error, particularly the finite-size effects, and how well we
are able to correct for them semi-analytically.

The rest of this paper is organized as follows: we begin
by presenting our methodology in Sect. 2, including the
two methods we will investigate for computing the quark-
connected contribution to ahlbl

μ . Section 3 begins with a
description of the lattice ensembles used in this work, as well
as an example of the lowest-lying relevant meson spectrum
for one of our ensembles. We then discuss the lattice deter-
mination of the π0 and η transition form factors used for the
modelling and finite-size correction of our data. Section 4
discusses the various model predictions for the integrand at

the SU(3)f -symmetric point and confronts these with a selec-
tion of our lattice data. Results for the fully-connected class of
Wick contractions are presented in Sect. 5, and those for the
non-vanishing disconnected class in Sect. 6. In both cases, the
lattice results are compared to the prediction for the exchange
of pseudoscalar mesons at the integrand level. The main result
of this paper – ahlbl

μ at the SU(3)f -symmetric point, Eq. (31)
– is obtained in Sect. 7, which also contains a discussion of
how this result will change for physical values of the quark
masses. We summarize our findings and conclude in Sect. 8,
and various technical aspects of the calculation are described
in more detail in the appendices (A, B, C).

2 Methodology

One can compute the light-by-light scattering contribution to
the g − 2 of the muon in position space by performing the
integrals

ahlbl
μ = mμe6

3

×
∫

d4y
∫

d4x L̄[ρ,σ ];μνλ(x, y) i
̂ρ;μνλσ (x, y),

(1)

where L̄ is a QED kernel and i
̂ is a spatial moment of the
connected Euclidean four-point function in QCD,

i
̂ρ;μνλσ (x, y) = −
∫

d4z zρ 
̃μνσλ(x, y, z), (2)


̃μνσλ(x, y, z) ≡
〈
jμ(x) jν(y) jσ (z) jλ(0)

〉
QCD

, (3)

with jμ(x) the hadronic component of the electromagnetic
current

jμ(x) = 2

3
(uγμu)(x) − 1

3
(dγμd)(x) − 1

3
(sγμs)(x) . (4)

The QCD correlation function consists of all the vari-
ous ways one can contract four vector currents, as shown in
Fig. 1, all of which are “disconnected” except for the fully-
connected contribution. At the flavor-symmetric point, only
the upper two topologies contribute. Away from this point it
is expected, from large-Nc arguments as well as from numer-
ical evidence by the RBC/UKQCD collaboration [9], that the
remaining topologies are suppressed. The number of contrac-
tions for each topology is given in Table 1.

More information on the infinite-volume QED kernel
L̄(x, y) can be found in [17]. We make use of O(4) sym-
metry to simplify the integral further,

ahlbl
μ =

∫ ∞

0
d|y| f (|y|), (5)
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Fig. 1 Five Wick-contraction topologies that are necessary for the cal-
culation of ahlbl

μ as listed in Table 1. For each diagram, nontrivial per-
mutations of the four quark-photon vertices yield the number of con-

tractions listed in that table. The two diagrams in the first line are the
dominant ones and the other three vanish in the SU(3)f limit

Table 1 Number of contractions needed for each type of diagram in
Fig. 1

Conn 2 + 2 3 + 1 2 + 1 + 1 1 + 1 + 1 + 1

ml �= ms 6 3 8 6 1

ml = ms 6 3 0 0 0

where in the starting representation (1),

f (|y|) = mμe6

3
2π2|y|3

∫
d4x L̄[ρ,σ ];μνλ(x, y)

i
̂ρ;μνλσ (x, y). (6)

We will often display this integrand and always denote it by
f (|y|), even though in practice we employ modified repre-
sentations of ahlbl

μ . One type of modification concerns the

kernel L̄[ρ,σ ];μνλ(x, y). Various subtraction terms to the ker-
nel have been proposed to beneficially change the shape of
the integrand [18,19] without changing the resulting integral.
The importance of performing such subtractions cannot be
understated as the unsubtracted kernel is poorly suited for
practical lattice simulations due to being too peaked at short
distances.

Here we make extensive use of a new subtraction scheme
for the QED kernel [19],

L̄(�)
[ρ,σ ];μνλ

(x, y) = L̄[ρ,σ ];μνλ(x, y)

−∂(x)
μ (xαe

−�m2
μx

2/2)L̄[ρ,σ ];ανλ(0, y)

−∂(y)
ν (yαe

−�m2
μy

2/2)L̄[ρ,σ ];μαλ(x, 0),

(7)

where � is an arbitrary, tuneable, dimensionless free param-
eter. When � = 0 we have the L̄(2) kernel of [17] and as
� → ∞ we recover the unsubtracted L̄(0). The benefit of
such a choice of kernel is that we are able to tune the shape of
the integrand to reduce the long-distance effects while still
preserving the beneficial properties of short-distance subtrac-
tions. An investigation of this kernel with the infinite-volume
lepton loop is presented in Appendix B.

In this section we will write the formulae for obtaining
ahlbl
μ in terms of continuous integrals. The lattice, however,

is discrete so we can only approximate these integrals with
finite sums,1

∫
d4x≈a4

Nt/2−1∑
t/a=−Nt/2

Nz/2−1∑
z/a=−Nz/2

Ny/2−1∑
y/a=−Ny/2

Nx/2−1∑
x/a=−Nx/2

,

(8)

where a is the lattice spacing and Nμ = Lμ/a. In Eq. (2), we
set zρ = L/2 → 0 to accommodate the discontinuity when
it changes sign. The integral of f (|y|) with respect to |y| can
be performed with the trapezoid rule and in practice we will
average over equivalent values of f (|y|) to both increase sta-
tistical precision and reduce computational cost. Later on in
the analysis we will show results for the partially-integrated
value of aμ,

aμ(|y|max) =
∫ |y|max

0
d|y| f (|y|) (9)

1 If using open boundary conditions (as we mostly do in this work) some
care in truncating the temporal sum is required as to not incorporate
boundary effects.
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Fig. 2 Wick contractions for
the connected contribution.
Each diagram represents two
contractions with quark flow in
opposite directions

with the hope that we will see a plateau at large-enough
|y|max, indicating that our integral has saturated.

In the following three subsections we will discuss two
methods to compute the connected contribution: the first,
method 1, is a direct calculation of the three pairs of con-
nected Wick contractions; the second, method 2, uses rear-
rangements of the integrand expressed in terms of only one
pair of Wick contraction to make the calculation cheaper. We
will then give the methodology used for the calculation of the
disconnected contribution, which also uses some rearrange-
ments in the integrand.

2.1 Connected contribution (method 1)

The Wick contractions for the connected contribution are
shown in Fig. 2. With four local vector currents, the four-
point correlation function can be written as


̃conn
μνσλ(x, y, z)= 18

81
Z4
V

(

̃

(1)
μνσλ(x, y, z)+
̃

(2)
μνσλ(x, y, z)

+
̃
(3)
μνσλ(x, y, z)

)
, (10)

where ZV is the renormalization factor of the vector current2

and each term represents one diagram in Fig. 2, i.e. a pair
of Wick contractions. We will use the ZV values from [20]
without the O(a)-improvement terms proportional to quark
mass combinations. The value 18/81 is the necessary charge
factor for the degenerate light and strange quarks. Writing
the 
̃(1,2,3)s in terms of propagators yields


̃
(1)
μνσλ(x, y, z)

=−2Re
〈
Tr

[
S(0, x)γμS(x, y)γνS(y, z)γσ S(z, 0)γλ

]〉
U ,


̃
(2)
μνσλ(x, y, z)

=−2Re
〈
Tr

[
S(0, y)γνS(y, z)γσ S(z, x)γμS(x, 0)γλ

]〉
U ,


̃
(3)
μνσλ(x, y, z)

=−2Re
〈
Tr

[
S(0, y)γνS(y, x)γμS(x, z)γσ S(z, 0)γλ

]〉
U ,

(11)

2 Note that the fourth power in ZV in Eq. (10) comes from the use of
four local currents. A conserved current does not require such a factor.
This should thus be adapted correspondingly in some particular cases
where the effect of conserved currents is studied in this work.

where S(x, y) is the quark propagator with sink at x and
source at y and 〈· · · 〉U is the expectation value over gauge
configurations. The trace is over both Dirac and color indices.
In method 1, the six contractions are computed explic-
itly and we choose the direction y/a ∝ (1, 1, 1, 1).3 In
this method, we first compute the point-to-all propagator
S(·, 0) and the six sequential propagators using the fields
z[ργσ ]S(z, 0) as sources (the anti-symmetrization of the
indices ρ and σ is imposed by the symmetries of the QED ker-
nel). Then, for each value of |y| used to sample the integrand
in Eq. (5), we compute the point-to-all propagator S(·, y) and
the six sequential propagators using the fields z[ργσ ]S(z, y)
as sources. Therefore, for N evaluations of the integrand, we
need 7(N+1)propagator inversions. In our set-up all currents
are local except for the one at x , which will be either local or
the point-split, the latter implying a suitable modification of
Eq. (11).

In practice, since we are (mostly) using open-boundary
conditions in the time direction, the origin is located some-
where near the middle time-slice and randomly distributed in
the spatial volume. We also average over the 16 combinations
y/a = (±n,±n,±n,±n) to increase statistics.

2.2 Connected contribution (method 2)

The idea for method 2 is simple: we pick a reference diagram
that is easiest to compute and use a change of variables in the
integrals to relate the other diagrams to this reference. Here,
we pick the diagram that does not have a propagator from
the origin to y, or from z to x (the leftmost of Fig. 2). Such a
choice avoids the extra inversions required for the sequential
sources as we discussed in method 1. Simplistically, for two
samples of a single |y| (i.e. +y and −y) we only need two
point-to-all propagators. In fact, we can do much better than
this if we keep propagators in memory so that they can be
reused.

The diagrams 
̃(2) and 
̃(3) are related to 
̃(1) by apply-
ing symmetries to Eq. (11): Euclidean-space translations and
inversions, along with cyclicity of the trace [17,19]. This
leads to our master formula for method 2:

3 We use the notation (x ,y,z,t) where time is the last component
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aconn
μ = −18

81
Z4

V
mμe6

3
2π2

∫
d|y||y|3

∫
d4x

(
(L̄(�)

[ρ,σ ];μνλ
(x, y) + L̄(�)

[ρ,σ ];νμλ
(y, x)

−L̄(�)
[ρ,σ ];λνμ

(x, x − y))
∫

d4z zρ
̃
(1)
μνσλ(x, y, z)

+L̄(�)
[ρ,σ ];λνμ

(x, x − y)xρ

∫
d4z 
̃

(1)
μνσλ(x, y, z)

)
.

(12)

In infinite volume, the integral is equal to the result of method
1, but the integrand f (|y|) will generally be different. As a
result, the systematic effects in method 2 will be different
from method 1.

We invert point-source propagators along the line
(n, n, n, 3n+ tmin/a), and what we call |y| will be the differ-
ence between these points; here the integer n ranges from 0
to Ni/2. The closest source position in time (tmin) is chosen
to be suitably away from our (usually) open temporal bound-
ary, ideally mπ tmin > 4 and mπ (Lt − tmax) > 4. This line of
propagator sources was chosen as we typically have a large
anisotropy in the temporal direction, allowing us to achieve
sizeable values of |y|.

In our implementation, we keep all Ni/2 of the propa-
gators in memory and perform the integrals for every pos-
sible y and origin, so for N propagator inversions we have
N (N − 1) samples distributed among the different values of
non-zero |y|. To further boost statistics we will also aver-
age other directions that give the same |y|, e.g. y/a =
(±n,±n,±n, tmax/a − 3n).

2.3 Disconnected contribution

The disconnected contribution can be computed from the
two-point contraction


μν(x, y) = −Re
(
Tr[S(y, x)γμS(x, y)γν]

)
. (13)

An important point to note is that 
μν has a vacuum expec-
tation value (VeV) that must be subtracted to ensure that the
two “disconnected” quark loops are still connected by glu-
ons. To this end, we define


̂μν(x, y) = 
μν(x, y) − 〈
μν(x, y)〉U , (14)

and use this to compute the 2 + 2 quark-disconnected con-
tribution to ahlbl

μ ,

adisc
μ = −36

81
Z4

V
mμe6

3
2π2

∫
d|y||y|3

∫
d4x

〈
(L̄(�)

[ρ,σ ];μνλ
(x, y) + L̄(�)

[ρ,σ ];νμλ
(y, x))
̂μλ(x, 0)

Fig. 3 Illustration of the grid of propagators used in the toy example
given in the text. Filled circles indicate sites that lie on the lattice, gray
circles are ones accessible through periodicity and the dashed lines
indicate lines along our preferred directions (1, 1, 1, 3) and (2, 2, 2, 0)

×
∫

d4z zρ
̂σν(z, y)

+L̄(�)
[ρ,σ ];μνλ

(x, y)
̂μν(x, y)
∫

d4z zρ
̂σλ(z, 0)

〉
U

.

(15)

In our implementation we compute a grid of point-
source propagators from some tmin to tmax wrapping com-
pletely around the spatial directions alternating between
(2n, 2n, 2n, 6m+ tmin/a) and (2n+1, 2n+1, 2n+1, 6m+
3+tmin/a)wheren andm take values between 0 and Ni/2−1,
and 0 and (tmax − tmin)/(6a) respectively.

Giving a toy example; for a 43 × 12 periodic lattice
we would invert point-source propagators at (0, 0, 0, 0),

(2, 2, 2, 0), (1, 1, 1, 3), (3, 3, 3, 3), (0, 0, 0, 6), (2, 2, 2, 6),

(1, 1, 1, 9), and (3, 3, 3, 9). This is illustrated in Fig. 3. We
then compute the two-point contraction of Eq. (13) for each
of these sources and keep it in memory. We then perform a
doubly-nested loop over all of the source positions, where
we only integrate combinations of two-point contractions
where our y lies in a direction we like, e.g. along the direc-
tions (1, 1, 1, 3) and (2, 2, 2, 0). The results of the z and x
integrations are saved to disk, the VeV is subtracted, and
the final contraction of indices is performed offline in the
analysis.

The benefit of such a method over calculating each sep-
arate |y| individually is the quadratic growth of equivalent
combinations of |y| that are available as the number of source
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Table 2 Lattice ensembles with
SU(3)f -symmetry used in this
work. Each ensemble is
parametrized by the gauge
coupling parameter β, the quark
hopping parameter κ , the lattice
size, and the temporal boundary
condition. The lattice spacing a
was determined in Ref. [22]

Label β κ Size Bdy. cond. a (fm) mπ,K ,η (MeV) mπ L

U103 3.40 0.13675962 243 × 128 Open 0.08636(98)(40) 415(5) 4.4

H101 3.40 0.13675962 323 × 96 Open 0.08636(98)(40) 418(5) 5.9

B450 3.46 0.13689 323 × 64 Periodic 0.07634(92)(31) 417(5) 5.2

H200 3.55 0.137 323 × 96 Open 0.06426(74)(17) 421(5) 4.4

N202 3.55 0.137 483 × 128 Open 0.06426(74)(17) 412(5) 6.4

N300 3.70 0.137 483 × 128 Open 0.04981(56)(10) 421(5) 5.1

fields grows. For our 43 × 12 example we have 6 values of
equivalent |y| per source position. It would be impractical to
perform this calculation without exploiting this fact. We find
it is beneficial to truncate the x-integral in our set-up to avoid
negligible, noisy contributions at large distances. As our ker-
nels are computed on-the-fly this is also useful as a computer-
time saving measure as it reduces the number of QED kernel
calls. We truncate the integral over x to points that lie within a
maximum distance [(r/a)2 = 81, 81, 121, 169 for our coars-
est to finest ensembles respectively] from the origin or from
y, while we do not truncate the z-integral. Although these
truncations differ in physical volume, the ensembles H101
and H200 were tested for smaller and larger values of (r/a)2

on a subset of our data and even smaller values of (r/a)2 than
used here, for example 49 and 64 for the ensemble H101,
were found to be consistent.

To reiterate, in our full calculation we do not perform
the integrals for all possible y-vectors, as there are many
that we expect to have bad finite-volume or discretization
effects. For instance, in the toy example we could calculate
f (|y|) for the y-vector y/a = (0, 0, 0, 6), but this would
have significant cut-off effects. Typically, we filter-out about
≈ 80% of the possible y-vectors and keep only (the modulus
of) those parallel to (1, 1, 1, 3), (2, 2, 2, 0), and occasionally
(1, 1, 1, 1).

3 Lattice parameters and properties of
SU(3)f -symmetric QCD

Calculations have been performed on lattice ensembles pro-
vided by the Coordinated Lattice Simulations (CLS) ini-
tiative [21], which have been generated using three fla-
vors of non-perturbatively O(a)-improved Wilson-clover
fermions and with the tree-level O(a2)-improved Lüscher–
Weisz (Symanzik) gauge action. In particular, we consider
only those with SU(3)f -symmetry. On these ensembles, the
mass of the octet of light pseudoscalar mesons is approxi-
mately 420 MeV. These ensembles are summarized in Table 2
and in Fig. 4: there are four lattice spacings, as well as two
pairs of ensembles that differ only by their volume.

Fig. 4 Spatial extent L and lattice spacing a for the ensembles with
SU(3)f -symmetry used in this work

3.1 The SU(3)f meson spectrum

At long distances, the leading contributions to the four-point
correlator emanate from the lowest-lying mesons. Clearly,
the degenerate π0 and η-pole contributions dominate at the
longest distances. However, at intermediate distances the
contributions from heavier states, including resonances in
the two-pseudoscalar channel, may also play a significant
rôle. Especially since in our calculation at the SU(3)f -point
the pseudoscalar mesons are not appreciably light compared
to the other mesons. Therefore, we present results from a lim-
ited spectroscopic study of the low-lying meson spectrum in
all relevant channels with total angular momentum J ≤ 1.

Only charge-conjugation-even (C-even) mesons can cou-
ple to two electromagnetic currents and thus contribute in
exchange diagrams to the four-point function. However, from
the Wick-contraction structure, one can view method 2 as
using charged vector currents (see Appendix A) and it is
possible to couple a C-odd state to two of them. Therefore,
the integrand for method 2 can receive contributions from
C-odd mesons such as the rho [19]. For that reason, we also
inspect the spectrum of C-odd mesons, even if their contri-
butions to ahlbl

μ must vanish in the infinite-volume limit once
all integrals are performed.
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Fig. 5 The meson spectrum of ensemble H101. Effective masses are
shown for each channel in the flavor octet (left) and singlet (center)
sectors, along with bands indicating the plateau fits. Note that in many
cases (in particular the octet pseudoscalar and vector channels), the
error bar is smaller than the plotted symbol. Fitted masses are shown in

the right panel; the outer error bars include an estimate of systematic
uncertainty obtained by shifting the plateau fit range. Horizontal dashed
lines indicate thresholds at twice and three times the octet pseudoscalar
mass

Our dedicated spectroscopy calculation is performed on
the ensemble H101. This made use of the distillation frame-
work [23] (for the connected hadron two-point functions) and
its stochastic formulation [24], which was essential for effi-
ciently computing the disconnected hadron two-point func-
tions needed in the singlet sector. However, we have only
used smeared quark bilinears as interpolating operators, and
the lack of non-local multimeson-like interpolators means
that this calculation should not generally be considered as a
robust determination of the spectrum. This analysis precludes
the use of finite-volume quantization conditions; therefore,
only the approximate locations of resonances can be found,
provided that they are narrow. Nevertheless, since we com-
pute diagonal correlators, the effective masses taken at any
Euclidean time provide an upper bound on the ground-state
energy in a given channel. This observation is particularly
useful in the flavor-singlet 0++ channel, which turns out
to admit a stable ground-state meson. Such a stable scalar
meson has been found previously [25] in a lattice calculation
at a similar pion mass, though not at an SU(3)f -symmetric
point.

Results are shown in Fig. 5 and summarized in Table 3.
Note that since the signal in the flavor-singlet sector is much
worse, the plateau fits had to be done at relatively short time
separations, so that the shown uncertainty on the mass may
be an underestimate. In addition, the plateau for the flavor-
octet scalar is relatively poor, which might be due to its cou-
pling to two octet pseudoscalars in S-wave and the plateau’s
proximity to the corresponding threshold. In the case of a
mis-identified plateau, the true ground-state energy would

Table 3 Estimated meson masses in MeV from ensemble H101. The
first uncertainty is statistical and the second was determined by varying
the plateau fit range. The scale-setting uncertainty has not been included

J PC Octet Singlet

0−+ π 418(1)(0) η′ 865(32)(61)

0++ a0 856(27)(12) f0 678(20)(10)

1++ a1 1264(7)(9) f1 1427(32)(50)

1−− ρ 853(2)(1) ω 884(5)(3)

1+− b1 1329(9)(3) h1 1330(16)(30)

be lower, since the effective masses shown here are expected
to approach the ground-state energy from above.

For the flavor-octet sector, after the π0, the next-longest-
distance meson-exchange contributions in the integrand for
ahlbl
μ come from the a0 and (for the method 2 integrand)

the ρ, both of which sit near 2mπ . For the flavor-singlet
sector, the three corresponding mesons are also the lightest,
although the ordering is different, with the f0 (or σ ) being a
bound state with mass near 680 MeV and the η′ mass sitting
higher, somewhere near 2mπ . For the disconnected diagrams,
which receive the difference between contributions from the
exchanges of singlet and octet mesons (see Sect. 4.1), the
pseudoscalars will provide the longest-distance contribution
but we should also expect a significant contribution from
scalars. The difference between the octet and singlet vector
meson masses is very small; if the same holds for their form
factors, then their combined contribution to the integrand will
be negligible.
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Table 4 The VMD fit parameters of the π0 transition form factor

Label Fπ0γ γ (0, 0) (GeV−1) MV (MeV)

H101 0.237(5) 921(13)

B450 0.230(5) 942(25)

H200 0.219(6) 979(26)

N202 0.227(5) 952(15)

N300 0.214(5) 1001(23)

3.2 Pion-pole and η-pole contributions to ahlbl
μ

In Ref. [12] a model independent parametrization of the pion
TFF has been obtained on the same set of lattice ensembles
as used in this work. These results can be used to compute
the pion-pole contribution, ahlbl;π0

μ , at the SU(3)f -symmetric
point in the continuum limit. This result will be used in
Sect. 7.3 to obtain a rough estimate of ahlbl

μ at the physi-
cal pion mass. More importantly, in Sects. 5.1, 5.2, and 6, a
vector meson dominance (VMD) parametrization of the TFF
will be used to estimate the finite-size corrections to our lat-
tice data at the symmetric point. For this purpose, we have
performed a new fit to the data from [12] assuming a VMD
parametrization, where we have restricted the fit to the singly-
virtual case where the model provides a good description of
our data. The fit parameters used in this work are collected
in Table 4.

In [12], two strategies have been used to extract the pion
TFF, and the corresponding results for the pion-pole contri-
bution are displayed in Fig. 6 for two different discretizations
of the 3-point correlation function (see [12] for details). In the
first strategy, the TFF was computed on each lattice ensem-
ble separately. This allowed us to determine the pion-pole
contribution for different values of the pion mass and lattice
spacing. The physical value was then obtained by a combined
chiral-continuum extrapolation of ahlbl;π0

μ . We have repeated
this analysis but now restrict the fit to only the ensembles
included in this study. Here we use the pion mass of the
given ensemble (instead of the physical one as done in [12])
in the weight functions that appear in Eq. (74) of [12]. This
leads to the result (1) of Fig. 6.

In the second strategy, the pion TFF was directly extrap-
olated to the physical point using a global fit that includes
several ensembles including, and away from, the SU(3)f -
point. From the resulting fit parameters, we can extract the
pion TFF in the continuum limit at a pion mass of 420 MeV.
Using this result in Eq. (74) of [12], we obtain the grey point
of Fig. 6, which we find to be in very good agreement with
the first estimate.

The second strategy has the advantage of using an
expanded set of ensembles (15 in total) to determine the TFF,

ahlbl;π0

μ = 21.0(1.2) × 10−11 (SU(3)f point) (16)

Fig. 6 The pion-pole contribution to ahlbl
μ at the SU(3)f symmetric

point with a pion mass of 420 MeV. Blue and red points correspond to
two different discretizations of the 3-pt correlation function. The results
(1) and (2) are explained in the main text

at the SU(3)f -point which is to be compared to the physical-
pion value

ahlbl;π0

μ = 59.7(3.6) × 10−11 (physical point). (17)

Unsurprisingly, we observe a strong dependence on the pion
mass. The smaller pion contribution in Eq. (16) compared
with (17) is due roughly in equal parts to the heavier pion
mass and to the reduced coupling to photons, as can be seen
by comparing the entries in Table 4 to the physical value,
Fπ0γ γ (0, 0) ≈ 0.274 GeV−1.

At the SU(3)f -symmetric point, the η is mass-degenerate
with the pion, mη � 420 MeV, and contributes exactly 1/3
of the π0 exchange to ahlbl

μ , i.e.

ahlbl;η
μ = (7.0 ± 0.4) × 10−11 (SU(3)f -point). (18)

A lattice calculation at the physical point for this contribution
is not yet available, but the most recent estimate,4 which
comes from Canterbury approximants [5,27], isahlbl,η,phys

μ =
16.3 × 10−11. This comparison shows that at the physical
point the η gives a much larger contribution to ahlbl

μ than at
the SU(3)f -symmetric point, in spite of being heavier. This
can be traced back to its much larger coupling to two photons,

Fηγ γ (0, 0)[GeV−1] �
{

0.12 SU(3)f point,
0.27 physical point.

(19)

4 Hadronic models vs. the lattice integrand f (| y|)

In Sect. 4.1, we state the theoretical predictions for the inte-
grand f (|y|) corresponding to the quark-connected diagrams

4 An older estimate is ahlbl,η,phys
μ = 14.5×10−11 using the VMD model

[26].
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in method 1 and method 2, as well as for the disconnected dia-
gram. Then, in Sect. 4.2, we compare the lattice |y|-integrand
obtained by method 1 for the quark-connected contribution to
hadronic model predictions. For this purpose, we will focus
on the ensembles N202 and H200. N202 has the largest phys-
ical volume (L = 3.08 fm) of all ensembles considered in this
work, and H200 (with L = 2.06 fm) differs only by its com-
paratively smaller volume. Since these only differ by their
volume, they allow us to test our understanding of finite-
volume effects. Finally, a comparison of the theory predic-
tions for the integrand of the quark-disconnected contribu-
tions to the corresponding lattice data is made in Sect. 4.3.

4.1 Predictions for the integrand

In order to gain some insight into the various contributions
to the quantity ahlbl

μ , we will compare predictions for the
pseudoscalar exchanges as well as the contribution from a
constituent-quark loop, and a charged-pseudoscalar loop, to
the lattice data. Here, we provide some details as to how
these predictions are obtained. Expressions for the ampli-
tudes i
̂ρ;μνλσ calculated with a fermion loop, a charged-
pion loop, or with the pseudoscalar exchange can be found
in [17,28]. In QCD with exact SU(3)f -symmetry, the η con-
tribution to ahlbl

μ is always one third of the contribution of the
π0.

The flavor structure of single-meson exchanges in the dif-
ferent Wick-contraction topologies of four-point functions
was discussed in detail in Ref. [29], including the case of
Nf = 3 QCD. The quark-connected diagrams receive contri-
butions only from flavor-octet mesons, enhanced5 by a fac-
tor of three. This is compensated by the quark-disconnected
diagrams, which contain the differences between the flavor-
singlet and twice the flavor-octet meson contributions. In the
large-Nc limit, the singlet and octet contributions to the dis-
connected diagrams will cancel as their spectra becomes the
same. For QCD, this degeneracy is most strongly broken in
the pseudoscalar sector, where the octet’s mass is far below
the singlet’s.

To interpret the integrand in method 2, one needs a map-
ping of individual quark-level Wick contractions onto meson-
exchange diagrams [19] (see Appendix A for a derivation
based on partially quenched chiral perturbation theory). It
turns out that 
̃

(1)
μνσλ(x, y, z) does not contain the meson-

exchange diagram in which the π0 and η propagate between
the pair of vertices (0, y) and (x, z). Also, the normaliza-
tion of the two other (π0, η)-exchange diagrams is such that

̃conn

μνσλ contains the same (π0, η) contribution as 
̃μνσλ,
enhanced (in the present SU(3)f case) by the charge factor
three.

5 The enhancement of the π0-exchange contribution in quark-
connected diagrams was first pointed out in Refs. [30,31].

In addition, we need the mapping of individual quark-
level disconnected diagrams onto meson-exchange diagrams.
Here it turns out that there is a one-to-one mapping between
a given quark-level diagram and a meson-exchange diagram.
For instance, take a quark-level diagram, consisting of two
quark loops each containing two vectorial vertices; each
quark loop thus defines a pair of vertices. Such a diagram
is in one-to-one correspondence with the diagram in which
the meson is exchanged between the two pairs of vertices. For
octet mesons, the latter diagram has a weight of −2 relative
to its normalization in the full HLbL amplitude. For singlet
mesons, this relative weight factor is simply unity.

The short-distance contribution to ahlbl
μ is sometimes mod-

elled by a constituent-quark loop. This corresponds to an
effective degree of freedom, and the mass assigned to the
‘constituent quark’ is typically on the order of 300 MeV [32].
In the following sub-section, we will address the question
“to what extent does such a contribution describe the short-
distance part of the |y| integrand?”. In this case, the Wick
contractions and weight factors of the constituent quark sim-
ply correspond to those of the fundamental quark degrees of
freedom.

We have computed the charged pion and kaon loop contri-
butions in the framework of scalar QED [17,19]. The contri-
bution of these loops to the set of quark-connected contrac-
tions and their contribution to the set of quark-disconnected
contractions add up coherently, the latter being twice as large
as the former. This result can again be derived in partially-
quenched perturbation theory. While the (π0, η) exchange
contribution to the full ahlbl

μ is three times smaller than its
contribution to aconn

μ , the charged-pseudoscalar loop contri-
bution is three times larger. The charged-pseudoscalar loop’s
contribution might seem negligible in comparison to the inte-
grand of the quark-connected, but it need not be negligible
in the full integrand.

4.2 Lattice connected contribution

Figure 7 displays the integrand obtained with method 1 and
� = 0.16. It is compared to the integrand for the exchange of
the (π0, η) mesons with a VMD TFF and using the param-
eters of Table 4. Beyond 1.5 fm, the prediction is consis-
tent with the lattice data, albeit within large relative errors.
Between 0.8 fm and 1.4 fm, the lattice data lie noticeably
below the pseudoscalar-octet exchange prediction.

At distances up to 0.8 fm, one would certainly not expect
the pseudoscalar-octet exchange to saturate the integrand.
We have attempted to model the higher-energy contributions
using a constituent-quark loop, displayed in Fig. 7. For a
constituent-quark mass of 350 MeV, the sum of this contri-
bution and the pseudoscalar-octet exchange provides a good
description of the maximum height of the integrand. At dis-
tances |y| � 0.4 fm, one must expect large cutoff effects on
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Fig. 7 Integrand for the connected contribution on ensemble N202
using method 1 with � = 0.16. The lattice data use a point-split current
at x . The integrand is compared to the prediction for the exchange of the
π0 and η mesons with a VMD transition form factor, which is expected
to provide a good approximation to the tail. In addition, an attempt to
describe the short-distance contribution with a constituent-quark loop
with a quark mass of 350 MeV is made

the lattice integrand, as the separation of sources becomes
comparable to our lattice spacing. This interpretation is con-
firmed by comparing the integrand to the one obtained using
exclusively the local current, as in the left panel of Fig. 8,
where a sizeable difference is visible up to about 0.4 fm. An
interesting observation is that upon adding the constituent-
quark loop to the pseudoscalar-octet exchange the result does
not improve the agreement with the lattice data in the region
0.8 fm < |y| < 1.4 fm. A clear excess remains in the predic-
tion; we currently do not have a compelling explanation for
this excess. The exchange of the lightest scalar-octet mesons
(a0 type) would have the right sign to explain the effect, since
scalar-meson exchanges are known to contribute negatively

to ahlbl
μ . In the future, a calculation of the scalar contribu-

tion along the lines of [33] would be worthwhile to find out
whether it accounts for this missing effect. The charged-pion
loop is also expected to contribute negatively and we have
studied this contribution in the scalar-QED framework in
[19]. We found the integrand to be negligible compared with
the π0 contribution beyond |y| = 0.6 fm, and introducing
a vector form factor for the charged pion would likely only
reduce the integrand further. It thus remains an open prob-
lem to understand the physics underlying the integrand for
|y| around 1 fm.

The effect of the finite volume on the lattice integrand is
illustrated in Fig. 9. A clear effect is seen between the com-
paratively ‘small’ ensemble H200 and the ‘large’ N202, the
former integrand lying below the latter. This finite-volume
dependence matches in sign and typical size the volume
dependence of the pseudoscalar-octet exchange contribution,
as seen in the figure.

4.3 Lattice disconnected contribution

Figure 12 (later in the text) displays the disconnected inte-
grand for several gauge ensembles. It is compared to the
prediction of the (π0, η) exchange, including its appropriate
weight factor of −2 for the disconnected contribution, both
in finite and infinite volume. The finite-volume effect pre-
dicted from the (π0, η) exchange calculation is very small,
and the lattice data from ensembles N202 and H200 confirms
this expectation, at least at distances |y| < 0.9 fm, where the
statistical errors allow for a meaningful comparison.

The main difference between the disconnected and the
connected contributions is that for the disconnected the
(π0, η) exchange already provides a decent description of
the lattice data for |y| below 1 fm; in other words, we do not

Fig. 8 Results for the ensemble N202 using method 1 with � = 0.16. Black points use a local current at the site x in Eq. (6) (which is our default
approach) and blue points use a conserved current at x . Left: integrand f (|y|) as a function of |y|. Right: integrated value of aconn

μ as a function of
|y|max
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Fig. 9 Study of FSEs for method 1. Left: integrand for the ensembles H200 and N202 with mπ L = 4.4 and 6.4 respectively. Right: value of aconn
μ

for the ensemble N202 using the FSE correction prescription described in the text, as a function of |y|cut

observe a large short-distance contribution. The η′ and the
σ mesons being singlets, they contribute to the disconnected
diagrams with the same weight factor as they would to the
full HLbL amplitude [29,31]. In order to estimate the typical
size of these heavy-meson contributions, we have computed
the η′ contribution under the following assumptions: the η′
mass was set to 982 MeV, a value close to the result of our
calculation on ensemble H101. Its coupling to two photons,
Fη′γ γ , was assumed to be equal to its value at physical quark
masses. The virtuality dependence of the transition form fac-
tor can be modelled with a VMD ansatz, with vector mass
952 MeV. Under these assumptions, the contribution is pos-
itive and sizeable (compared to the (π0, η) exchange) up to
|y| = 1.5 fm. In addition, we expect a significant contribu-
tion from the stable σ meson, whose mass we have found
to lie well below the ππ threshold. As a scalar, the σ would
contribute negatively and thus compensate to some extent the
η′ contribution. Again, a dedicated calculation in the frame-
work of [33] would certainly be worthwhile. The estimate
for the η′ contribution displayed in Fig. 12 is only meant to
be representative of one particular meson-exchange contri-
bution, with other cancellations being expected.

5 Results for the quark-connected contribution

5.1 Results from method 1

The lattice results for the quark-connected contribution to
ahlbl
μ using method 1 have been generated along the direction
y/a ∝ (1, 1, 1, 1). We have used two different discretiza-
tions of the four-point correlation function: the vector current
located at the site x is either local or point-split (conserved),
while the three other currents are always local. Our results
are summarized in Table 5 and the integrand for the ensem-

Table 5 Results for the connected contribution using method 1 with
four local vector currents using the decomposition given by Eq. (20). A
25% systematic to the total correction is used

Label |y|cut (fm) adata
μ aFSE

μ atail
μ aconn

μ

U103 1.55 69.0(2.2) 31.0 4.3 104.3(2.2)(8.8)

H101 1.73 71.6(2.9) 13.1 3.8 88.5(2.9)(4.2)

B450 1.68 72.9(3.8) 18.3 4.0 95.2(3.8)(5.6)

H200 1.54 71.1(2.8) 27.3 6.1 104.4(2.8)(8.4)

N202 1.93 85.5(4.5) 9.0 1.7 96.3(4.5)(2.7)

N300 1.59 79.2(4.2) 15.6 4.1 99.0(4.2)(4.9)

ble N202 (also presented in Sect. 4.2, Fig. 7) is shown on
Fig. 8. The signal-to-noise ratio clearly deteriorates rapidly
at large distances and we observe slightly better statistical
precision when using a conserved vector current at x . Both
discretizations give similar results, suggesting that there are
small discretization effects present. In the end we will quote
a final result with the fully-local discretization for a direct
comparison with the results obtained using method 2.

Although all the ensembles used in this work satisfy
mπ L > 4, we still expect significant finite size effects (FSEs)
due to the pseudoscalar-pole contribution, which is the dom-
inant contribution in model estimates of hadronic light-by-
light scattering [34], being a long-range phenomenon. Even
with heavy pions mπ ≈ 400 MeV, the tail extends beyond
|y| = 2.5 fm [17]. A comparison of the integrand for the
ensembles H200 and N202, which only differ by their phys-
ical volumes, is depicted on the left panel of Fig. 9. Assum-
ing a VMD model for the TFF, the pseudoscalar contribution
can be computed in both finite and infinite volume. For more
information on the calculation of the TFF we refer the reader
back to Sect. 3.2; the parameters we use for modelling our
data are summarized in Table 4 in that section.
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To obtain our final estimate, the lattice data are inte-
grated up to |y|cut where the integrand is compatible with
zero. For |y| > |y|cut, the tail is approximated by the
pseudoscalar-pole contribution in infinite volume. Finally,
for |y| < |y|cut, the FSEs are estimated as the difference
between the pseudoscalar-pole’s contribution computed in
finite and infinite volume:

aconn
μ = adata

μ + atail
μ + aFSE

μ . (20)

A systematic error of 25% is attributed to both the tail exten-
sion and the FSE correction. Since the same VMD model is
used in both cases, we treat these corrections as being fully
correlated.

The value of aconn
μ as a function of |y|cut is shown in the

right panel of Fig. 9; we observe a nice plateau for values
|y|cut > 1.2 fm, suggesting that our systematic error estimate
is quite conservative. Estimates of the finite-size corrections
for each ensemble are summarized in Table 5 with their cor-
responding values of |y|cut. In particular, we note that the
systematic error on the FSEs is always larger than the statis-
tical precision, except for our largest ensemble N202.

For the ensembles U103 and H200, withmπ L < 5, we see
very large FSE corrections, of the order of 50%. After these
corrections the values of aconn

μ do become compatible with
the results atmπ L > 5 within about 1.5 σ . We also observe a
systematic over-estimate in comparison to the larger-volume
results, and when it comes to our final continuum extrapola-
tion we will omit these results.

O(a)-improvement is not implemented for the vector cur-
rents used in this work, but our experience with other observ-
ables involving electromagnetic currents, such as the LO
HVP [35] and the pion TFF [12], suggests the remaining
O(a) terms are small compared to the quadratic contribution.
A linear fit in a2 leads to aconn,M1

μ = 104.1(6.9)×10−11 with
χ2/d.o.f. = 0.4. To estimate the systematic error associated
with this continuum extrapolation, we perform a constant fit
which excludes the coarsest lattice spacing and obtain the
slightly smaller value aconn,M1

μ = 96.7(4.7) × 10−11 with
χ2/d.o.f. = 0.3. Finally, we also tried a linear fit in the lat-
tice spacing which leads to aconn,M1

μ = 113.8(10.5)×10−11.
The results of all these fits are shown in Fig. 10.

We quote our continuum-extrapolated value for the quark-
connected contribution to ahlbl

μ using method 1 at the SU(3)f -
symmetric point as

aconn,M1
μ = 104.1(6.9)(3.7) × 10−11, (21)

where the first error includes both the statistical error and the
systematic from the finite-size correction. The second error is
an estimate of the continuum-limit extrapolation systematic
error, taken as half the difference between the linear in a2

and constant fit ansätze.

Fig. 10 Continuum extrapolation of the connected contribution using
Method 1. We perform a linear fit in a2 (red), a linear fit in a (green) or
a constant fit (blue). The coarsest lattice spacing is excluded from the
constant fit. Ensembles in grey have mπ L < 5 and are not included in
the fits and they have been shifted for clarity

5.2 Results from method 2

In our measurement of the quark-connected contribution to
ahlbl
μ using Method 2 we focus on � = 0.4; this value was

already indicated as being beneficial for the lepton loop as
discussed in Appendix B. We performed measurements on
all ensembles with � = 0.0, 0.4, 0.8, and 1.0 and found that
� = 0.0 approached plateau too slowly and � = 1.0 had a
significant peak in the integrand at short distances but a more-
pronounced negative-valued tail. It appears that � = 0.4 is
a near-optimal choice for our calculation.

Although not presented here, we also performed the con-
tractions with conserved currents at x and/or z. We found
that putting a conserved current at z yields a result roughly
comparable (point-by-point) to the determination with just
4 local currents. Having a conserved current at x appears
to introduce large, unwanted discretization effects. From a
computational standpoint the calculation with four local cur-
rents is simpler and has no apparent downside, so that is what
we will present from here on.

The left plot of Fig. 11 illustrates the finite-size effect
between ensembles N202 and H200, and the discrepancy
between these ensembles that differ only by volume is signifi-
cant. The pion-pole prediction describes the tails of both data-
sets reasonably well at large-enough values of |y|, although
it completely under-estimates the position and height of the
short-distance peak of the integrand. It is also worth noting
how less statistically precise the result of H200 is compared to
N202 for a comparable number of measurements; this gives
some indication that the statistical precision is linked to either
mπ L or the physical volume. It is clear that much like for
method 1 there is a significant signal-to-noise problem for
large values of |y|.
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Fig. 11 Study of FSEs for method 2. Left: integrand for the ensembles H200 and N202 with mπ L = 4.4 and 6.4 respectively. Right: value of
aconn
μ for the ensemble N202 using the FSE correction prescription described in the text, as a function of |y|cut

Table 6 Results for the connected contribution using method 2. Here
adata
μ corresponds to the value using lattice data up to some linearly-

interpolated value of y = |y|cut , chosen to minimize the total error of
aconn
μ . Again, a 25% systematic to the total correction is used. In the last

column we give the infinite-volume result

Label |y|cut (fm) adata
μ aFSE

μ atail
μ aconn

μ

U103 1.85 58.9(1.8) 14.3 13.3 86.5(1.8)(6.9)

H101 2.55 75.7(2.9) 6.9 2.6 85.2(2.9)(2.4)

B450 2.00 73.6(3.3) 7.6 9.4 90.3(3.3)(4.3)

H200 1.75 68.6(1.8) 13.7 13.6 95.8(1.8)(6.8)

N202 2.60 91.0(2.5) 3.8 1.9 96.7(2.5)(1.5)

N300 2.10 79.0(1.8) 7.1 6.2 92.3(1.8)(3.4)

We perform the same finite-size correction procedure for
method 2 as we did for method 1 above. On the right of
Fig. 11 we show the stability of performing the FSE correc-
tion with varied |y|cut matching point on ensemble N202.
We find excellent stability for many different values of |y|cut

and the matching point of 2.6 fm was chosen in an attempt
to minimize the total error.

If we consider the results of Table 6 we see good agree-
ment after finite-size correction between ensembles that only
differ by volume (compare U103 with H101, and H200 with
N202), which suggests that our finite-size correction proce-
dure is sensible. Unlike for method 1 we see no reason to
exclude these smaller volumes from our final extrapolation.
An unusual result in our determination in method 2 comes
from the ensemble N300, which lies below the trend of all
our other data points. Since it is the finest ensemble, we have
no reason to exclude it, even though this point will reduce
the quality of our final extrapolations.

We hold off on presenting the continuum-limit extrapola-
tion here as we will employ a combined extrapolation after

the next section (see Sect. 7.1, Fig. 14). However, we will
quote the result of the connected continuum extrapolation,

aconn,M2
μ = 98.9(2.5) × 10−11. (22)

The quoted error is a combination of the statistical and 100%-
correlated finite-size systematic. We observe that within error
this value is in complete agreement with the determination
of method 1.

5.3 Comparison of the two methods

The appeal of method 2 for computing the connected con-
tribution is mostly practical: it is computationally far less
expensive than method 1. The saving between the two is
roughly an order of magnitude, see Table 7 for a exemplary
comparison of computational cost for one particular ensem-
ble, N202. This is because method 2 effectively replaces
sequential propagator solves by additional, much cheaper,
QED kernel evaluations. The downside of using these addi-
tional kernels is that their combination tends to broaden the
integrand f (|y|). This behavior was seen in the lepton loop
study of Appendix B and is also clearly the case with all the
lattice QCD data in this work. We can use the parameter � of
Eq. (7) to partially ameliorate this broadening; the use of such

Table 7 Resources used for the calculations on ensemble N202. NConf
gives the number of gauge configurations used, NSrc the number of
source positions per gauge configuration, and NProp the total number of
propagator solves

Calculation NConf NSrc NProp

Method 1 800 48 280,800

Method 2 901 25 22,525

Disconnected 225 480 108,000
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a subtraction kernel appears to be very important specifically
for method 2, as this regulator offers little to no advantage
for method 1.

If we compare the results for the integrand of H200 and
N202 using method 1 with those of method 2 (Figs. 8, 11
respectively) we see that the integrand for method 2 is in
general less-peaked at short distances and extends further
in |y|. For example, the integrand for N202 using method
1 is effectively zero around 2 fm, whereas for method 2 it
becomes zero closer to 3 fm. This behavior is reflected in
Tables 5 and 6 by larger choices of |y|cut for method 2 com-
pared to method 1.

Again comparing Tables 5 and 6, we see that for both
methods the smaller boxes (those with mπ L < 5) require a
significant finite volume correction. As the data for method
2 uses the direction (1, 1, 1, 3) we approach the boundary of
the lattice (L/2) slowly for increasing |y|, and so the finite
volume effect is smaller in comparison to the direction used
in method 1. We do, however, see somewhat larger discretiza-
tion effects for method 2 compared to those found in method
1, perhaps O(15%) opposed to O(10%) at our coarsest lat-
tice spacing respectively. It is quite possible this is due to
the �-regulator enhancing the integrand at shorter distances.
Nevertheless, this is not a significant problem as we have
several fine lattice spacings to help determine the continuum
limit.

If we were to use � = 0.0 with method 2 the tail would
extend even further into the region where finite-volume
effects become significant. This is likely still controllable
for the symmetric-point ensembles used here as they have
large volumes and mπ L , but this would become much more
problematic for lighter-pion-mass ensembles where the sig-
nal is expected to degrade quickly at large distances and the
integrand is expected to be even broader.

In the following sections, when we combine the results
for the connected and disconnected contributions, we will
use the results from method 2 as our connected contribution.
This is because they are statistically more precise while still
being consistent with those of method 1.

6 Results for the quark-disconnected contribution

Table 8 lists the ensembles and statistics used for the compu-
tation of the quark-disconnected contribution. As the smaller
ensembles (U103, H101, B450, H200) were considerably
cheaper to perform inversions on, their statistics is greatly
enhanced. As the lattice volume increases, the cost of propa-
gator inversions increases with some power V n , with n > 1,
and this quickly becomes the dominant cost of the computa-
tion. The column NSrc indicates the number of point-source
propagators inverted per gauge configuration to build the grid
and the final column indicates the maximum and minimum

Table 8 The setup used for each ensemble in the computation of the
quark-disconnected contribution. NSrc gives the number of propagator
inversions per configuration, NConf gives the number of gauge config-
urations used and NEquiv gives the maximum and minimum number
of equivalent values of |y| averaged per configuration. Shorter sepa-
rations have larger numbers of self-averages, whereas larger values of
|y| have smaller NEquiv. The ensemble B450 has a periodic temporal
boundary and temporal length of 2× that of the the spatial, so values
of y/a = n(2, 2, 2, 4) could be used, as well as the full periodicity in
time

Label (tmin, tmax)/a NSrc NConf NEquiv(max,min)

U103 (20, 107) 360 1030 (2112,432)

H101 (24, 72) 272 1008 (1568,128)

B450∗ (0, 64) 128 1611 (512,128)

H200 (24, 72) 272 500 (1568,128)

N202 (36, 93) 480 225 (2784,672)

N300 (27, 99) 600 271 (3504,1152)

number of equivalent values of |y| available from the set-
up. For the ensembles with open boundary conditions, the
number of self-averages, NEquiv, for a given |y| decreases as
|y|/a increases. Therefore open temporal boundaries make
this calculation much more difficult as the signal degrades
rapidly with large |y|/a.

The ensemble B450 has lattice volume 323 ×64 and peri-
odic boundary condition in time, so a fully-periodic grid built
of the two basis vectors (4, 4, 4, 0) and (2, 2, 2, 4) was used.
All of the other determinations had multiples of (1, 1, 1, 3)

and (2, 2, 2, 0) |y| directions, so it is possible that B450 might
have noticeably different discretization and finite-volume
effects as this direction lies in a different lattice irreducible
representation of the broken rotation group O(4). However,
as we see in Figs. 12 and 13 the short-distance contribution
to the integral is small, and so we can assume the same is true
of the discretization effects. As we appropriately correct for
FSEs with this choice of direction, we do not expect a sig-
nificant discrepancy compared to the open-boundary data.
Upon continuum extrapolation (Fig. 14) it does seem that
this ensemble is consistent with the others, indicating that
rotation-breaking artifacts are not the main source of dis-
cretization effects.

The integrand for the disconnected contribution is dis-
played in Fig. 12 for the value � = 0.4; much like for method
2 we find this value to be preferable. The integrand is com-
pared to the prediction for the exchange of the π0 and η

mesons with a VMD TFF. In addition, the same prediction
including an estimate of the η′ contribution, based on the
assumptions in Sect. 4.3, is indicated.

We do not see any statistically significant finite-volume
effects in the integrands between the ensembles U103 and
H101, and H200 and N202, for |y| < 1 fm. This observation
is consistent with the predictions for the (π0, η) exchange in
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Fig. 12 Integrand for the disconnected contribution on ensembles
H101 and U103 (left), as well as N202 and H200 (right). The lattice
data are shown as black points. The black dashed line shows the fully-

connected model prediction, the blue line the π0 + η contribution for
the disconnected and the magenta line gives the π0 + η + η′. The blue
points show the π0 + η contribution in finite volume

Fig. 13 Value of adisc
μ as a function of |y|cut for ensembles H101 (left) and N202 (right)

finite volume. The central values of the integrand obtained on
ensembles with different volumes differ substantially at some
larger values of |y|, however this is also in the regime where
the signal is rapidly deteriorating, if not lost already. There
is a trend in the tail for the larger-volume results to enhance
the magnitude of the disconnected contribution, much like
what we saw in the connected contribution. We see some
enhancement of the integrand compared to the π0 + η + η′
prediction at short distances; the likely cause of this is the
contribution from scalar mesons.

Clearly, the π0 and η exchanges already provide a rather
good description of the shape of the integrand, unlike in the
case of the connected contribution (e.g. Figs. 8, 11). At the
same time, the loss of the signal beyond 1.2 fm means that
we cannot, at this point, confirm the validity of the (π0, η)

exchange at long distances. Given the rapid degradation in
signal of the disconnected data, probing large distances of the
disconnected contribution will be a very challenging under-

taking. There are however good reasons to believe that this
description should apply in that regime, and in the following
we assume this to be the case.

Table 9 summarizes our results. We perform the FSE
matching at a single linearly-interpolated point of |y|cut =
1.2 fm. This point appears to be where we start losing signal
for most of our ensembles, and so a significant proportion of
the tail of the integrand has to be modelled. We take solace in
the fact that the model appears to describe our data well even
at distances far shorter than 1.2 fm, as can be seen in Figs. 12
and 13. By far the largest part of the correction comes from
modelling the tail with the (π0, η) exchange. This correction
is of the order of 100% of the lattice-determined contribu-
tion. We have also computed an estimate of the η′ exchange
contribution as described in section 4.3. The values in Table 9
show that its contribution to the tail, |y| > 1.2 fm, is much
smaller. Its magnitude is covered by the systematic uncer-
tainty we assign to the modelling of the tail. We have chosen
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Fig. 14 Combined continuum-extrapolation analysis for the connected
and disconnected data. The fits were constrained to have the same slope
and the final sum of the two was performed on the constant fit parame-
ters. Also shown is the individual sum of the connected and disconnected
pieces. The purple cross represents the addition of the continuum-
extrapolated results for the connected and disconnected contributions

Table 9 Finite-volume corrected disconnected contributions to ahlbl
μ at

the SU(3)f -symmetric point. A breakdown of the FSE contributions to
the total results are shown, again a 25% systematic to the total finite-size
correction is used. The value of |y|cut was 1.2 fm for each ensemble

Label adata
μ aFSE

μ atail;π0+η
μ atail;η′

μ adisc
μ

U103 −17.7(1.9) −2.4 −30.0 4.11 −45.9(1.9)(7.1)

H101 −23.4(2.3) −0.6 −30.0 4.11 −49.8(2.3)(6.6)

B450 −26.7(3.4) −0.9 −28.4 4.11 −51.8(3.4)(6.3)

H200 −12.6(3.7) −2.2 −28.2 4.14 −38.9(3.7)(6.6)

N202 −21.0(6.0) −0.2 −28.2 4.14 −45.3(6.0)(6.1)

N300 −20.6(5.4) −0.7 −24.7 4.01 −42.0(5.4)(5.4)

to include the estimated contribution of the η′ to the tail in
the central value of adisc

μ .
Anticipating the combined analysis presented in Sect. 7.1,

the continuum-extrapolated disconnected value we obtain
from a constrained-slope fit to both the connected method 2
data and the disconnected data is

adisc
μ = −33.5(4.2) × 10−11. (23)

We observe that this result amounts to be about (−1/3) of
the connected contribution.

7 The total ahlblµ

The main purpose of this section is to describe how we arrive
at our final result for the total ahlbl

μ (Sect. 7.1), in which the
systematics of the continuum extrapolation are discussed in
detail. The following Sect. 7.2 presents a study of the depen-

dence of our result on the muon mass, and finally, Sect. 7.3
discusses what outcome one may expect for ahlbl

μ at physical
quark masses based on our findings.

7.1 Final result for ahlbl
μ in SU(3)f -symmetric QCD

7.1.1 Combining the connected and disconnected
contributions

In order to obtain the final result for ahlbl
μ = aconn

μ + adisc
μ ,

we combine the disconnected data with the connected data
of method 2, as it is consistent with, yet statistically more
precise than that of method 1. We then explore two types of
analyses on this combined data set, which differ mainly by
whether the data are combined after or before the continuum
extrapolation. Having chosen the first option, the systematics
of the extrapolation are further investigated and quantified in
Sect. 7.1.2.

The full set of data for the two contributions and their sum
is shown in Fig. 14, along with fits and results from the first
analysis whose description follows. Both the connected and
disconnected data show a negative slope in a2 despite the
two contributions having opposite signs. This indicates that
the leading discretization effects do not arise from a common
multiplicative effect such as the renormalization factor.

The first analysis method consists in extrapolating both the
connected and the disconnected contributions to the contin-
uum, before summing the two extrapolated values to obtain
ahlbl
μ . In this procedure, the results for the connected contribu-

tion and the disconnected contribution are both corrected for
finite-size effects and for the extension of the |y|-integrand.
The statistical errors are obtained under the bootstrap, and a
correlated Gaussian sample with appropriate width is prop-
agated for the systematic error due to the correction. The
systematic error of the correction, which is set to 25% of its
size, is treated as being fully anti-correlated between the con-
nected and the disconnected contribution (recall that the two
contributions have opposite sign). In the following subsec-
tion, we explore ten different variants of this type of analysis.
As a representative outcome, we give the result of simultane-
ously extrapolating the connected and the disconnected con-
tributions to the continuum with a slope in a2 constrained to
be equal for the two contributions,

ahlbl
μ = 65.4(4.9) × 10−11, (24)

where the quoted uncertainty is composed of the statistical
error as well as the systematic error of the finite-size correc-
tion and tail extension. The systematic error of the continuum
extrapolation is determined in Sect. 7.1.2.

In the second analysis method, the connected and discon-
nected contributions are summed first, and a single contin-
uum extrapolation is performed. In this analysis, the cor-
rection applied to the lattice data is split into two parts, (a)

123



Eur. Phys. J. C (2020) 80 :869 Page 17 of 24 869

aFSE
μ , the pure finite-size correction on the integrand, and

(b) atail
μ , the extension of the integrand beyond some |y|cut.

In combining the connected and disconnected contributions,
each part is treated as being fully anti-correlated between
the connected and the disconnected contribution; however,
in contrast with the first analysis, the correlation between
the systematic errors of the two parts is considered to be
zero. The point of view adopted here is that the uncertainty
of the correction has a somewhat different origin in each
case: the systematic uncertainty of the tail extension mainly
arises from neglected non-pseudoscalar exchange contribu-
tions around |y| = |y|cut, while the applied finite-size effect
correction neglects higher exponentials such as e−mπ L . The
result of this procedure, for a continuum extrapolation linear
in a2, is

ahlbl
μ = 64.5(6.7) × 10−11. (25)

The two analyses produce compatible values for ahlbl
μ , but

the first allows more flexibility since the two contributions
are treated separately. Therefore, we will use the first analysis
for the final result and study variations on it to estimate the
systematic uncertainty.

7.1.2 Continuum extrapolation systematics

Our data are noisy and it is difficult to find a fit that describes
them perfectly, so we identify several different choices of
continuum extrapolation to investigate the spread and provide
an associated continuum-extrapolation systematic. We note
that (also expressed in Sect. 5.1) as we are not using the
O(a)-improved vector currents it is possible that we have
a term linear in the lattice spacing. We consider the two fit
forms:

aconn
μ (a) = aconn

μ (0) + Aan, adisc
μ (a) = adisc

μ (0) + Bam,

(26)

with various cuts to the data, constraints on A and B, and
choices of n and m as listed in Table 10. We then add the
distributions ahlbl

μ = aconn
μ (0) + adisc

μ (0) to obtain the results
shown in Fig. 15.

Table 10 Different fit forms used to estimate the continuum extrapo-
lation systematic

Index a-Cut (fm) Constraint n m Index a-Cut (fm) Constraint n m

1 None None 1 1 6 None None 2 2

2 None A = B 1 1 7 None A = B 2 2

3 None B = 0 1 – 8 None B = 0 2 –

4 < 0.0864 None 1 1 9 < 0.0864 None 2 2

5 < 0.0864 A = B 1 1 10 < 0.0864 A = B 2 2

Fig. 15 An estimate of our continuum extrapolation systematic on the
full ahlbl

μ for the combination of method 2 and the disconnected data

It is clear that any time we omit the coarse data the fit wants
to flatten the slope. This is due to the anomalously low result
of N300. When we do not include the coarse ensembles the
error increases substantially, which is fairly indicative that
the fit is struggling to accurately model the data.

If we perform a fit linear in a the central value moves up,
as was also the case for the method 1 continuum extrapola-
tion. We choose to quote the linear in a2 fit to all the data
with a constrained slope as our final result as it has the best
χ2/d.o.f. = 2. For the continuum-extrapolation systematic,
we use the lower error bound of the largest fit result and the
upper bound of our lowest fit result. It is clear that constrain-
ing the slope or letting it vary does little to the position of
the central value apart from reducing the error, this suggests
that the fit is having a hard time accurately determining the
slope with the quality of the data we have at present.

7.2 The dependence of our results on the muon mass

Since the mesons at the SU(3)f -symmetric point can be
viewed as ‘heavy’ degrees of freedom relative to the muon,
we would expectahlbl

μ to be roughly proportional tom2
μ. Here,

we will study what happens if we re-scale the muon mass on
one of our ensembles. We are motivated to do so by our expe-
rience on related projects [35] whereby adjusting the muon
mass by some dimensionless ratio can flatten the approach
to the chiral limit. Here we investigate this idea by defining
two quantities,

ahlbl
μ =

(
f Latt.
π

f Phys.
π

)2

ahlbl
μ (mPhys.

μ ), (27)
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Fig. 16 Partially-integrated lattice results for the ensemble H101 with
and without re-scaling of the integral

and,

ãhlbl
μ = ahlbl

μ

(
f Latt.
π

f Phys.
π

mPhys.
μ

)
. (28)

The first quantity rescales the integrated result by the lattice-
determined pion decay constant divided by the value in con-
tinuum, squared. The second quantity re-scales the muon
mass used as input in our determination by this ratio. These
two definitions would be comparable if ahlbl

μ scales as m2
μ,

which is to be expected in the heavy-quark limit.
Figure 16 illustrates the effect of these re-scaling proce-

dures on the connected contribution to ahlbl
μ on one of our

coarsest and largest boxes, H101 (results are from Method
2 with � = 0.4). It is clear that these two prescriptions are
equivalent within error, which suggests that any change in
the muon mass leads to a quadratic change in the integrated
result. We can also use this analysis to very naively infer how
much we expect the result to grow as we approach the chiral
limit, and it appears that for the connected contribution this
could be of the order of a 25% increase.

7.3 Expectations for ahlbl
μ in QCD with physical quark

masses

In this subsection, we first quantify the contributions to ahlbl
μ

at the SU(3)f -symmetric point not coming from the light
pseudoscalars. These contributions are expected to have only
a modest quark-mass dependence, and they are also the hard-
est to determine quantitatively by (experimental-)data-driven
methods. Therefore any information on these contributions
is worthwhile collecting. By using our determination of this
contribution together with our previous calculation of the π0

exchange, we can arrive at an estimate for ahlbl
μ at physical

quark masses.

We begin by noting that, subtracting the π0 and η con-
tributions (respectively Eqs. (16) and (18)) from our final
SU(3)-point result (31), the contribution of heavier interme-
diate states amounts to

ahlbl,SU(3)f
μ − ahlbl,π0+η,SU(3)f

μ = (37.4 ± 8.3) × 10−11.

(29)

In particular, this contribution accounts for 57% of the total
ahlbl
μ , and we have added all statistical and systematic errors

in quadrature.
Next, we may try to roughly estimate ahlbl

μ at the physical
point. As the (u, d) quark masses are lowered to their phys-
ical values at fixed trace of the quark mass matrix, it is the
pion whose mass changes by the largest factor: it becomes a
factor of three lighter. Since we have an evaluation of the π0

exchange contribution at the SU(3)f -symmetric point and at
the physical point (see Eqs. (16–17)), we can correct for this
effect,

ahlbl,SU(3)f
μ − ahlbl,π0,SU(3)f

μ + ahlbl,π0,phys
μ

= (104.1 ± 9.1) × 10−11. (30)

One can think of Eq. (30) as a rough estimate of ahlbl
μ at

the physical point, purely based on our lattice QCD results
and the assumption of a negligible quark-mass dependence
of the non-π0-exchange contributions. As argued in the next
paragraph, we expect such an estimate to hold at the 20%
level. It is well in line with the most recent evaluations [5].

In order to assess the systematic uncertainty of such an
estimate, we perform a slightly more sophisticated method
to correct for the quark-mass dependence of the η contri-
bution and the charged pion loop. Within the scalar QED
framework, we find −6.3 × 10−11 for the pion loop, to be
doubled to include the kaon loop, and we expect a factor
of two to three reduction if one includes an electromagnetic
form factor for the pseudoscalar. Therefore, further subtract-

ing ahlbl,(π±,K±),SU(3)f
μ ≈ 2 × (−3.0) × 10−11 from Eq.

(29), we obtain (43.4 ± 9.3) × 10−11. This number rep-
resents our estimate of the non-pseudo-Goldstone contri-
butions at the SU(3)f -symmetric point.6 We observe that
by neglecting the quark-mass dependence of this contri-
bution, and using the dispersive π0-exchange [5,36] and
the Canberbury-approximant η-exchange [5,27] results for

ahlbl,π0+η,phys
μ = 79.3 × 10−11 and the box contribution

[5,37] to ahlbl,(π±,K±),phys
μ = −16.4×10−11, we arrive at the

estimate 1011ahlbl,phys
μ = 79.3(3.0)−16.4(2)+43.4(9.3) =

106.3(9.8). It is only slightly different from the more naive
estimate of Eq. (30). Therefore we consider it safe to assign
a systematic error of 20% to Eq. (30) as an estimate of ahlbl

μ

6 Note that since the lightest f0 meson is stable, there is no reason to
treat its contribution as part of the ππ rescattering effect.
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at the physical point. This uncertainty estimate also gener-
ously covers the ahlbl,phys

μ value obtained by assuming that
the non-pseudo-Goldstone contributions increase from the
SU(3)f to the physical point by a factor ( f SU(3)f

π / f phys
π )2 to

account approximately for the quark-mass dependence of the
QCD resonances; see the previous subsection concerning this
point.

8 Conclusions

In this work we have computed the hadronic light-by-light
contribution to the g − 2 of the muon using lattice QCD at
the SU(3)f -symmetric point with mπ = mK ≈ 420 MeV.
We chose to initially work at the symmetric point for several
reasons: Due to the significantly reduced computational cost
(as compared to simulations at physical quark masses), we
are able to control all known sources of systematic error, in
particular the finite-size and finite lattice spacing effects. Sec-
ond, the SU(3)f -symmetry implies that only two out of five
quark-contraction topologies contribute, and it simplifies the
hadronic models with which the integrand can be compared
and interpreted. For instance, the η-exchange contribution
simply amounts to one third of the pion-exchange. Third,
the overall contribution from states beyond the light pseu-
doscalars is not expected to be strongly quark-mass depen-
dent, so that the present calculation already constrains its
size.

In order to help interpret our results for ahlbl
μ , we have per-

formed an exploratory study of the low-lying meson spec-
trum at the SU(3)f point. The most remarkable feature is the
existence of a stable singlet J PC = 0++ meson with a mass
of about 680 MeV. Also, our previous calculation of the pion
transition form factor [12] allows us to quantify the contri-
butions of the π0 and η exchanges.

Our strategy to calculate ahlbl
μ relies on coordinate-space

perturbation theory, for which muon and photon propagators
are computed in infinite volume. We have presented the inte-
grand for the final, one-dimensional integral over the distance
|y| of a quark-photon vertex from one of the other two inter-
nal vertices, since it contains more information than the final
ahlbl
μ value. For the quark-connected contribution we have

identified two methods of calculation that we call method 1
and method 2. The former amounts to a direct computation
of the three connected diagrams, but it is a numerically costly
approach, as it involves many sequential-propagator calcu-
lations. To make this computation much cheaper, we have
utilized several changes of variables and translational invari-
ance to rewrite the integral in terms of an easy-to-calculate
single diagram and a combination of different kernels; this
we call method 2.

For a single |y|-value, method 2 requires only two prop-
agator inversions, at the meagre cost of a more-complicated
QED-kernel calculation. Method 2 has another computa-
tional advantage over method 1 in that it allows one to store
a set of propagators in memory and perform their integrals,
redefining the origin to be each propagator source; thereby,
for N propagators we can compute N (N −1) non-zero sam-
ples of f (|y|). If the source points are evenly spaced and
the volume is periodic this amounts to N self-averages per
|y|. Such self-averaging is crucial in reducing the cost of the
calculation.

We note that the combination of kernels needed for
method 2 broadens the integrand in |y| significantly. To coun-
teract this effect, we have introduced a new class of subtracted
kernels with a Gaussian-regulator �. This parameter � effec-
tively allows us to tune the shape of the integrand to peak at
shorter-distances. We find that a value of � = 0.4 suits our
purposes quite well and allows for the integral of the con-
nected lattice data to saturate at reasonably short distances
of about 2 fm.

We have handled the disconnected contribution by intro-
ducing a sparse sub-grid of equi-distant point sources, the
idea being that we obtain a large number of self-averages
from treating our origin as each point on the grid. Such a
technique is necessary as this contribution is extremely noisy
and suffers from a significant signal-to-noise problem at large
distances. We note that potentially millions of averages are
needed in order to get good control over errors at distances
of order 2 fm.

In our calculation, we have seen that finite-size effects
are significant, and having a good theoretical understand-
ing of the tail of the integrand is very important. For the
quark-connected contribution, we have approximated the π0

and η meson exchange contribution to the integrand using a
vector-dominance transition form factor and compared it to
the lattice data; only at fairly large |y| does the prediction
quantitatively represent the integrand. We therefore attempt
to conservatively incorporate as much lattice data as possible
before making contact with the model. For the disconnected
contribution, the model does a satisfactory job of describing
the data over the entire range of |y| where we have signal, and
we therefore match on to the prediction at shorter distances,
where we still have control over the statistical errors of the
lattice data.

We have shown that both the disconnected and con-
nected contributions have a non-negligible discretization
effect within our measured precision. It appears to be of the
same sign and comparable magnitude for both contributions,
but ultimately this extrapolation appears well under control.
We decide to quote a result from a fit linear in a2 with a con-
strained slope to the data of method 2 and the disconnected
as,
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ahlbl
μ = (65.4 ± 4.9 ± 6.6) × 10−11, (31)

at the SU(3) flavor-symmetric point, where the first error
results from the uncertainties on the individual gauge ensem-
bles, and the second is the systematic error of the continuum
extrapolation.

We have discussed in Sect. 7.3 how we expect our result for
ahlbl
μ to evolve as the up and down quark masses are lowered

towards their physical values at fixed trace of the quark mass
matrix. Correcting for the increase in the π0 exchange contri-
bution7 using our previous lattice calculation [12], we arrive
at a value (Eq. (30)) which is very well in line with the most
recent phenomenological [5] and lattice QCD results [16].
This value is quite stable under varying the assumptions about
the quark-mass dependence of heavier-state contributions.

In order to reduce the systematic uncertainty of ahlbl
μ at

physical quark masses using lattice QCD, obviously simu-
lations at lighter quark masses are needed. The methods we
have developed to correct for finite-size effects and to extend
the tail of the |y|-integrand based on the π0 exchange will be
extremely valuable in this endeavor. While we have reached
a semi-quantitative understanding of the integrand in terms
of hadronic models, further work is needed on the theory side
to bring this description to a fully quantitative level.
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Appendix A: Pseudoscalar-meson-exchange-channel
matching in method 2 and the quark-disconnected con-
tribution

In this work, when we compute the quark-connected dia-
grams using method 2 and the quark-disconnected diagrams,
only a subset of Feynman diagrams are considered due to
the contributing Wick-contractions at QCD level. In order
to study the FSE in an effective field theory framework, one
has to map these contractions to the corresponding Feyn-
man diagrams in the effective theory. Our study of the FSE
is based on pseudoscalar-meson (PS) exchange from Chiral
Perturbation Theory. The matching between the QCD Feyn-
man diagrams and the PS-meson-exchange channels can be
done in various ways. Here, we present a determination of
the matching using Partially-Quenched QCD (PQQCD) and
Partially-Quenched Chiral Perturbation Theory (PQChPT).
There have been many applications of PQQCD in the Lat-
tice QCD community (see e.g. [42–44]). In particular, it can
serve as a tool to give an estimate of the size of the contri-
bution coming from quark-disconnected diagrams compared
to the connected ones for some observables [45]. Here we
do not intend to detail the formalism, but only to give some
arguments to explain how we reach the mappings explained
in our methodology.

PQQCD is a theory with a graded Lie-group SU(N |M)

as symmetry group. In this theory there are N − M sea
quarks and M valence (quenched) quarks with their ghost
counterparts. The presence of these quenched quarks does
not change the partition function from the un-quenched the-
ory with N − M dynamical quarks. Therefore, one can for-
mulate each of the different Wick contractions needed for
computing an n-point function (in an un-quenched theory)
in a partially-quenched theory by adding certain number
of quenched quarks. Then, one can study the long-distance
behavior of the observable using PQChPT, which is the cor-
responding effective field theory to PQQCD.

With only three flavors (as is the case in this work), one
cannot build a four-point function that requires only quark-
connected diagrams, because each quark line would require
a different flavor in order to avoid disconnected diagrams.
However, such a four-point function can be constructed with
an additional quenched quark flavor, i.e. SU(4|1) PQQCD.
For instance, if we introduce a quenched quark r and its
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ghost r̃ with the same mass as the ones originally present in
the SU(3)f theory, namely u, d and s, in the computation of
the four-point function

〈ūγμd(x)d̄γνs(y)s̄γσ r(z)r̄γσu(0) + h.c.〉, (A1)

only quark-connected diagrams are involved. Equation (A1)
is exactly the four-point function 
̃

(1)
μνσλ(x, y, z, 0) that is

used for the connected contribution in method 2.
Moreover, one can study the quark-disconnected diagrams

that we consider in this work within the same partially
quenched theory. For instance,

〈ūγμd(x)d̄γνu(y)s̄γσ r(z)r̄γσ s(0) + h.c.〉 (A2)

only contains the disconnected diagram where (x, y) and
(z, 0) are connected by quark lines.

To determine the relevent PS-meson-exchange channel,
one can consider the Wess–Zumino–Witten term [46,47]
in PQChPT at leading order in the decay constant. Equa-
tion (A1) can be understood as a four-point vector current
correlation function. A general procedure is to include all the
possible super traces of operators [48]. However, in the case
of the coupling to external charged vector currents, which
are the Noether currents of the symmetry group SU(N |M)

whose generators are super-traceless, the only allowed non-
vanishing term is proportional to

str(T aT bT c)

∫
d4xφcεμνρσ Fa

μνF
b
ρσ , (A3)

where φ is the Goldstone boson/ghost field, Fμν is the field
strength of the external vector current and the T a’s are the
generators of the group. As a result, in momentum-space,
the PS-meson exchange in the s-channel of the two-vector-
currents-to-two-vector-currents process va1vb1 → va2vb2 is
proportional to

str({T a1, T b1}T c1)str({T a2 , T b2}T c2)gc1c2G(p2), (A4)

Fig. 17 Correspondence between connected (method 2) and discon-
nected diagrams (left) and PS-meson exchange channels (right) in posi-
tion space of the four-point functions described in the text. The top-left
figure should be understood as containing quark flow in both orienta-
tions, representing exactly all the relevent diagrams for method 2. Note
that the charge factors are not included here

where G is the scalar field propagator ,

G(p2) = 1

p2 + m2
π

, (A5)

and

gab = 2str(T aT b). (A6)

The matching between different contractions and the PS-
exchange channels based on this computation is shown in
Fig. 17. With the charge factors included, one will recover
the ratio between the total quark-disconnected contribution
and the total quark-connected given in Ref. [29], based on
charge factor arguments.

(a)

(b)

Fig. 18 Top: the integrands in method 1 of several � choices of the
new subtracted kernel. Bottom: the results of the partial integration of
the integrands up to some |y|max. These results were obtained with
lepton mass equal to the muon mass and the exact result used was
4.6497 × 10−9 [49]
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(a)

(b)

Fig. 19 Same as Fig. 18 but for method 2

Appendix B: The new subtraction with the lepton-loop

In this section we investigate the new subtraction for both
methods 1 and 2 using the infinite volume lepton-loop. A
comparison of previous results with our kernel to the lepton-
loop can be found in [17,28]. The lepton-loop result can
be determined easily by standard numerical integration tech-
niques, the results of which can be used to inform our choices
of kernel parameters in the full QCD calculation.

For both Figs. 18 and 19 we set the lepton mass equal to
that of the muon.

Figure 18 shows the results for method 1. There is little
difference between the choices of � for this calculation and
they all saturate the integral reasonably quickly. The result
when � = ∞ is too peaked at short distances to make this

a useful kernel for the lattice computation. All of the peak
positions for the integrands are roughly at the same (small)
value of |y|.

In Fig. 19 we show the results for method 2. We see that the
usual kernel (� = ∞) is very peaked at short distances, this
will make it unsuitable for the lattice calculation. We also
note that � = 0 gives a broad integrand that very slowly
approaches the exact result, this also makes it somewhat
unsuitable for a lattice calculation unless a large physical
volume and large values of |y| are available.

The choice of � = 0.4 has a slightly more pronounced
peak at small |y| than � = 0 and it goes to zero at large
distances rapidly. There is a small negative contribution to
the integral at large |y|, but in the full QCD case can be cor-
rected for by modelling the tail, as � increases this negative
correction grows. If our lepton-loop result translates to full
QCD this choice of � should allow for most of our integral
to be encompassed by the lattice volume.

If we compare the two methods using the lepton-loop
we see that the parameter � makes a significant differ-
ence to the integrand for method 2. Any of the choices
� = 0.0, 0.4, 0.8, 1.0 seem usable for method 1. It is inter-
esting to note that method 2 actively shifts the peak of the
integrand to typically intermediate distances. So, with a care-
ful choice of the parameter � we can tune the kernel to peak
in a region where the calculation is not so sensitive to either
of the lattice cut-offs of lattice spacing and volume.

Appendix C: Kernel independence of aconnµ and adiscµ

The validity of the subtractions applied to the QED kernel
originates from the Ward identity (current conservation) sat-
isfied by the electromagnetic current. Thus, one will expect
a kernel-independent result at the level of the total result of
ahlbl
μ . In this paper, we have treated the contribution from the

connected diagrams (aconn
μ ) and the contribution from the

disconnected diagrams (adisc)
μ ) separately. One natural ques-

tion would be whether these two quantities themselves are
also kernel-independent. The answer to this question is yes,
due to the Ward identity satisfied by the vector current. We
will give a proof of this statement in the SU(3) f case.
In Euclidean space-time, if an infinitesimal transformation
δε of the fields does not change the path integral measure, we
have

〈δεSO〉 = 〈δεO〉, (C1)

where S is the QCD action and O is any operator. Without
changing the action, we can consider a partially-quenched
theory by introducing a quenched quark r and its ghost part-
ner r̃ (see Appendix A). If we consider an infinitesimal trans-
formation generated by the local SU(2) f symmetry of the
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quark pair (u, d) and their conjugates :

δεu(x0) = iε(x0)d(x0), δεd(x0) = iε(x0)u(x0),

δε ū(x0) = −iε(x0)d̄(x0), δε d̄(x0) = −iε(x0)ū(x0),
(C2)

we have the following expression for the variation of the
action related to the corresponding Noether current

δεS = iε(x0)∂λ(ūγλd + d̄γλu)(x0). (C3)

We now consider the trilocal operator Oμνσ (x, y, z) :=
ūγμd(x)s̄γνr(y)r̄γσ s(z), which transforms as

δεOμνσ (x) = iε(ūγμu − d̄γμd)(x)s̄γνr(y)r̄γλs(z). (C4)

Plugging in everything in Eq. (C1), we have

∂λ〈ūγμd(x)d̄γλu(x0)s̄γνr(y)r̄γσ s(z)〉
= ∂λ〈
μλ(x, x0)
νσ (y, z)〉U = 0, (C5)

where 
μν(x, x0)
νσ (y, z) gives one of the contractions
needed for the disconnected computation. One can then
easily show that all the disconnected diagrams have simi-
lar current-conservation property. Consequently, the subtrac-
tions that we apply to the QED-kernel do not change the result
on the contribution from the disconnected diagrams. It fol-
lows directly that the connected contribution is also kernel-
independent, because aconn

μ = ahlbl
μ − adisc

μ in our SU(3) f
case. One can further show that aconn

μ is also itself kernel-
independent in general flavor cases.
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