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Abstract The problem of the consistent definition of gauge
theories living on the non-commutative (NC) spaces with
a non-constant NC parameter �(x) is discussed. Working
in the L∞ formalism we specify the undeformed theory, 3d
abelian Chern–Simons, by setting the initial �1 brackets. The
deformation is introduced by assigning the star commutator
to the �2 bracket. For this initial set up we construct the corre-
sponding L∞ structure which defines both the NC deforma-
tion of the abelian gauge transformations and the field equa-
tions covariant under these transformations. To compensate
the violation of the Leibniz rule one needs the higher brackets
which are proportional to the derivatives of �. Proceeding in
the slowly varying field approximation when the star com-
mutator is approximated by the Poisson bracket we derive the
recurrence relations for the definition of these brackets for
arbitrary �. For the particular case of su(2)-like NC space
we obtain an explicit all orders formulas for both NC gauge
transformations and NC deformation of Chern–Simons equa-
tions. The latter are non-Lagrangian and are satisfied if the
NC field strength vanishes everywhere.
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1 Introduction

In the standard approach to the definition of gauge theory one
needs the notion of the covariant derivative, Da = ∂a − i Aa ,
as a generalization of the partial derivative ∂a which trans-
forms covariantly, Da → ei f (x)Da , under the gauge trans-
formations δ f Aa = ∂a f . This notion is based on the Leib-
niz rule. The non-commutativity is a fundamental feature of
the space-time which manifests itself at very short distances
[1,2]. It can be introduced in the theory through the star prod-
uct, defined in the theory of deformation quantization [3] as,

f � g = f · g + i

2
�ab(x) ∂a f ∂bg + · · · , (1.1)

where �ab(x) is the non-commutativity parameter depend-
ing on the specific physical model. In some cases, like the
open string dynamics in the constant B-field [2], the non-
commutativity parameter can be constant, however in general
it is a function of coordinates. The coordinate dependence of
�, in general, leads to the violation of the Leibniz rule,

∂c( f � g) = (∂c f ) � g + f � (∂cg) + i

2
∂c�

ab(x) ∂a f ∂bg + · · · ,

(1.2)

and makes it impossible to follow the standard path for the
formulation of NC gauge theory. Let us note that in some par-
ticular cases, like the NC gauge theory on D-branes in non-
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geometric backgrounds [4] the type of non-commutativity
is compatible with the Leibniz rule, so the standard reason-
ing can be used for the definition of the NC field strength.
Because of the non-geometry one has to shift the field
strength tensor by a closed two-form on the D-brane world-
volume to construct the NC Yang–Mills action.

The problem with the violation of the Leibniz rule can be
taken under control if, e.g., instead of the partial derivative ∂a
one takes the inner one defined through the star commutator,
Da = i[ ·, xa]�, as was done in the approach of covariant
coordinates [5]. This however may lead to a problem with
the correct commutative limit. Another possibility discussed
in the literature consists in using the deformed Leibniz rule
constructed with the help of the twist element of a Hopf alge-
bra [6,7]. Here we mention that the twist element is known
for the very few examples of NC spaces [8].

In recent work [9] in collaboration with Ralph Blu-
menhagen, Ilka Brunner and Dieter Lüst we have formu-
lated the L∞-bootstrap approach to the construction of non-
commutative gauge theories. On the one hand, in the physi-
cal literature L∞ structures were introduced for description
of gauge theories [10], see also [11,12] for more details and
recent references. On the classical level such an L∞ structure
contains all necessary information about the theory including
the gauge symmetry, the field equations and the Noether iden-
tities. On the other hand, L∞ algebras (also known as strong
homotopy Lie algebras) [13,14] provides a framework for
dealing with the deformation since the Jacobi identities are
required to hold only up to a total derivative or a higher coher-
ent homotopy. We note in particular that the proof of the key
result in deformation quantization, the Formality Theorem,
is based on the concept of L∞ algebras [15].

The main idea of the L∞ bootstrap approach consists in
two steps. The first one is to represent the original unde-
formed gauge theory, like the Chern–Simons or the Yang–
Mills, as well as the deformation introduced through the star
commutator as a part of a new L∞ algebra specifying the
initial brackets �1, �2, etc. Then solving the L∞ relations,
Jn = 0, one determines the missing brackets �n and com-
pletes the L∞ algebra which governs the NC deformation of
the gauge transformations and the equations of motion. In
[9] we found the expressions for the gauge transformations
and the field equations up to the order O (

�2
)

in the non-
commutativity parameter. However the calculations were
extremely involved and it was not clear whether the pro-
cedure can be extended to the higher or potentially all orders
in the deformation parameter.

The purpose of the current work is to develop the ideas
and tools proposed in [9] for the construction of the solu-
tion for the L∞ bootstrap program and to apply them to the
explicit example, the non-commutative deformation of the
abelian Chern–Simons theory. The key observation made
in this paper is that in each given order n there is a set of

consistency conditions for solvability of the L∞ bootstrap
equations, Jn = 0. These conditions are satisfied as a con-
sequence of the previously solved equations, Jm = 0, with
m < n. We use this observation to express the brackets �n
in terms of those which have already been found. Note that
the solutions �n of the equations, Jn = 0, are not unique and
often can be chosen to be zero. Aiming to provide explicit
calculations we work in the slowly varying field approxima-
tion when the higher derivative terms in the star commutator
are discarded and it is approximated by the Poisson bracket.
We set,

�2( f, g) = −{ f, g} = −�ab(x) ∂a f ∂bg, (1.3)

where �ab(x) is any suitably symmetric function satisfying
the Jacobi identity,

�al ∂l �
bc + �cl ∂l �

ab + �bl ∂l �
ca = 0. (1.4)

The paper is organized as follows. We start with a brief
review of basic facts from L∞ algebras in the Sect. 5.47. In
the Sect. 5.48 we construct the NC deformation of the abelian
gauge transformation,

δ f Aa = ∂a f + {Aa, f } + �k
a(A) ∂k f, (1.5)

which satisfies the gauge closure condition, [δ f , δg]Aa =
δ{ f,g}Aa . Then, in the Sect. 5.49 we derive an expression for
the field equations,

Fa := Pabc (A) ∂b Ac + Rabc (A) {Ab, Ac} = 0, (1.6)

which are covariant under the transformation (1.5), i.e.,
δ f F a = {F a, f } , and reproduce in the commutative limit,
� → 0, the standard abelian Chern–Simons equations,
εabc ∂b Ac = 0. For arbitrary NC parameter �i j (x) we pro-
vide the recurrence relations for the construction of the func-
tions �k

a(A), Pabc(A) and Rabc(A) at any order in �. For
deformation parameter, which is linear in coordinates, in the
Sect. 5 we obtain an explicit all orders expressions for both
NC gauge transformations and NC field equations. We define
the NC field strength and show that just like in the commu-
tative case the NC Chern–Simons equations are equivalent
to the requirement that the NC field strength should vanish
everywhere.

2 Basic facts from L∞-algebras

For the convenience of the reader in this Section we will
briefly review the basic facts form the theory of L∞-algebras
and its relation to the gauge theories. We start with a formal
definition. In fact, L∞-algebras are generalized Lie algebras
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where one has not only a two-bracket but more general mul-
tilinear n-brackets with n inputs

�n : X⊗n → X

x1, . . . , xn �→ �n(x1, . . . , xn),
(2.1)

defined on a graded vector space X = ⊕
m Xm , where m ∈

Z, denotes the grading of the corresponding subspace. Each
element x ∈ X , has its own degree, meaning that if deg(x) =
p, this element belongs to the subspace X p. These brackets
are graded anti-symmetric,

�n(. . . , x1, x2, . . . ) = (−1)1+deg(x1)deg(x2) �n(. . . , x2, x1, . . . ).

(2.2)

The degree of �n is,

p = deg
(
�n(x1, . . . , xn)

) = n − 2 +
n∑

i=1

deg(xi ). (2.3)

The set of higher brackets �n define an L∞ algebra if they
satisfy the infinitely many relations

Jn(x1, . . . , xn)

:=
∑

i+ j=n+1

(−1)i( j−1)
∑

σ

(−1)σ χ(σ ; x)

� j
(

�i (xσ(1), . . . , xσ(i)) , xσ(i+1), . . . , xσ(n)

) = 0.

(2.4)

The permutations are restricted to the ones with

σ(1) < · · · < σ(i), σ (i + 1) < · · · < σ(n), (2.5)

and the sign χ(σ ; x) = ±1 can be read off from (2.2).
The framework of L∞ algebras is quite flexible and it

has been suggested that every classical perturbative gauge
theory including its dynamics, is organized by an underlying
L∞ structure [11]. To see this, let us assume that the field
theory has a standard type gauge structure, meaning that the
variations of the fields can be organized unambiguously into
a sum of terms each of a definite power in the fields. We
take the graded space, X = X0 ⊕ X−1 ⊕ X−2, and all others
trivial. The assignment is as follows. X0 corresponds to the
space of gauge parameters or functions f , X−1 is the space
of gauge fields Aa and X−2 contains the left hand side of the
equations of motion of the gauge theory, F (A) = 0. General
elements in X−2 are denoted by the letter E , i.e.,

X0 X−1 X−2

f Aa Ea
. (2.6)

The gauge variations are defined in terms of the brackets
�n+1( f, An) ∈ X−1 as,

δ f A =
∑

n≥0

1

n! (−1)
n(n−1)

2 �n+1( f, A, . . . , A︸ ︷︷ ︸
n times

)

= �1( f ) + �2( f, A) − 1

2
�3( f, A, A) + · · · .

(2.7)

The equations of motion can be written as

F :=
∑

n≥1

1

n! (−1)
n(n−1)

2 �n(A
n)

= �1(A) − 1

2
�2(A

2) − 1

3!�3(A
3) + · · · . (2.8)

Using the L∞ relations (2.4) one can show that the com-
mutator of gauge variations yields [11,18]

[
δ f , δg

]
A = δ−C( f,g,A) A + δT−C( f,g,F ,A) A (2.9)

with

C( f, g, A) =
∑

n≥0

1

n! (−1)
n(n−1)

2 �n+2( f, g, A, . . . , A︸ ︷︷ ︸
n times

).

(2.10)

and where the second term on the right hand side of (2.9)
vanishes on-shell. It can be expanded as

C( f, g,F , A) = �3( f, g,F ) + · · ·
=

∑

n≥0

1

n! (−1)
n(n−1)

2 �n+3( f, g,F , An).

(2.11)

The gauge variation of the equation of motion F reads

δ f F = �2( f,F ) + �3( f,F , A) − 1

2
�4( f,F , A2) + . . .

(2.12)

reflecting that, as opposed to the gauge field A, it transforms
covariantly.

The same gauge algebra may correspond to the dif-
ferent gauge theories. So, following [11] it is convenient
to introduce two different L∞ algebras. The first of them
denoted by Lgauge∞ describes only the gauge transformations
of fields Aa and is concentrated in two component space
Xgauge = X0 ⊕ X−1. The second, L f ull∞ is concentrated in
three component space, X f ull = X0 ⊕ X−1 ⊕ X−2, and
includes the information about the dynamics. This can be
extended further as in [12], adding the fourth component
X−3 containing the Noether identities, etc. For example, to
define the Lgauge∞ algebra corresponding to the abelian gauge
transformation, δ f Aa = ∂a f , one sets �1( f ) = ∂a f and

123



42 Page 4 of 17 Eur. Phys. J. C (2020) 80 :42

all other brackets vanishing. The L f ull∞ algebra correspond-
ing to the abelian Chern–Simons theory is defined by set-
ting �1(A)a = εabc∂b Ac, while for Yang–Mills we define
�1(A)a = �Aa − ∂a(∂ · A). In both cases it is obvious that,
�1(�1( f )) = 0.

We stress that in principle, the L∞ algebra may have an
infinite number of the brackets �n , which however, are not
arbitrary, since they should satisfy L∞ relations (2.4). As it
was already mentioned in the introduction the idea of the L∞
bootstrap approach consists in representing the original unde-
formed gauge theory together with a deformation as a part of
a new L∞ structure by setting initial brackets and solving L∞
relations to determine the L∞ algebra, which corresponds to
the consistent deformation of the original theory.

3 Non-commutative deformation of the abelian gauge
transformations

In this section we discuss a non-commutative deforma-
tion of the abelian Lgauge∞ algebra defined by the bracket,
�1( f ) = ∂a f . A deformation is introduced through the star
commutator of functions which, from the consideration of
anti-symmetry, should be assigned to the bracket,

�2( f, g) = i[ f, g]�. (3.1)

For the Hermitean associative star product1 an expression for
the star commutator up to the third order in � reads [20],

i[ f, g]�
= −�kl ∂k f ∂l g

+ 1

12

[
�nl∂l�

mk∂n∂m�i j (∂i f ∂ j∂kg − ∂i g∂ j∂k f
)

+ 1

2
�nk∂n�

jm∂m�il (∂i∂ j f ∂k∂l g − ∂i∂ j g∂k∂l f
)

+ �ln∂l�
jm�ik (

∂i∂ j f ∂k∂n∂mg − ∂i∂ j g∂k∂n∂m f
)

+ 1

2
� jl�im�kn∂i∂ j∂k f ∂l∂n∂mg

+ 1

2
�nk�ml∂n∂m�i j (∂i f ∂ j∂k∂l g − ∂i g∂ j∂k∂l f

)]

+ O
(
�5

)
. (3.2)

In principle, the higher order terms in the star commutator
can be constructed following the prescription of the Formal-
ity Theorem [15] and involves the Kontsevich graphs and
the Kontsevich weights. The construction of the Kontsevich

1 These requirements to the star product are justified by the physical
applications.

graphs is straightforward, however to the best of our knowl-
edge there is no regular way of the computing the Kont-
sevich weights corresponding to the Kontsevich wheel dia-
grams. So, for arbitrary non-commutativity parameter �(x)
an explicit all orders expression for the star commutator (3.2)
is not known.

In this work we will consider the limit of slowly varying,
but not necessarily small fields, i.e., we discard the higher
derivatives terms, like ∂ f ∂∂g, etc., in the star commutator
and approximate it by the Poisson bracket,

�2( f, g) ≈ −�ab(x) ∂a f ∂bg = −{ f, g} . (3.3)

This is a “self-consistent” approximation of non-commuta-
tivity. If we work with the NC deformations induced by the
associative star product, the star commutator (3.1) satisfies
the Jacobi identity, so does the corresponding Poisson bracket
(3.3). Below we will see that in this case the brackets of the
type �n+2( f, g, An), n > 0, can be taken to be zero.

3.1 Leading order contribution

Having non-vanishing brackets �1( f ) and �2( f, g), one has
to check the L∞ relation, J2( f, g) = 0, which reads,

�1(�2( f, g)) = −{
∈X−1︷︸︸︷
∂a f , g} − { f,

∈X−1︷︸︸︷
∂ag } − (∂a�

i j ) ∂i f ∂ j g

= �2(�1( f ), g) + �2( f, �1(g)) , (3.4)

and involves the yet undetermined bracket �2( f, A). It means
that now the identity, J2( f, g) = 0, becomes an equation on
�2( f, A). Solving this equation one may proceed to the next
L∞ relation, J3( f, g, h) = 0, and define the next bracket
�3( f, g, A), etc.

Let us see how it works on practice. From (3.4) one finds

�2( f, A) = −{ f, Aa} − 1

2
(∂a�

i j ) ∂i f A j . (3.5)

Note that the solution is not unique, one may also set, e.g.,

�′
2( f, A) = �2( f, A) + si ja (x) ∂i f A j , (3.6)

with si ja (x) = s jia (x). By the definition of L∞, �′
2(A, f ) :=

−�′
2( f, A). The symmetry of si ja (x) implies that this choice

of the bracket �′
2( f, A) also satisfies the equation (3.4). How-

ever, the symmetric part si ja (x) ∂i f A j can always be “gauged
away” by L∞-quasi-isomorphism, physically equivalent to a
Seiberg-Witten map [2], see [19] for more details.

3.2 Next to the leading order

Then we have to define the bracket �3( f, g, A) from the iden-
tity J3( f, g, h) = 0. Taking into account that according to
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(2.3) the bracket �3( f, g, h) belongs to the space X1 which
is empty in our construction, i.e., �3( f, g, h) = 0, one writes

J3( f, g, h)

:= �2(�2( f, g), h) + �2(�2(g, h), f ) + �2(�2(h, f ), g)

+ �3(�1( f ), g, h) + �3( f, �1(g), h) + �3( f, g, �1(h)) = 0 .

(3.7)

The first line in the above expression is a Jacobiator for the
bracket �2( f, g) defined in (1.3),

�2(�2( f, g), h) + �2(�2(g, h), f ) + �2(�2(h, f ), g)

= {{ f, g}, h} + {{h, f }, g} + {{g, h}, f } ≡ 0 . (3.8)

So we may just set, �3(A, f, g) = 0.
The next step is the crucial for the whole construction. We

have to analyze the relation J3( f, g, A) = 0, given by

0 = �2(�2(A, f ), g) + �2(�2( f, g), A) + �2(�2(g, A), f )

+ �1(�3(A, f, g)) − �3(A, �1( f ), g) − �3(A, f, �1(g)).
(3.9)

For simplicity, we replace it with J3(g, h, �1( f )) = 0, writ-
ten in the form

�3(�1( f ), �1(g), h) − �3(�1( f ), �1(h), g) = G( f, g, h) ,

G( f, g, h) := �1(�3(�1( f ), g, h)) + �2(�2(�1( f ), g), h)

+ �2(�2(g, h), �1( f )) + �2(�2(h, �1( f )), g) . (3.10)

We will follow the logic of [20] for the solution of the above
algebraic equation. By construction, the equation (3.10) is
antisymmetric with respect to the permutation of g and h. The
graded symmetry of the �3 bracket, �3(�1( f ), �1(g), h) =
�3(�1(g), �1( f ), h), implies the identity on the l.h.s. of
(3.10):

�3(�1( f ), �1(g), h) − �3(�1( f ), �1(h), g)

+�3(�1(h), �1( f ), g) − �3(�1(h), �1(g), f )

+�3(�1(g), �1(h), f ) − �3(�1(g), �1( f ), h) ≡ 0 .

Which in turn requires the graded cyclicity of r.h.s. of the eq.
(3.10),

G( f, g, h) + G(h, f, g) + G(g, h, f ) = 0 . (3.11)

The latter is nothing but the consistency condition for the eq.
(3.10).

It is remarkable that the consistency condition (3.11) fol-
lows from the previously satisfied L∞ relations, namely
J2( f, g) = 0, and J3( f, g, h) = 0. Indeed, taking the defi-
nition of G( f, g, h), one writes

G( f, g, h) + G(h, f, g) + G(g, h, f )

= �2(�2(�1(h), f ), g) + �2(�2( f, g), �1(h))

+�2(�2(g, �1(h)), f ) + �2(�2(�1(g), h), f )

+�2(�2(h, f ), �1(g)) + �2(�2( f, �1(g)), h)

+�2(�2(�1( f ), g), h) + �2(�2(g, h), �1( f ))

+�2(�2(h, �1( f )), g) + �1(�3(�1( f ), g, h))

+�1(�3( f, �1(g), h)) + �1(�3( f, g, �1(h))) .

Using J2( f, g) = 0, we may push �1 out of the brackets and
rewrite it as

�1
[
�2(�2( f, g), h) + �2(�2(g, h), f ) + �2(�2(h, f ), g)

+�3(�1( f ), g, h) + �3( f, �1(g), h) + �3( f, g, �1(h))
]

= �1 [J3( f, g, h)] ≡ 0 .

Which means that the consistency condition (3.11) holds true
as a consequence of the previously satisfied L∞ relations.

Taking into account (3.11) one may easily check that the
following expression (symmetrization in f and g of the r.h.s.
of the Eq. (3.10)):

�3(�1( f ), �1(g), h) = −1

6

(
G( f, g, h) + G(g, f, h)

)
,

(3.12)

has the required graded symmetry and solves,J3(g, h, �1( f ))
= 0. For �1( f ) = A, and �1(g) = B, one gets,

�3(A, B, f )a = −1

6

(
Gki j

a + Gkji
a

)
Ai B j∂k f, (3.13)

with

Gki j
a = −�im∂m∂a�

jk − 1

2
∂a�

jm∂m�ki − 1

2
∂a�

km∂m�i j .

(3.14)

At this point we would like to stress three main obser-
vations. First, the consistency condition (graded cyclicity)
(3.11) holds true as a consequence of the L∞ relations. Sec-
ond, one needs higher brackets to compensate the violation of
the standard Leibniz rule, which is standard in deformation
quantization. And the last one is that the order of the bracket
�n+1(F, An) in gauge fields An corresponds to the order of
this brackets in the non-commutativity parameter �n .

3.3 Higher brackets and recurrence relations

Once the brackets �3( f, g, A) and �3( f, A, B) are deter-
mined we may proceed to the next L∞ relations and find the
brackets with four, five, etc., entries. First let us discuss the
relations with three gauge parameters, Jn+3( f, g, h, An) =
0. The relation with four entries, J4( f, g, h, A) = 0, can be
represented schematically as follows,

J4 := �1�4 − �4�1 + �3�2 − �2�3 = 0 . (3.15)
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Recall that by the consideration of the degree, �2( f, g) ∈
X0, and �2( f, A) ∈ X−1, and also, �3( f, g, h) = 0, and
�4( f, g, h, A) = 0, since the corresponding brackets belong
to the space X1 which is empty in our construction. Taking
into account now that the bracket, �3( f, g, A) = 0, due to
(3.7), the identity (3.15) becomes,

�4(�1( f ), g, h, A) + �4( f, �1(g), h, A) + �4( f, g, �1(h), A) = 0.

(3.16)

The latter can be satisfied setting, �4( f, g, A, B) = 0. The
same arguments show that if the bracket �2( f, g) satis-
fies the Jacobi identity (3.8), then the L∞ relations with
three gauge parameters, Jn+3( f, g, h, An) = 0, are satis-
fied for, �n+2( f, g, An) = 0, with n ≥ 1. On the other hand,
this means that the closure condition for the gauge algebra
becomes

[δ f , δg]A = δ{ f,g}A. (3.17)

To proceed with the relations with two gauge parame-
ters, Jn+2(g, h, An) = 0, we replace them by the equations,
Jn+2(g, h, �1( f )n) = 0, which in turn can be represented in
the form

�n+2(�1( f )
n, �1(g), h)

−�n+2(�1( f )
n, �1(h), g) = G( f1, . . . , fn, g, h),

(3.18)

where the right hand side, G( f1, . . . , fn, g, h), is defined in
terms of the previously defined brackets �m+2(�1( f )m, �1(g),
h), with m < n. It is symmetric in the first n arguments and
antisymmetric in the last two by the construction. The graded
symmetry of �n+2(�1( f )n, �1(g), h) implies the non-trivial
consistency condition (since G( f1, . . . , fn, g, h) is symmet-
ric in first n arguments, one needs to check the cyclicity rela-
tion with respect to the permutation of the last three slots),

G( f1, . . . , fn, g, h) + G( f1, . . . , fn−1, g, h, fn)

+G( f1, . . . , fn−1, h, fn, g) = 0, (3.19)

which follows from the previous L∞ relations and can be
proved by induction. The solution of the Eq. (3.18) can be
constructed taking the symmetrization of the r.h.s. in the first
n + 1 arguments.

The order by order in � calculations indicates the ansatz
for the brackets,

�n+2

(
f, An+1

)

a

= (n + 1)!(−1)
n(n−1)

2 �
ki1...in+1
a ∂k f Ai1 . . . Ain+1 ,

(3.20)

yielding following expression for the gauge variation,

δ f Aa = ∂a f + {Aa, f } + �k
a(A) ∂k f, (3.21)

where

�k
a(A) =

∞∑

n=1

�k(n)
a , �k(n)

a = �ki1...in
a (x) Ai1 . . . Ain .

(3.22)

According to the slowly varying field approximation we take
into account only the leading order contribution in derivatives
∂ f and ∂A. But we do not restrict the orders in �. The order
of the term �

k(n)
a in the gauge fields A coincides with the

order of this term in deformation parameter �. To determine
�k
a(A) we use the closure condition (3.17). One finds after

simplification that,

δ f
(
δg Aa

) − δg
(
δ f Aa

) − δ{ f,g}Aa

=
(

δ�l
a

δAk
− δ�k

a

δAl
−

(
δba + �b

a

)
∂b�

kl

− ∂b�
l
a �bk + ∂b�

k
a �bl − δ�k

a

δAb
�l
b + δ�l

a

δAb
�k
b

)
∂k f ∂l g,

(3.23)

where we use the notation, ∂b�
l(n)
a = (∂b�

li1...in
a ) Ai1 . . . Ain .

So, the closure condition (3.17) yields the following equation
on �k

a(x, A),

δ�l
a

δAk
− δ�k

a

δAl
=

(
δba + �b

a

)
∂b�

kl + ∂b�
l
a �bk − ∂b�

k
a �bl

+ δ�k
a

δAb
�l
b − δ�l

a

δAb
�k
b .

(3.24)

In what follows we will construct the perturbative in �

solution of the above equation. We substitute the decompo-
sition (3.22) in the Eq. (3.24) and compare the same orders
in � from the left and from the right. In the first order in �

we obtain,

δ�
l(1)
a

δAk
− δ�

k(1)
a

δAl
= Gkl(1)

a := ∂a�
kl , (3.25)

yielding a solution, �
k(1)
a = −∂a�

kl Al/2, which corre-
sponds to (3.5). The second order in � gives,

∂�
l(2)
a

δAk
− ∂�

k(2)
a

δAl
= Gkl(2)

a := −1

2
Gkli

a Ai , (3.26)

where Gkli
a was defined in (3.14). The consistency condition

for the Eq. (3.26) reads,

δGkl(2)
a

δAi
+ δGli(2)

a

δAk
+ δGik(2)

a

δAl
= 0. (3.27)
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It is equivalent to the requirement (3.11) and is satisfied as
a consequence of the L∞ construction as it was discussed in
the previous subsection. A solution of the Eq. (3.26),

�k(2)
a = −1

3
Gkl(2)

a Al = 1

6
Gkli

a Al Ai , (3.28)

represents exactly the contribution of the bracket �3( f, A, A)

defined in (3.13) to the gauge variation (2.7).
In the higher orders in the deformation parameter � the

Eq. (3.24) results in,

∂�
l(n+1)
a

δAk
− ∂�

k(n+1)
a

δAl
= Gkl(n+1)

a ,

Gkl(n+1)
a := 1

2
�b(n)
a ∂b�

kl + ∂b�
l(n)
a �bk − 1

2
∂a�

kb �
l(n)
b

+
n−1∑

m=1

δ�
k(m+1)
a

δAb
�
l(n−m)
b − (k ↔ l).

(3.29)

The consistency condition in this case,

δGkl(n+1)
a

δAi
+ δGli(n+1)

a

δAk
+ δGik(n+1)

a

δAl
= 0, (3.30)

is equivalent to the relations (3.19) which follow from the
L∞ construction. A solution of the equation (3.29),

�k(n+1)
a = − 1

n + 2
Gkl(n+1)

a Al , (3.31)

defines the functions �
l(n+1)
a in terms of the previously deter-

mined �
l(m)
a with, m ≤ n.

The situation here is quite similar to the construction of the
star product in the deformation quantization. For the arbitrary
non-commutativity parameter �ab(x) the best we can do is to
provide the recurrence relations (3.31) for the construction of
the gauge variation (3.21). However for the specific choices
of �, like e.g., the linear one, it is possible to address the
question of the convergence of the series (3.22) and provide
all orders explicit formula for �k

a(A) in (3.21).

4 Non-commutative field dynamics and L∞ structure

In this Section we discuss the consistent deformation of the
field dynamics in the bootstrap approach, considering the
example of the non-commutative deformation of the abelian
Chern–Simons theory. In this case we write the initial brack-
ets as

�1( f ) = ∂a f , �1(A) = εabc ∂b Ac , �2( f, g) = −{ f, g}.
(4.1)

The brackets �n+1( f, An) and �n+2( f, g, An) were deter-
mined in the Sect. 5.48. The rest of the brackets �n(An),
�n+2( f, E, An), and �n+3( f, g, E, An), can be found from
the corresponding l∞ relations.

4.1 Leading order contribution

The first new non-trivial L∞ relation is

J2( f, A) := �1(�2( f, A))−�2(�1( f ), A)−�2( f, �1(A)) = 0 ,

(4.2)

which we rewrite as

�2(�1( f ), A) + �2( f, �1(A)) = �1(�2( f, A)). (4.3)

In the r.h.s. the bracket, �2( f, A) ∈ X−1, is given by (3.5),
while �1(A) is determined in (4.1), so

�1(�2( f, A))

= −εabc{∂b f, Ac} − { f, εabc∂b Ac} − εabc∂b�
kl∂k f ∂l Ac

− 1

2
εabc∂c�

kl∂k∂b f Al − 1

2
εabc∂c�

kl∂k f ∂b Al . (4.4)

The brackets �2(�1( f ), A) and �2( f, �1(A)) in the l.h.s. of
(4.3) need to be determined. The bracket �2( f, E) should be
antisymmetric with respect to the permutation of its argu-
ments, so we identify

�2( f, �1(A)) = −{ f, εabc∂b Ac}, thus �2( f, E) = −{ f, Ea}.
(4.5)

The rest of the Eq. (4.3) can be written in the form

�2(�1( f ), A)

= Qabck
1 ∂k f ∂b Ac + Sabck1 Ak ∂b∂c f + T abckl

1 ∂k Ab ∂l∂c f ,

(4.6)

where the coefficient functions Pai jk
1 , Qai jk

1 and Rai jkl
1 are

given by

Qabck
1 = εacm∂m�kb − 1

2
εabm∂m�kc,

Sabck1 = − 1

4

(
εabm∂m�ck + εacm∂m�bk

)
,

T abckl
1 = − εabc �kl .

(4.7)

The solution of the Eq. (4.6) will be constructed follow-
ing the logic of the previous section. There is a non-trivial
consistency condition coming from the graded symmetry of
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the bracket �2, which is satisfied as a consequence of the pre-
viously solved L∞ relations. The relation J2( f, �1(g)) = 0,
can be written as

�2(�1( f ), �1(g)) = �1(�2( f, �1(g))). (4.8)

The graded symmetry of �2 bracket,

�2(�1( f ), �1(g)) = �2(�1(g), �1( f )), (4.9)

implies the consistency condition on the right hand side of
(4.8),

�1(�2( f, �1(g))) − �1(�2(g, �1( f ))) = 0. (4.10)

The later is automatically satisfied due to L∞ relation,
J2( f, g) = 0, since

�1(�2( f, �1(g))) − �1(�2(g, �1( f )))

= �1 [�1(�2( f, g)) − J2( f, g)] ≡ 0. (4.11)

In the specific case of the deformation of Chern–Simons the-
ory, i.e., Eq. (4.4) the relation (4.10) implies

Qabck
1 ∂k f ∂b∂cg + Sabck1 ∂kg ∂b∂c f + T abckl

1 ∂k∂bg ∂l∂c f

= Qabck
1 ∂kg ∂b∂c f + Sabck1 ∂k f ∂b∂cg + T abckl

1 ∂k∂b f ∂l∂cg,

(4.12)

which in turn yields the following relations between the coef-
ficients Qaibck

1 , Sabck1 and T abckl
1 :

Sabck1 = Qa(bc)k
1 , and T abckl

1 = T acblk
1 . (4.13)

We stress that these relations can be checked explicitly using
just (4.7), however they follow from the L∞ algebra con-
structed so far. Using (4.13) the origynal equation (4.6)
becomes

�2(�1( f ), A) = Qabck
1

(
∂k f ∂b Ac+Ak ∂b∂c f

)+T abckl
1 ∂k Ab ∂l∂c f ,

(4.14)

implying the solution

�2(B, A) = Qabck
1

(
Bk ∂b Ac + Ak ∂bBc

) + T abckl
1 ∂k Ab ∂l Bc

= − εabc{Ab, Bc} + εacm∂m�kb(Ak∂bBc + Bk∂b Ac
)

− 1

2
εabm∂m�kc(Ak∂bBc + Bk∂b Ac

)
,

(4.15)

which is in the perfect agreement with our previous result
[9].

4.2 Next to the leading order

At this order there appears higher brackets �3. The expres-
sions for �3(A, f, g) and �3(A, B, f ) were found in the pre-
vious section. Taking into account that now X−2 is non triv-
ial, one may also have non-vanishing brackets �3(E, f, g) ∈
X−1, �3(E, A, f ) ∈ X−2 and �3(A, B,C) ∈ X−2.

Let us start with �3(E, f, g). Such a term contributes to
the closure condition, J3( f, g, A) = 0, which is however
satisfied without it. Therefore, we can set �3(E, f, g) = 0.
Next we consider the L∞ relation, J3(E, f, g) = 0, i.e.,

0 = �2(�2(E, f ), g) + �2(�2(g, E), f ) + �2(�2( f, g), E)

+�3(E, �1( f ), g) + �3(E, f, �1(g)). (4.16)

Since, �2(E, f ) = {Ea, f }, by (4.5), the first line in the
above equation vanishes and one derives,

�3(E, A, f ) = 0. (4.17)

Finally, to define�3(A, B,C), one has to solve,J (A, B, f )
= 0, written as,

�3 (A, B, �1( f )) = r3(A, B, f ) ,

r3(A, B, f ) = − �1(�3(A, B, f )) − �3(�1(A), B, f )

+ �3(A, �1(B), f ) − �2(�2(A, B), f )

− �2(�2( f, A), B) + �2(�2(B, f ), A).

(4.18)

By the construction the r.h.s., r3(A, B, f ), is symmetric with
respect to the permutation of A and B. As before, the graded
symmetry of the �3 bracket,

�3 (A, �1(g), �1( f )) = �3 (A, �1( f ), �1(g)) , (4.19)

implies a non-trivial consistency condition on the r.h.s. of
(4.18),

r3(A, �1(g), f ) = r3(A, �1( f ), g). (4.20)

Using the previously satisfied L∞ relations, J2( f, g) = 0,
and, J2(A, f ) = 0, one may check that,

r3(A, �1(g), f ) − r3(A, �1( f ), g)

= �1 (J3(g, f, A)) − J3(�1(A), g, f ) ≡ 0. (4.21)

Again the consistency condition (4.20) is satisfied as a con-
sequence of L∞ construction.

Now let us discuss the solution of the Eq. (4.18) for the
non-commutative deformation of CS theory. The calculation
of the r.h.s. is quite involved, but straightforward. We repre-
sent it as
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�3 (A, B, �1( f ))

= Qai jkl
2

(
Ai ∂ j Bk ∂l f + Bi ∂ j Ak ∂l f

)

+Sai jkl2

(
Ai Bl ∂ j∂k f + Bi Al ∂ j∂k f

)

+T ai jklm
2

(
∂i f ∂ j Ak ∂l Bm + ∂i f ∂ j Bk ∂l Am

)

+Uai jklm
2

(
Ai ∂ j Bk ∂l∂m f + Bi ∂ j Ak ∂l∂m f

)
,

(4.22)

where

Qai jkl
2 = εabj

(
1

2
�lm∂b∂m�ki

+ +1

6
�km∂b∂m�il + 1

6
�im∂b∂m�kl

+ 1

6
∂b�

km∂m�il − 1

3
∂b�

im∂m�kl
)

+ εabk
(

�lm∂b∂m�i j − 1

2
� jm∂m∂m�il

+ ∂b�
im∂m� jl − 1

2
∂b�

jm∂m�il
)

+ εabc
(

1

2
∂b�

i j∂c�
kl − 1

2
∂b�

ik∂c�
jl
)

,

Sai jkl2 = εabl
(

1

6
�im∂b∂m� jk + 1

3
∂b�

im∂m� jk
)

,

T ai jklm
2 = 1

2
εabk� jl∂b�

im,

Uai jklm
2 = 1

2
εabk� jm∂b�

il − 1

2
εabm� jl∂b�

ik . (4.23)

The Eq. (4.20) implies the following relations on the coeffi-
cient functions

Qai jkl
2 = Qal jki

2 ,

Qai jkl
2 = Sai jkl2 + Sal jki2 ,

Uai jk(lm)
2 = T ai jk(lm)

2 + T ai(lm) jk
2 .

(4.24)

We stress that the above relations are not manifest from
the explicit form of the coefficient functions Pai jkl

2 , Qai jkl
2 ,

Rai jklm
2 and Sai jk(lm)

2 given by (4.23) correspondingly.
They follow from the L∞ relations, J3(g, f, A) = 0,
J3(E, g, f ) = 0, etc., which were also used to obtain the
Eq. (4.20). The situation here is absolutely the same as in the
previous Section for the construction of Lgauge∞ -algebra. The
solution of the L∞ relations in each given order n imply the
non-trivial consistency conditions, which in turn are satisfied
due to the previously solved lower order L∞ relations.

The following expression

�3 (A, B,C)

= 1

2
Qai jkl

2

(
Ai ∂ j Bk Cl + Ci ∂ j Ak Bl + Bi ∂ jCk Al

+ Ci ∂ j Bk Al + Bi ∂ j Ak Cl + Ai ∂ jCk Bl
)

+ T ai jklm
2

(
Ai ∂ j Bk ∂lCm + Ci ∂ j Ak ∂l Bm + Bi ∂ jCk ∂l Am

+ Ci ∂ j Bk ∂l Am + Bi ∂ jCk ∂l Bm + Ai ∂ jCk ∂l Bm
)
,

(4.25)

by construction is symmetric in all arguments and due to the
relations (4.24) satisfies the Eq. (4.22).

4.3 Higher order relations

Following the same logic as in the beginning of the
Sect. 3.3 we conclude that the L∞ relations of the type,
Jn(An−3E, f, g) = 0, are satisfied for, �n(An−2, E, f ) = 0,
for n > 0. Thus, we conclude that the condition (2.12) on
the gauge variation of the field equation, F = 0, defined by
(2.8) becomes

δ f F = �2( f,F ) = {F , f }. (4.26)

That is, the gauge variation of the field equation is propor-
tional to the field equation itself, i.e., it is gauge invari-
ant on-shell. The proper field equations, F = 0, are con-
structed from the brackets �n(An) which should be deter-
mined from the L∞ relations, Jn( f, An−1) = 0. The latter
can be schematically represented in the form

�n

(
An−1, �1( f )

)
= rn

(
An−1, f

)
, (4.27)

where the r.h.s. rn
(
An−1, f

)
written in terms of the lower

order brackets �m , m < n, by the construction is symmetric
in first n − 1 arguments. Like in the case of first two orders
given by the Eqs. (4.6) and (4.22) correspondingly, the Eq.
(4.27) has a non-trivial consistency condition. The graded
symmetry of the �n-bracket on the l.h.s. of (4.27) implies the
relation,

rn
(
An−2, �1(g), f

)
= rn

(
An−2, �1( f ), g

)
. (4.28)

This relation can be proved by induction. To construct a solu-
tion of the Eq. (4.27) one may follow the prescription of the
previous subsection, in particular (4.22) and (4.25).

The form of the lower order brackets indicates the anzats,

�n
(
An)a = n!(−1)

n(n−1)
2

(
Pabc(n−1)(A) ∂b Ac + Rabc(n−2) (A) {Ab, Ac}

)
,

(4.29)

where,

Pabc(0) = εabc, Pabc(n) = Pabci1...in (x) Ai1 . . . Ain ,

Rabc(0) = 1

2
εabc, Rabc(n) = Rabci1...in (x) Ai1 . . . Ain .

(4.30)
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The latter in turn means that for the l.h.s. of the field equation
one writes,

Fa = Pabc (A) ∂b Ac + Rabc (A) {Ab, Ac} , (4.31)

with

Pabc (A) =
∞∑

n=0

Pabc(n), and Rabc (A) =
∞∑

n=0

Rabc(n) ,

(4.32)

The notations used here are similar to those in (3.22). The
order of the term Pabc(n) in the gauge fields An coincides
with the order of this term in the deformation parameter �n .
By construction, Rabc (A) should be antisymmetric in b and
c, since it is contracted with the Poisson bracket, {Ab, Ac}.

To determine the functions Pabc(A) and Rabc(A) we use
the gauge covariance condition (4.26). Introducing the nota-
tion

δ f = δ̄ f + { · , f }, (4.33)

one obtains in the l.h.s. of (4.26):

δ fFa = (
δ̄ f P

abc) ∂b Ac + Pabc ∂b
(
δ̄ f Ac

) + Pabc ∂b�
kl ∂k Ac ∂l f

+ Pabc {Ac, ∂b f } + {Pabc ∂b Ac, f }
+ (

δ̄ f R
abc) {Ab, Ac} + {Rabc, f } {Ab, Ac}

+ 2 Rabc {
δ̄ f Ab, Ac

} + Rabc {{Ab, f }, Ac}
+ Rabc {Ab, {Ac, f }} .

(4.34)

While the r.h.s. of (4.26) is just given by

{Pabc ∂b Ac + Rabc {Ab, Ac} , f } . (4.35)

Taking into account that due to Jacobi identity,

Rabc ({Ab, {Ac, f }} + {Ac, { f, Ab}} + { f, {Ab, Ac}}
) ≡ 0 ,

(4.36)

the Eq. (4.26) for the ansatz (4.31) becomes
(
δ̄ f P

abc) ∂b Ac + Pabc ∂b
(
δ̄ f Ac

) + Pabc ∂b�
kl ∂k Ac ∂l f

+Pabc {Ac, ∂b f } + (
δ̄ f R

abc) {Ab, Ac}
+2 Rabc {

δ̄ f Ab, Ac
} = 0 . (4.37)

We set separately

(
δ̄ f P

abc) ∂b Ac + Pabc ∂b
(
δ̄ f Ac

)+ Pabc ∂b�
kl ∂k Ac ∂l f = 0 ,

(4.38)

and

Pabc {Ac, ∂b f }+
(
δ̄ f R

abc) {Ab, Ac}+2 Rabc {
δ̄ f Ab, Ac

} = 0 .

(4.39)

Let us analyze first the Eq. (4.38). We remind that by (3.21)
and (4.33), δ̄ f Aa = ∂a f +�k

a(A) ∂k f . So the Eq. (4.38) can
be written as

[
δPabc

δAl

(
δkl + �k

l

)
+ Pabl δ�k

l

δAc
+ Palc ∂l�

bk

]

∂b Ac ∂k f

+ Pabc
(
δkc + �k

c

)
∂b∂k f = 0 .

(4.40)

Thus, we obtain two separate conditions on Pabc:

δPabc

δAl

(
δkl + �k

l

)
+ Pabl δ�k

l

δAc
+ Palc ∂l�

bk = 0, (4.41)

and

Pabc
(
δkc + �k

c

)
+ Pakc

(
δbc + �b

c

)
= 0. (4.42)

From this point we act in the same way as in the Sect. 3.3,
we will construct the perturbative in � solution of the above
equations using the expression for�k

l obtained in the previous
section. The Eq. (4.41) in the first order in � reads,

−δPabc(1)

δAk
= Qabck(1) := εacm∂m�kb − 1

2
εabm∂m�kc.

(4.43)

The r.h.s. of the above equation is exactly the coefficient
Qabck

1 determined in (4.7). Its solution,

Pabc(1) = −Qabck(1)Ak, (4.44)

reproduces the contribution to the equations of motion (2.8)
from the corresponding part of the bracket �2(A, A) defined
in (4.15). This choice for Pabc(1) also satisfies the Eq. (4.41)
up to the first order in �. It can be checked explicitly, but
also follows from the first of the Eq. (4.13), that is from the
L∞ construction.

In the higher orders in � the Eq. (4.41) results in,

−δPabc(n+1)

δAk
= Qabck(n+1),

Qabck(n+1) :=
n∑

m=1

δPabc(n+1−m)

δAl
�
k(m)
l
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+
n∑

m=0

Pabl(n−m) δ�k(m+1)

δAc
+ Palc(n)∂l�

bk.

(4.45)

The consistency condition for this equation reads,

δQabck(n+1)

δAl
= δQabcl(n+1)

δAk
. (4.46)

It follows from the relation (4.28). A solution is

Pabc(n+1) = − 1

n + 1
Qabck(n+1)Ak . (4.47)

As before, for arbitrary non-commutativity parameter �kl(x)
we can only provide the recurrence relations (4.47) for defi-
nition of the functions Pabc(n+1). In the next Section we will
construct an explicit all orders expression for Pabc(A) for
linear �.

Once Pabc(A) is found, from (4.42) one determines,

Rabc = 1

2

[
(δ + �)−1

]b

k
Pakc. (4.48)

The antisymmetry, Rabc = −Racb, follows from (4.42).

5 Lie-algebra like deformation

The main goal of this Section is to work out the most simple
and at the same time non-trivial situation taking the non-
commutativity parameter � to be linear function of the coor-
dinates and satisfying the Jacobi identity. Physically it cor-
responds, for example, to the Q-flux backgrounds in open
string theory [22].

5.1 NC su(2)-like deformation

We choose the non-commutativity parameter, �i j (x) =
2 θ εi jk xk , which correspond to the rotationally invariant 3d
NC space [23–27]. For the brevity of the calculations in most
cases we will suppress the symbol θ in this and the follow-
ing subsections. However, we will restore θ in the Sect. 5.3
where we provide the summary of the main findings of this
section. The corresponding Poisson bracket is

{ f, g} = 2 εi jk xk ∂i f ∂ j g. (5.1)

For the first two brackets with one gauge parameter one finds,

�2( f, A)a = {Aa, f } + εa
bc Ab∂c f

�3( f, A, A)a = −2

3

(
∂a f A

2 − ∂b f A
b Aa

)
,

(5.2)

with A2 = AbAb. Then, using the recurrence relations (3.31)
we observe that the brackets �n+3( f, An) with the odd n
vanish, while for even n they have the structure

�n+3( f, A
n) =

(
∂a f A

2 − ∂b f A
b Aa

)
χn(A

2), (5.3)

for some monomial function χn(A2). The combination of
(5.2) and (5.3) in (3.21) results in the following ansatz for
the gauge variation:

δ f Aa = ∂a f + {Aa, f } + εabc Ab∂c f

+
(
∂a f A

2 − ∂b f A
b Aa

)
χ(A2), (5.4)

where the function, χ(A2) = ∑
n χn(A2), should be deter-

mined from the closure condition (3.17).
For the convenience of the reader here we repeat the cal-

culation (3.23) for the specific form of the gauge variation
(5.4),

δ f
(
δg Aa

) − δg
(
δ f Aa

) − δ{ f,g}Aa

= {δ f Aa, g} + εabcδ f Ab∂cg

+
(

2∂agAbδ f A
b − ∂bgδ f A

baa − ∂bgA
bδ f Aa

)
χ(A2)

+
(
∂agA

2 − ∂bgA
b Aa

)
χ ′(A2)2Acδ f A

c

−{δg Aa, f } − εabcδg Ab∂c f

−
(

2∂a f Abδg A
b − ∂b f δg A

baa − ∂b f A
bδg Aa

)
χ(A2)

−
(
∂a f A

2 − ∂b f A
b Aa

)
χ ′(A2)2Acδg A

c

−∂a{ f, g} − {Aa, { f, g}} − εabc Ab∂c{ f, g}
−

(
∂a{ f, g}A2 − ∂b{ f, g}AbAa

)
χ(A2). (5.5)

After tedious but straightforward calculations we rewrite the
r.h.s. of (5.5) as
[
∂ag∂b f A

b − ∂a f ∂bgA
b
]

(
1 + 3χ(A2) + A2χ2(A2) + 2A2χ ′(A2)

)
. (5.6)

That is, requiring that

2tχ ′(t) + 1 + 3χ(t) + tχ2(t) = 0, χ(0) = −1

3
, (5.7)

we will obtain zero in the r.h.s. of (5.5). The solution of (5.7)
is

χ(t) = 1

t

(√
t cot

√
t − 1

)
. (5.8)

Thus, we have obtained in (5.4) and (5.8) with, t = θ2A2,
an explicit form of the non-commutative su(2)-like defor-
mation of the abelian gauge transformations in the slowly
varying field approximation. Following the lines described in
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[28] this result can be generalized for the non-commutative
deformations along any linear Poisson structure �i j (x).

5.2 Non-commutative Chern–Simons theory

The initial data in this case were specified in (4.1). The brack-
ets �2(A, A) and �3(A3) were calculated in (4.15) and (4.25)
correspondingly. The resulting expression for the NC su(2)-
like deformation of the abelian Chern–Simons equations of
motion up to the order O(�3) is given by:

F a := εabc∂b Ac + 1

2
εabc{Ab, Ac}

+ θ(2Ab∂a Ab − Aa∂b Ab − Ab∂b A
a)

+ θ2
[
−8

3
εabc A2∂b Ac + 2

3
εabm Am Ac ∂b Ac

− 2 εacm Am Ab∂b Ac + 2 εbcm Am Aa∂b Ac

]

− θ{A2, Aa} + O(θ3) = 0 . (5.9)

Definition of the P-term

Taking into account an explicit form of the gauge variation
δ f Aa given by (5.4), the Eqs. (4.41) and (4.42) in case of
linear � become,

δPabc

δAe

(
1 + A2 χ

) + δPabc

δAm

(
εmne An − Am Ae χ

)

+ Pabm εcem + 2 Pamc εbem + 2 Pabe Ac (
χ + A2 χ ′)

− Pabc Ae χ − Pabm Am δce χ − 2 Pabm Am Ac Ae χ ′ = 0,

(5.10)

and

(
Pabc + Pacb) (

1 + A2 χ
) − Pabm εcnm An − Pacm εbnm An

− Pabn An Ac χ − Pacn An Ab χ = 0.

(5.11)

Again the lower order brackets �n(An) indicate the anzatz

Pabc (A) = εabc F
(
A2

)
+ εabm Am Ac G

(
A2

)

+ εacm Am Ab H
(
A2

)

+ εbcm Am Aa J
(
A2

)
+ Aa Ab Ac K

(
A2

)

+ Aa δbc L
(
A2

)
+ Ab δac M

(
A2

)

+ Ac δab N
(
A2

)
.

(5.12)

The Eq. (5.11) implies the following relations on the coeffi-
cient functions:

G + H
(

1 + A2 χ
)

− χ F − M = 0,

K − χ (L + M) − J − H = 0,

L
(

1 + A2 χ
)

+ F + A2 J = 0,

M
(

1 + A2 χ
)

+ N − F + A2 H = 0.

(5.13)

Our strategy is to substitute (5.12) in (5.10) and collect the
coefficients at the different powers of fields A, modulo the
A2. Starting with a quartic in A contribution, Aa Ab Ac Ae,
then cubic in A structures, like εabm Am Ac Ae, etc. down to
the zero order in A terms like δab δce. Equating to zero these
coefficients we will obtain the system of differential equa-
tions on the coefficient functions F, . . . , N . We stress that
there are algebraic relations involving the Levi-Civita tensors
εabc and vector fields Ae described in the appendix. Using
them we will reduce the number of different structures and
thus the number of the equations on F ,G, etc. These relations
guarantee that the resulting system of differential equations
is not overfull. The Eq. (5.10) does have the solution.

We start writing a term quartic in A term in the l.h.s. of
(5.10):

Aa Ab Ac Ae
[
2 K ′ − 2 χ K − 2 χ ′ (

L + M + A2 K
)

+ 2 A2 χ ′ K
]
.

(5.14)

The cubic in the field A contribution is given by

εabm Am Ac Ae
[
2 G ′ − χ G + 2 A2 χ ′ G

]

+ εacm Am Ab Ae [
2 H ′ − 3χ H

]

+ εbcm Am Aa Ae [
2 J ′ − 3 χ J

]

+ εaem Am Ab Ac
[
2

(
χ + A2 χ ′) H − K

]

+ εbem Am Aa Ac
[
2

(
χ + A2 χ ′) J + K

]
. (5.15)

At this point for the first time we make use of the algebraic
relation from the appendix to reduce the number of structures.
Namely employing the identity

εaem Am Ab − εbem Am Aa = −εabe A2 + εabm Am Ae,

(5.16)

and setting, J = −H , one rewrites (5.15) as

εabm Am Ac Ae

[
2 G ′ − χ G + 2 A2 χ ′ G + 2

(
χ + A2 χ ′) H − K

]

+ εacm Am Ab Ae [
2 H ′ − 3χ H

]
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+ εbcm Am Aa Ae [
2 J ′ − 3 χ J

]

+ εabe Ac
[
A2 K − 2 A2

(
χ + A2 χ ′) H

]
. (5.17)

We stress that now there has appeared the linear in A contri-
bution coming from the cubic ones.

We continue with the quadratic in the fields A terms in the
l.h.s. of (5.10),

δae Ab Ac
[
(1 + A2χ) K + G + 2(χ + A2χ ′) M

]

+ δbe Aa Ac
[
(1 + A2χ) K + G + 2(χ + A2χ ′) L

]

+ δce Aa Ab [K − J − H − χ(L + M)]

+ δbc Aa Ae [
2 L ′ − 2χL + J

]

+ δac Ab Ae [
2 M ′ − 2χM − H

]

+ δab Ac Ae [
2 N ′ − 2G

]

+ εacm Amεben An H − εaem Amεbcn An J. (5.18)

Using the identity (7.5) from the appendix which we write
here for the convenience of the reader,

εacm Amεben An

=
(
δab δce − δae δbc

)
A2

+ δbc Aa Ae − δce Aa Ab − δab Ac Ae + δae Ab Ac,

(5.19)

we rewrite (5.18) as

δab δce A2 [H − J ] − δae δbc A2 H + δac δbe A2 J

+ δae Ab Ac
[
(1 + A2χ) K + G + 2(χ + A2χ ′) M + H

]

+ δbe Aa Ac
[
(1 + A2χ) K + G + 2(χ + A2χ ′) L − J

]

+ δce Aa Ab [K − J − H − χ(L + M) − H + J ]

+ δbc Aa Ae [
2 L ′ − 2χL + J + H

]

+ δac Ab Ae [
2 M ′ − 2χM − H − J

]

+ δab Ac Ae [
2 N ′ − 2G − H + J

]
. (5.20)

At this point it is convenient to invert the order. First we
will analize the zero order in A contributions in the Eq. (5.10)
and only then the linear in the fields A terms. Taking into
account the first line of (5.20) the zero order in A terms in
the l.h.s. of (5.10) are given by

δac δbe
[
F +

(
1 + A2 χ

)
M + J

]

+ δae δbc
[
F +

(
1 + A2 χ

)
L − H

]

+ δab δce [N − 2F + H − J ] . (5.21)

The significant simplification occurs if we set

H = −J = 0. (5.22)

In order to the Eq. (5.10) be satisfied the coefficients at the
different structures in the l.h.s. should be equal to zero. Thus
from (5.21) we get

L = M = − F

1 + A2 χ
, and N = 2 F . (5.23)

Equating to zero the coefficient at δce Aa Ab in (5.20) one
finds,

K = χ (L + M). (5.24)

Now let us return to the linear in A contributions to the
left hand side of the Eq. (5.10). Taking into account (5.17) it
can be written as

εabc Ae [
2 F ′ − χ F

]

+ εabe Ac
[(

1 + A2 χ
)
G + 2 N + 2 (χ + A2 χ ′) F

+ A2 K − 2 A2
(
χ + A2 χ ′) H

]

+ εace Ab
[(

1 + A2 χ
)
H + M

]

+ εbce Aa
[(

1 + A2 χ
)
J − L

]

+ εabm Am δce [G − χ F]

+ εacm Am

(
1 + A2 χ

)
H − εaem Am δbc L

+ εbcm Am δae
(

1 + A2 χ
)
J + εbem Am δac M.

(5.25)

Here we recall that because of the algebraic identities from
the appendix not all structures in the above expression
are independent. Now using these identities and previously
defined coefficients we will reduce the number of terms in
(5.25). First, using (7.4) and (5.23) we get rid of the terms,

−εaem Am δbc L + εbem Am δac M,

substituting them with,

εabe Ac L − εabm Am δec L .

Then we utilize the identity (7.1) to convey the terms,

εace Ab M − εbce Aa L ,

through the

−εabc Ae L + εabe Ac L .
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We use that, H = −J = 0, from (5.22), and also notice that
due to (5.23) and (5.24) the coefficients K , L and F satisfy
the relation,

2 L + A2 K = −2 F,

We conclude that the linear in A contribution to the l.h.s. of
the Eq. (5.10) given initially by (5.25) becomes,

εabc Ae [
2 F ′ − χ F − L

]

+ εabe Ac
[(

1 + A2 χ
)
G + 2 F + 2 (χ + A2 χ ′) F

]

+ εabm Am δce [G − χ F − L] .

(5.26)

Again we set to zero the coefficients in (5.26) and obtain
the relations

2 F ′ = χ F + L . (5.27)
(

1 + A2 χ
)
G + 2 F + 2 (χ + A2 χ ′) F = 0, (5.28)

and

G = χ F + L , (5.29)

The solution of the Eq. (5.27) with the initial condition,
F(0) = 1, is

F(t) = sin
√
t cos

√
t√

t
. (5.30)

The relation (5.29) defines the function G in terms of pre-
viously found ones χ and F . The Eq. (5.28) is satisfied as
a consequence of the relation (5.29) and the differential Eq.
(5.7). The same happens, for exemple, with the equation,

L ′ − χ L = 0, (5.31)

resulting from the quadratic contribution (5.20). To show
(5.31) one needs (5.7), (5.23) and (5.27). The careful check
shows that the rest of the coefficients also vanishes. We stress
that in order to the Eq. (5.10) hold the function χ(t) cannot
be arbitrary, but necessarily the one which guarantees the
condition (3.17), i.e., [δ f , δg]A = δ{ f,g}A.

Definition of R-term

Now using (5.4) and (5.12) in (4.48) we obtain after simpli-
fication,

Rabc (A) =
(
εabc + δab Ac − δac Ab

)
S

(
A2

)

+
(
εabm Am Ac − εacm Am Ab

)
T

(
A2

)
,

(5.32)

where

S = F

2
(
1 + A2 χ

) , and T = χ F

2
(
1 + A2 χ

) .

(5.33)

Comparison to the lower order brackets

As a consistency check let us calculate the first order contri-
butions to the equations of motion. Since

L = M = − sin2 √
t

t
, S = V = sin2 √

t

2t
, (5.34)

one finds, L(0) = M(0) = −1. Then N (0) = 2F(0) = 2,
and S(0) = 1/2, so the first order contribution is given by

2Ab∂a Ab − Aa∂b Ab − Ab∂b Aa + 1

2
εabc{Ab, Ac}, (5.35)

which is in the perfect agreement with (5.9). Now,

F ′(0) = −2

3
, G(0) = −4

3
, V (0) = 1

2
, (5.36)

which results in

−2

3
εabc A2∂b Ac − 4

3
εabm Am Ac ∂b Ac + {Aa A

2}. (5.37)

The term with the Poisson bracket is exactly the same as in
(5.9), but the coefficients at the first two terms are different.
However, adding to the (5.37) the algebraic identity (7.2)
from the Appendix multiplied by the factor −2,

−2 εabc A2 + 2 εbcm Am Aa − 2 εacm Am Ab + 2 εabm Am Ac ≡ 0,

we arrive exactly to the Eq. (5.9).

5.3 Non-commutative field strength

So far working in 3d we have constructed a vector Fa(A),
which transforms covariantly under the NC gauge transfor-
mations (5.4), i.e., δ fFa = { f,Fa}. The commutative limit
of this vector gives the l.h.s. of the abelian Chern–Simons
equations, limθ→0 Fa(A) = εabc ∂b Ac. Now, using the Levi-
Ciivita epsilon we may define the tensor

Fab := εabcFc = Pabcd (A) ∂c Ad + Rabcd (A) {Ac, Ad} ,

(5.38)

which also transforms covariantly, δ fFab = { f,Fab},
and reproduces in the commutative limit the abelian field
strength,

lim
θ→0

Fab = ∂a Ab − ∂b Aa . (5.39)
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We call this tensor the non-commutative field strength. Its
explicit form is given by,

Fab = ∂a
(
Ab F

(
θ2A2)

)
− ∂b

(
Aa F

(
θ2A2))

+ θ εabc∂d
(
Ac Ad L

(
θ2A2)) + θ F

(
θ2A2)εabc ∂c A

2

− 1

2
{AaL

(
θ2A2), Ab

}
− 1

2
{Aa, AbL

(
θ2A2)}

− θ

2
L
(
θ2A2)εabc {Ac, A

2} ,

(5.40)

where

F
(
θ2A2) = sin

(
2
√

θ2A2
)

2
√

θ2A2
, and

L
(
θ2A2) = − sin2

√
θ2A2

θ2A2 .

Thus, just like in the commutative case, the non-commutative
equations of motion, Fa(A) = 0, are satisfied if the non-
commutative field strength vanishes everywhere, Fab(A)

= 0.

5.4 Action principle

To check whether exist an action S yielding the field equa-
tions, Fa = 0, we use the criterium of second variational
derivatives. If the equations are Lagrangian, i.e., Fa =
δS/δAa , then

δFa

δAb
= δFb

δAa
. (5.41)

One may easily check that, for Fa = Pabc (A) ∂b Ac +
Rabc (A) {Ab, Ac} , this condition does not hold. In particu-
lar, because Pabc given by (5.12) is not an antisymmetric in
a and c.

On the other hand, there is a known result about the rigidity
of the Chern–Simons action [29], meaning essentially that
up to the field redefinition any consistent deformation of the
Chern–Simons action is proportional to the trivial one. Thus
the absence of the action principle for the Eq. (4.31) means
that possibly we obtained here some non-trivial deformation
of the Chern–Simons theory.

5.5 Summary of the results

Let us summarise the main results of the Sect. 5. Consider the
three dimensional space endowed with the Poisson bracket,

{xi , x j } = 2 θ εi jk xk . (5.42)

In the Sect. 5.1 we have constructed the non-commutative
deformation of the abelian gauge transformation, given by,

δ f Aa = ∂a f + {Aa, f } + θ εabc Ab∂c f

+θ2
(
∂a f A

2 − ∂b f A
b Aa

)
χ

(
θ2A2

)
, (5.43)

where

χ(t) = 1

t

(√
t cot

√
t − 1

)
, χ(0) = −1

3
, (5.44)

which close the algebra

[δ f , δg]Aa = δ{ f,g}Aa . (5.45)

The field equations covariant under the gauge transforma-
tion (5.43) and reproducing the abelian Chern–Simons equa-
tions in the commutative limit were obtained in the Sect. 5.2.
An explicit form is,

Fa := Pabc (A) ∂b Ac + Rabc (A) {Ab, Ac} = 0, (5.46)

where

Pabc (A) = εabc F
(
θ2A2

)
+ θ2εabm Am Ac G

(
θ2A2

)

+θ3Aa Ab Ac K
(
θ2A2

)

+θ Aa δbc L
(
θ2A2

)
+ θ Ab δac M

(
θ2A2

)

+θ Ac δab N
(
θ2A2

)
, (5.47)

and

Rabc (A) = εabc S
(
θ2A2

)

+θ2
(
εabm Am Ac − εacm Am Ab

)
T

(
θ2A2

)

+θ
(
δab Ac − δac Ab

)
S

(
θ2A2

)
, (5.48)

and the coefficient functions are determined in (5.22–5.24),
(5.29), (5.30) and (5.33) as

F(t) = N (t)

2
= sin

√
t cos

√
t√

t
,

G(t) = 2
√
t cos 2

√
t − sin 2

√
t

2 t
√
t

,

K (t) = −4 T (t) = −2 sin
√
t

t2

(√
t cos

√
t − sin

√
t
)

,

L(t) = M(t) = −2 S(t) = − sin2 √
t

t
. (5.49)

The Eq. (5.46) are non-Lagrangian and as in the commu-
tative case are equivalent to the requirement that the non-
commutative field strength (5.40) should vanish everywhere.
Further physical properties and applications will be discussed
elsewhere.
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6 Conclusions

To construct the L∞ structure with given initial terms one
has to solve the L∞ relations, Jn = 0. The key observation
we made in this work is that in each given order n there is
the consistency condition of the equation, Jn = 0, which
is satisfied as a consequence of the previously solved L∞
relations, Jm = 0, m < n. Using this observation we were
able to derive the recurrence relations for the construction of
the L∞ algebra describing the NC deformation of the abelian
Chern–Simons theory in the slowly varying field approxima-
tion. Using these recurrence relations we made a conjecture
regarding the explicit all orders formula for the NC su(2)-like
deformation of the gauge transformations δ f A and the cor-
responding field equations, F(A) = 0. The functional coef-
ficients in the proposed ansatz were fixed from the closure
conditions of the gauge algebra (3.17) and the requirement
of the gauge covariance of the equations of motion (4.26)
correspondingly.

We conclude that the problem formulated in the introduc-
tion regarding the existence of the solution to the L∞ boot-
strap program has a positive answer. Moreover we were able
to find an explicit example of such a solution. Thus we can
see that L∞ algebra is not only a correct mathematical frame-
work to deal with the deformations but also is a powerful tool
for the construction of these deformations.
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7 Appendix: Important algebraic relations

Since we are in 3d, for any vector Ae one may check that,

εabc Ae − εbce Aa + εcea Ab − εeab Ac ≡ 0. (7.1)

The latter reflects the fact that in 3d any totally antisymmetric
tensor of rank four vanishes. Contracting the above identity
with Ae we arrive at,

εabc A2 − εbcm Am Aa + εacm Am Ab − εabm Am Ac ≡ 0.

(7.2)

Taking the derivative of (7.2) with respect to Ae one finds,

2 εabc Ae − εabe Ac − εabm Am δce

+ εace Ab + εacm Am δbe − εbce Aa − εbcm Am δae = 0.

(7.3)

Now using (7.1) in (7.3) we end up with

εabc Ae − εabm Am δce + εacm Am δbe − εbcm Am δae ≡ 0.

(7.4)

One more identity we need is

εacm Amεben An =
(
δab δce − δae δbc

)
A2

+ δbc Aa Ae − δce Aa Ab

− δab Ac Ae + δae Ab Ac.

(7.5)

It can be obtained from (7.2) contracting it with εcen and then
renaming the indices.

References

1. S. Doplicher, K. Fredenhagen, J.E. Roberts, The quantum structure
of space-time at the Planck scale and quantum fields. Commun.
Math. Phys. 172, 187 (1995)

2. N. Seiberg, E. Witten, String theory and noncommutative geometry.
JHEP 9909, 032 (1999)

3. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer,
Quantum mechanics as a deformation of classical mechanics. Lett.
Math. Phys. 1, 521 (1977)

4. C. Hull, R.J. Szabo, Noncommutative gauge theories on D-branes
in non-geometric backgrounds. arXiv:1903.04947 [hep-th]

5. J. Madore, S. Schraml, P. Schupp, J. Wess, Gauge theory on non-
commutative spaces. Eur. Phys. J. C 16, 161 (2000)

6. M. Dimitrijevic, F. Meyer, L. Moller, J. Wess, Gauge theories on
the kappa Minkowski space-time. Eur. Phys. J. C 36, 117 (2004)

7. D.V. Vassilevich, Twist to close. Mod. Phys. Lett. A 21, 1279 (2006)
8. R.J. Szabo, Symmetry, gravity and noncommutativity. Class.

Quant. Gravit. 23, R199 (2006)
9. R. Blumenhagen, I. Brunner, V. Kupriyanov, D. Lüst, Bootstrap-

ping non-commutative gauge theories from L∞ algebras. JHEP
1805, 097 (2018)

10. B. Zwiebach, Closed string field theory: quantum action and the
B–V master equation. Nucl. Phys. B 390, 33 (1993)

11. O. Hohm, B. Zwiebach, L∞ algebras and field theory. Fortsch.
Phys. 65(3–4), 1700014 (2017)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1903.04947


Eur. Phys. J. C (2020) 80 :42 Page 17 of 17 42

12. B. Jurco, L. Raspollini, C. Saemann, M. Wolf, L∞-algebras of
classical field theories and the Batalin–Vilkovisky formalism.
arXiv:1809.09899 [hep-th]

13. T. Lada, J. Stasheff, Introduction to SH Lie algebras for physicists.
Int. J. Theor. Phys. 32, 1087 (1993)

14. J. Stasheff, L∞ and A∞ structures: then and now.
arXiv:1809.02526 [math.QA]

15. M. Kontsevich, Deformation quantization of Poisson manifolds. 1.
Lett. Math. Phys. 66, 157 (2003)

16. V.G. Kupriyanov, L∞-bootstrap approach to non-commutative
gauge theories. Fortsch. Phys. https://doi.org/10.1002/prop.
201910010. arXiv:1903.02867 [hep-th]

17. F.A. Berends, G.J.H. Burgers, H. van Dam, On the theoretical prob-
lems in constructing interactions involving higher spin massless
particles. Nucl. Phys. B 260, 295 (1985)

18. R. Fulp, T. Lada, J. Stasheff, sh-Lie algebras induced by Gauge
transformations. Commun. Math. Phys. 231, 25 (2002)

19. R. Blumenhagen, M. Brinkmann, V. Kupriyanov, M. Traube, On
the uniqueness of L∞ bootstrap: quasi-isomorphisms are Seiberg–
Witten maps. J. Math. Phys. 59(12), 123505 (2018)

20. V.G. Kupriyanov, D.V. Vassilevich, Star products made (somewhat)
easier. Eur. Phys. J. C 58, 627–637 (2008)

21. V.G. Kupriyanov, Recurrence relations for symplectic realization
of (quasi)-Poisson structures. J. Phys. A 52(22), 225204 (2019)

22. D. Luest, E. Malek, E. Plauschinn, M. Syvari, Open-string non-
associativity in an R-flux background. arXiv:1903.05581 [hep-th]

23. A.B. Hammou, M. Lagraa, M.M. Sheikh-Jabbari, Coherent state
induced star product on R3

λ and the fuzzy sphere. Phys. Rev. D 66,
025025 (2002)

24. J.M. Gracia-Bondia, F. Lizzi, G. Marmo, P. Vitale, Infinitely
many star products to play with. JHEP 0204, 026 (2002).
arXiv:hep-th/0112092

25. P. Vitale, J.C. Wallet, Noncommutative field theories on R3
λ: toward

UV/IR mixing freedom. JHEP 1304, 115 (2013)
26. V. Galikova, S. Kovacik, P. Presnajder, Laplace–Runge–Lenz vec-

tor in quantum mechanics in noncommutative space. J. Math. Phys.
54, 122106 (2013)

27. V.G. Kupriyanov, A hydrogen atom on curved noncommutative
space. J. Phys. A 46, 245303 (2013)

28. V.G. Kupriyanov, P. Vitale, Noncommutative R
d via closed star

product. JHEP 1508, 024 (2015)
29. G. Barnich, M. Henneaux, Consistent couplings between fields

with a gauge freedom and deformations of the master equation.
Phys. Lett. B 311, 123 (1993)

123

http://arxiv.org/abs/1809.09899
http://arxiv.org/abs/1809.02526
https://doi.org/10.1002/prop.201910010
https://doi.org/10.1002/prop.201910010
http://arxiv.org/abs/1903.02867
http://arxiv.org/abs/1903.05581
http://arxiv.org/abs/hep-th/0112092

	Non-commutative deformation of Chern–Simons theory
	Abstract 
	1 Introduction
	2 Basic facts from Linfty-algebras
	3 Non-commutative deformation of the abelian gauge transformations
	3.1 Leading order contribution
	3.2 Next to the leading order
	3.3 Higher brackets and recurrence relations

	4 Non-commutative field dynamics and Linfty structure
	4.1 Leading order contribution
	4.2 Next to the leading order
	4.3 Higher order relations

	5 Lie-algebra like deformation
	5.1 NC su(2)-like deformation
	5.2 Non-commutative Chern–Simons theory
	Definition of the P-term
	Definition of R-term
	Comparison to the lower order brackets

	5.3 Non-commutative field strength
	5.4 Action principle
	5.5 Summary of the results

	6 Conclusions
	Acknowledgements
	7 Appendix: Important algebraic relations
	References




