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Abstract The Johannsen—Psaltis spacetime explicitly vio-
lates the no-hair theorem. It describes rotating black holes
with scalar hair in the form of parametric deviations from
the Kerr metric. In principle, black hole solutions in any
modified theory of gravity could be written in terms of the
Johannsen—Psaltis metric. We study the accretion of gas onto
a static limit of this spacetime. We utilise a recently proposed
pseudo—Newtonian formulation of the dynamics around arbi-
trary static, spherically symmetric spacetimes. We obtain a
potential that generalises the Paczyniski—Wiita potential to
the static Johannsen—Psaltis metric. We also perform a fully
relativistic analysis of the geodesic equations in the static
Johannsen—Psaltis spacetime. We find that positive (nega-
tive) values of the scalar hair parameter, €3, lower (raise)
the accretion rate. Similarly, positive (negative) values of €3
reduce (increase) the gravitational acceleration of radially
infalling massive particles.

1 Introduction

The no-hair theorem [1-3] states that black holes in gen-
eral relativity are uniquely and completely characterised by
three parameters viz. their mass, electric charge and angular
momentum. An electrically charged black hole will accrete
charges of the opposite sign and rapidly neutralise [4]. Con-
sequently the only physically significant parameters of astro-
physical black holes are their mass and angular momentum.
The Kerr metric is thus the only physical stationary, axisym-
metric, asymptotically flat vacuum spacetime in general rel-
ativity that possesses an event horizon.

Whilst general relativity has been extremely well con-
strained on solar system scales [5] the theory has only
recently been subjected to tests in strong gravitational fields.
The discovery of gravitational waves [6] from the merger of

#e-mail: a.john@ru.ac.za

b e-mail: c.stevens@ru.ac.za

binary black holes provided the first strong field tests of gen-
eral relativity. Precise determination of the metric of astro-
physical black holes allows one to test general relativity in
the strong field regime. Alternative theories of gravity can
admit black hole spacetimes that do not comply with the
no-hair theorem. Observed violations of the no-hair theorem
necessarily imply the breakdown of general relativity.

Given the advent of gravitational wave astronomy as well
as forthcoming complementary observations of black holes
and neutron stars in the electromagnetic spectrum, strong
field tests of gravitational theories are becoming feasible
[7,8]. A large number of modified theories of gravity have
been proposed. Examples of such theories include Modified
Gravity (MOG) [9], Tensor—Vector—Scalar gravity (TeVeS)
[10] and f(R) gravity [11]. These are motivated by the need
to explain the dark matter, dark energy and singularity prob-
lems in cosmology as well as the search for a quantum theory
of gravity.

Modified theories of gravity can be tested by solving
their associated field equations to obtain black hole solu-
tions and comparing their observable signatures with those
predicted by general relativity. Sufficiently precise astronom-
ical data can, in principle, discriminate between compet-
ing gravitational theories. Alternatively one could devise a
model-independent test of general relativity by constructing
black hole spacetimes with parametric deviations from the
Kerr solution. These black hole spacetimes are generic in the
sense that they are devised without appealing to a specific
theory of gravity. Null measurements of these extra parame-
ters would mark a successful test of the no-hair theorem. The
Event Horizon Telescope recently obtained the first image of
a black hole photon sphere or shadow [12]. Black holes in
modified theories of gravity are predicted to have shadows
with different shapes, sizes and multiple images compared to
those occurring in general relativity [13]. The Event Horizon
Telescope observation places an upper limit on the fractional
quadrupole moment deviation of AQ/Q < 4 which is con-
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sistent with general relativity [12]. This constraint should
improve with greater resolution in very long baseline inter-
ferometry and provide stringent tests on violations of the
no-hair theorem.

The Johannsen—Psaltis (JP) metric [14] facilitates model-
independent tests of gravitational theories. This metric
describes the spacetime of a stationary, axisymmetric black
hole that violates the no-hair theorem by construction. Sig-
nificantly the JP metric does not arise as a solution to field
equations of any particular theory of gravity. Given any grav-
itational theory that violates the no-hair theorem it should be
possible to parametrise the deviations from the Kerr metric of
its black hole solution(s). In principle these deviations can be
related to the additional parameters of the JP metric. The JP
metric was not the first proposed generic black hole space-
time. Earlier attempts e.g. [15] were plagued by problems
like the presence of singularities and closed timelike curves
outside the event horizon. The JP metric is a promising alter-
native for parametrising modified gravity corrections to the
Kerr solution as it is free of many of these pathologies.

The JP metric has been applied to a number of problems
e.g. strong lensing [16] and the formation of black hole shad-
ows [17]. The measurement of black hole spin via continuum
fitting and K« iron line methods has also been analysed in
the JP spacetime [18].

The discovery of active galactic nuclei and quasars as well
as compact objects like neutron stars and pulsars prompted
the realisation that their high energy emission was due to the
liberation of the gravitational potential energy of infalling
material [19]. Bondi’s seminal paper [20] determined the
mass accretion rate of a polytrope fluid accelerating towards a
star with a Newtonian gravitational potential. This result was
later extended to full general relativity by Michel [21] who
examined accretion onto a Schwarzschild black hole. Accre-
tion disks form when matter falls onto a rotating body. The
structure of accretion disks was modelled both in Newtonian
gravity [22] and general relativity [23]. Black hole accretion
in various modified theories of gravity has been investigated
by a number of authors [24-26].

Modelling accreting systems in full general relativity
becomes significantly more difficult when one includes
phenomena like viscosity, magnetic fields, turbulence and
radiative processes. Paczynski and Wiita [27] introduced
a gravitational potential that mimics many features of
the Schwarzschild black hole in general relativity. The
Paczyniski—Wiita potential is commonly used to study black
holes in a Newtonian manner [28]. The advantage of using
this Pseudo—Newtonian potential is that the fluid equations
are substantially simpler to analyse than those arising from
a full relativistic treatment.

The success of the Paczynski—Wiita potential can be
accounted for by its prediction of the same values for the
innermost stable circular orbit (ISCO), the marginally bound
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orbit (r,,5), and the Keplerian angular momentum, L(r), as
those obtained from a fully general relativistic analysis of
the Schwarzschild geodesic equations [28]. The associated
dynamical systems have the same fixed points [28].

The Paczyrski—Wiita potential, @pw, is not the only
pseudo—Newtonian potential devised, but it is by far the most
popular. Other proposals tend to be obtained by fitting formu-
lae. The @ pw potential has some limitations. It cannot prop-
erly account for the dynamics around rotating black holes as
it fails to predict the Lense-Thirring effect, nor can it accu-
rately describe self-gravitating systems [28].

Given the successful approximation of static black hole
physics in general relativity by the Paczyniski—Wiita poten-
tial, the question arises as to whether pseudo—Newtonian
potentials can be found for modified theories of gravity. A
number of authors [29,30] have recently devised methods to
generate pseudo—Newtonian potentials that could mimic the
behaviour of black holes in any static, spherically symmetric
spacetime.

In this paper we determine a pseudo—Newtonian potential
for the static limit of the Johannsen—Psaltis metric and solve
the accretion problem. Our motivation in doing so is to obtain
a model-independent formulation of spherically symmetric
accretion in modified theories of gravity. Bondi accretion
(where the fluid velocity is purely radial) is an important first
approximation to more complex accretion problems. Many
of the features of this idealized scenario (e.g. the existence of
a transonic solution) survive in the more complicated accre-
tion disk problem. Azimuthal motion of accreting gas onto
a Newtonian potential was first considered by treating the
angular momentum as a small perturbation about a spheri-
cally symmetric Bondi flow [31]. The authors concluded that
the accretion rate of a rotating gas is slightly lower than in
the original problem, and that this change can be expressed
in terms of the boundary conditions at infinity. Generalising
the pseudo—Newtonian approach to stationary spacetimes has
been explored [32]. The authors determined that within their
formalism it was difficult to obtain closed form Lagrangians
for spacetimes exhibiting frame-dragging or gravitomagnetic
effects. Obtaining pseudo—Newtonian potentials that can suc-
cessfully describe the physics around rotating black holes is a
highly non-trivial problem, which we do not attempt to solve
here.

In Sect. 2 we introduce the Johannsen—Psaltis metric and
its static limit. In Sect. 3 we obtain a pseudo—Newtonian
potential for the JP metric. In Sect. 4 we solve the accretion
problem for JP black holes approximated by our potential.
In Sect. 5 we analyse the motion of test particles in the JP
spacetime. Our results are summarised in Sect. 6. Throughout
this paper, unless explicitly stated, we utilise geometric units
wherec =1=G.
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2 The Johannsen—Psaltis spacetime

The Johannsen—Psaltis metric takes the form
2 2mr 2
ds* = —[1 + h(r, 9)](1 - T)dz

4 in% 0
—$[1 +h(r, 6)1dtdé

21+ h(r,0)]
A+ a?sin? 0h(r, 0)
2a’mr sin? 0 )

dr’ + $d6*

+[Sin29<r2 +a+

)
2 -4

a“ (X + 2mr) sin”™ 6

a0 0) P g2, (M
)
where

Y =r’+a’ cos29, 2)
A= r? —2mr +d?, (3)

and m and a are the black hole mass and spin parameters
respectively. Here h(r, 0) is the parametric deviation from
the Kerr spacetime

2

hr.0) = ,é (x+eun ") (%) )

and the € terms are dimensionless coefficients. It can easily be
seen that when A (r, ) = 0 this metric reduces to the standard
Kerr spacetime. We are interested only in the spherically
symmetric case, which reduces the form of the metric to

ds® = —[1 +h(r)](1 - 2—m)dt2
r
+[1+ h(r)](l -~ 2Tm)_ldr2
~|—r2(d92 + sin? 9d¢2), (5)

where the parametric deviation now takes the form

b =3 (ea e ) (2 ©

k=0

In the absence of any scalar hair i.e. €4 = 0 we recover the
line element for the Schwarzschild black hole.

There are a number of observational constraints on the
magnitude of the €, parameters [14]. In general relativity
stationary and asymptotically flat spacetimes must fall off
as 1/r or faster. Spacetimes with slower fall off rates will
include gravitational radiation and thus cannot be stationary.
Similar arguments hold for spacetimes that do not arise as
solutions of the Einstein field equations. Thus the function
h(r) must be of order O(r~"") where n > 2 and this forces
€0 = €1 = 0. Weak field deviations from general relativity
can be determined using the parameterized post-Newtonian

(PPN) framework. The Lunar Laser Ranging experiment [5]
sets an upper bound of |ez| < 4.6 x 10—, The first uncon-
strained parameter in /(r) is thus €3. Analyses involving the
JP spacetime often only consider the leading non-vanishing
contribution to /(r) i.e. the scalar hair is approximated via

ney = () )

Throughout this paper we will either use the full expres-
sion for A (r) viz. (6) or the truncated version (7).

3 The Paczynski-Wiita-like potential

In this section we derive the Paczyniski—Wiita like potential
@ p for the Johannsen—Psaltis metric.

The original Paczyfiski-Wiita potential is pseudo-
Newtonian in the sense that it is a potential representing the
relativistic Schwarzschild spacetime that can be used in a
Newtonian framework. The potential is

m

®)

Prw = Cr—2m’
where m is the mass parameter from the Schwarzschild met-
ric.

Although the form of this potential was essentially
guessed by Paczyniski, it has been subsequently derived from
an algorithm applied to the Schwarzschild spacetime [28].
This method has been extrapolated to general static spheri-
cally symmetric spacetimes [29] and we summarise the argu-
ment below.

Any static spherically symmetric spacetime written in
coordinates {t, r, 8, ¢} can be written in the form

ds* = goo(r)dt2 + g“(r)dr2 + rzd_Qz, )

where d22 = d6* + sin®0d¢?. The derivation of the
pseudo—Newtonian potential relies on examining the orbits
of a test particle in the spacetime which, without loss of gen-
erality, can be restricted to the & = /2 plane. The effective
gravitational potential can be identified in the geodesic equa-
tions and takes the form

@ = %(g“’(r) +h), (10)

where k € R is an arbitrary constant. When applied to the
Schwarzschild spacetime, the choice k = 1 yields the origi-
nal Paczynski-Wiita potential.

Turning our attention to the spherically-symmetric
Johannsen—Psaltis metric Eq. (5), we find the correspond-
ing potential when again choosing k = 1 is
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m 1 rh(r)
211+ h(H)](r —2m)’

Byp = — (11)

r—2m

which clearly reduces to @ py when h(r) = 0. Note that this
expression uses the full expansion of i (r) given by (6).

4 Bondi accretion

We now compute the mass accretion rate of a gas falling into
a black hole described by the line element (5). In the spirit
of Paczynski and Wiita we model this problem using classi-
cal hydrodynamics and the effective gravitational potential,
Dyp.

‘We model the gas as a perfect fluid with a polytrope equa-
tion of state, p = Kp?, where the adiabatic index, y, is given
by the ratio of specific heats i.e. y = ¢, /cy.

The dynamical motion of the fluid is determined by the
conservation of mass and momentum viz.

ap

v (ow =0, (12
Ju
p [E +(u- V)u} =—Vp—pVP;p, (13)

where u is the fluid 4-velocity, p is the isotropic pressure
and p is the mass density. The effective pseudo—Newtonian
potential @ p is given by (11).

Imposing spherical symmetry, and considering only radi-
ally infalling steady-state flows gives us the simpler system

rj;(/mr ) =0, (14)

du ldp d®yp
bt Rt =0, 15
udr pdr dr (15

where u(r) is the radial velocity of the fluid. For convenience
we rewrite the equation of state using the polytropic index,
p= K,o1+% . Now we can integrate Egs. (14) and (15) to find
the conserved mass flux and specific energy respectively as

M = pur?, (16)

1
£ = §u2+na2+¢11> = na’,, (17)

d
where we have denoted a = d_p as the adiabatic sound

o
speed. Our boundary conditions are determined at a point,

ro, Which is sufficiently far away from the black hole that the
fluid velocity (#(ro0) =: o) and the gravitational potential
both vanish. The fluid sound speed “at infinity” is denoted
by ax. Further, we rewrite (16) to obtain the accretion rate

M = a¥ur?, (18)

@ Springer

which is related to the mass flux via M = My” K™ [33]. We
now combine Egs. (17) and (18) to obtain

2612 d(ij
T
_—=— 19
dr a? (19)
u— —
u

To ensure that the accretion flow is smooth, the denomi-
nator of (19) must vanish at the same point as the numerator.
This critical point, r. is determined by the conditions:

d® 24>
e = U, P = e (20)

ar |-, re

The first condition tells us that the critical point is also a
sonic point. If the fluid accelerates from rest far away from
the black hole (1o, = 0) it must reach its local sound speed
at the critical pointi.e. u, = ac.

Solving (20) for the critical points is equivalent to finding
solutions to the equation

2mr — 2a*(r — 2m)*) + (r(8m — 3r)
—8a*(r — 2m)»Hh(r) — 4a*(r — 2m)*h(r)> = 0. (21)

This equation is valid for the full form of & (r) given by (6).

This expression is quite complicated in general so we only

consider the leading contribution to /() given by (7), which

is commonly done in studies of the JP spacetime [14,34].
The specialisation

netro = (™). 22)

re

reduces Eq. (21) to a 8th order polynomial equation in
o = r./m. To simplify this further for the allowance of ana-
lytic solutions, we linearize the expression in 4 (r) (equiv. €3)
which reduces (21) to a quartic polynomial equation given
by

3
—26+ Jea 8a2a? — (1 +8a%)a® +2a2a* =0, (23)

where we must compute the solutions to relate r. to a. It is
not surprising that even in the simplified case of 4 (r) consid-
ered here, the solutions of this quartic equation are lengthy
expressions. We observed that for a wide range of values for
€3 and a. only one of the roots of (23) is always real and
outside the event horizon located at » = 2m.! We identify
this root as the critical point of the accretion flow.

! The location of the event horizon in the static limit of the Johannsen—
Psaltis metric is still at r = 2m.
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To obtain a more tractable analytical expression for this
root, we continue to linearize about €3 for the rest of this
section.

The physically relevant root is given by

1+8a2+ X
T T4
1—X—2d2(-5+8a2+X
c c 32
+ €3+ 0(e3)”7,

64a2‘X

with X := /1 + 16a2. This is further simplified by linearis-
ing our equations in af, as done in [35]. This gives the simple
expression

B 2
o (M) m. (24)

2
2a;

which reduces to the well known result for the Schwarzschild
spacetime found in the literature [21,35].

Using Eq. (24) and Eq. (17) and linearising about €3, a?
and a” we find the relationship between the critical sound
speed and the boundary condition

2_ 2 5

a a
C =3

(25)
which is the same as in the Schwarzschild case.

Using the above together with Eq. (18) we obtain the
Bondi accretion rate,

‘ | o, @n—3)/2
== |
M=3 <2n - 3“00) < +

which is kept in this form (i.e. not being completely linear in
ago) for simplicity.

4(8 — eg)nago 2
2n —3
(26)

4.1 Comparison with the Schwarzschild case

To compare pseudo—Newtonian accretion in the Johannsen—
Psaltis and Schwarzschild spacetimes we investigate a range
of different system parameters and tabulate how €3 affects
the accretion rate. These parameters are m, y < n and dno.
For the below we fix the boundary condition as, = 3 x 107°
which follows from the temperature of ionised interstellar gas
[24]. We consider two fiducial values for the black hole mass
viz. a solar mass black hole, m = 1M, and a supermassive
black hole, m = 106M@. We restrict y to have values 1 <
¥ < 5/3. We write M = A + Bes in order to tabulate the
results.

One sees from the Tables 1 and 2 that €3 affects the accre-
tion rate A predicted by general relativity by adding the num-
ber B which, if A has order a, then B has order roughly

Table 1 The accretion rate of matter surrounding a 1M, black hole

y n A B

1.1 10 1.67654 x 10770 —4.38311 x 1077°
12 5 8.66651 x 1026 —2.75127 x 1073
13 10/3 6.24348 x 10711 —2.52262 x 10719
4/3 3 5.69793 x 1078 —2.53241 x 10710
1.4 25 1.51089 x 1073 —8.39385 x 10~12
1.5 2 3.62614 x 10! —3.22324 x 1077

Table 2 The accretion rate of matter surrounding a 10° M, black hole

y n A B

1.1 10 1.67654 x 10738 —4.38311 x 10797
12 5 8.66651 x 1014 —2.75127 x 10722
1.3 10/3 6.24348 x 10! —2.52262 x 1077
4/3 3 5.69793 x 10* —2.53241 x 1074
1.4 25 1.51089 x 10° —8.39385 x 100
1.5 2 3.62614 x 1013 —3.22324 x 10?

a — 8 + e, where e is the order of ¢3. Note that we took €3
to be small to arrive at Eq. (4), and thus e should mimic this
restriction. When €3 > 0 the accretion rate is lowered, while
when €3 < 0 the accretion rate is raised. This behaviour
is consistent with a back-of-the-envelope calculation of the
gravitational force of our system. For our potential, @ p, we
have F ~ —(D’JP ~ —r% + 63%4. For positive values of €3
the gravitational force becomes less negative and hence less
attractive. Similarly negative values of €3 result in a more
negative and thus larger attractive force. Further, when y
increases, so does the accretion rate. This is consistent with
other results in the literature [36].

5 Test particle orbits

To further investigate the accretion properties of the previous
section, we perform a fully relativistic calculation of test par-
ticle orbits in the spherically-symmetric Johannsen—Psaltis
spacetime and examine how they are effected by a non-zero
€3. Note that we do not linearise about €3 in this section.

First, we obtain the constants of motion of a test par-
ticle travelling in the & = /2 plane with 4-velocity
u® = {'(1),r' (1), 0, ¢’ (L)} parametrised by A and satis-
fying uu, = —«?:

. 2m e3m? ,
E= (1 - m)(l T r(k)3>t ), 27)
L=r)%' 0, (28)
E? 1 63m3 S0
- =Va+ 5(1 + r(k)3>r )7, (29)

@ Springer
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Fig. 1 Timelike test particle trajectories with varying e€3. The solid
horizontal line indicates the event horizon

Vo) = K Kkm L? L?m
~2 r + 2r()2 r(A)3
km? em® L?m3 L?m*
+€3<2r(k)3 0t T 2r)’ r(x)6>' 30)

Here E and L are the conserved energy and angular momen-
tum, V(1) is the potential and k = 1, x = 0 correspond to
timelike and null orbits respectively.

To get an idea of how timelike test particles behave outside
the event horizon under different choices of €3, we can numer-
ically solve Equation (29) with potential given by Equation
(30) by choosing

m= Mg~ 1475, L=0.1, E=0.5,

k =1, r(0) =3500. (31)

The results are plotted in Fig. 1 for different values of
the €3 parameter.” One can see that €3 > 0 has the effect
of slowing down the particles’ approach toward the central
object. This is in direct agreement with the slower accretion
rate calculated in Sect. 4. For the choice €3 < 0 the opposite
is true and is again consistent with a faster accretion rate.

Itis useful to present the linearised (in €3) unstable circular
photon orbit

m
=3m—e3—, 32
r=>3m—eg (32)

dv
which is found by solving — = 0 and is in agreement with
r

[14] once linearised and appropriate limits have been taken.
This simple expression shows that with €3 > 0 and |e3| < 1
the photon orbit is slightly closer to the black hole. This
again supports the paradigm of a slower accretion rate. We
note that the Innermost Stable Circular Orbit (ISCO) does not
change from r = 6m, even without linearising 3. The fully

2 These parameter values are not valid in the linear regime but have
been exaggerated for visualisation purposes.
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relativistic analysis of geodesic motion supports the results
of our pseudo—Newtonian calculation of the accretion rate,
M as well as the back-of-the-envelope calculation in the
previous section.

6 Summary

We examined the problem of accretion onto a static black hole
that generically violates the no-hair theorem. The Johannsen—
Psaltis spacetime describes a rotating black hole with scalar
hair and does not arise from a specific theory of gravity. We
restricted our focus to the static limit of the JP metric. This
limit contains parametric deviations from the Schwarzschild
solution of general relativity.

We studied a Newtonian formulation of the accretion prob-
lem using the method of Faraoni et al [29]. This technique
generalises the Paczyriski—Wiita potential to general static
spherically symmetric black hole spacetimes. We obtained a
pseudo—Newtonian potential that approximates many of the
gravitational features of the static JP metric.

We modelled the matter accreting onto a static JP black
hole as a polytropic fluid. The fluid is at rest far from the black
hole and accelerates radially inwards at subsonic speeds. The
fluid’s speed reaches its local sound speed at a critical point.
Thereafter the fluid continues to accelerate towards the event
horizon supersonically.

In order to determine the critical point we solved a fourth
order polynomial equation numerically. Only one of the four
roots was found to be real, positive and outside the event hori-
zon. This root was identified as the critical point of the tran-
sonic flow. We linearised the quartic equation about €3 and
obtained an approximate analytical expression for the critical
point’s position. We then obtained an analytical expression
for the critical velocity of the fluid in terms of its sound speed
at “infinity”. The critical velocity is independent of e3.

We obtained an analytical expression for the accretion
rate, M. Our accretion rate is proportional to the square of
the black hole mass i.e. M ~ m?. This is a common feature
in Bondi accretion. The accretion rate depends on the black
hole mass, m, the fluid’s polytrope index, n, the fluid sound
speed at infinity and the JP parameter, €3. Positive (negative)
values of €3 were found to reduce (increase) the accretion
rate and the accretion rate increased with y. These results
were tabulated.

We obtained and solved the geodesic equations for mas-
sive and massless particles orbiting a static JP black hole.
Positive values of €3 were found to slow down massive parti-
cles in radially infalling trajectories around a static JP black
hole. Similarly, negative values of €3 accelerated massive
particles. Our fully relativistic analysis of geodesic trajec-
tories corroborates our findings on the effect of €3 on the
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accretion rate viz. that small, positive values of €3 lowered
the accretion rate and vice versa.

There is no a priori reason to expect an overall positive
or negative sign to scalar hair contributions to a black hole
metric. Black holes with scalar hair arising in modified the-
ories of gravity will thus either increase or decrease the effi-
ciency of the conversion of gravitational energy into radiant
energy. Our results can be used to vindicate the validity of
the pseudo—Newtonian approach to black holes. The problem
we investigated was an idealised study of transonic accretion
onto a JP black hole. This framework can used to incor-
porate various important physical phenomena like radiative
processes, viscous dissipation, magnetic fields and accretion
disks. Further, our results are independent of the theory of
gravity, as opposed to comparable results in the literature,
such as [37] for example, which assumes the Einstein vac-
uum equations hold. Perhaps one disadvantage in taking this
theory-independent philosophy is that one cannot compute
multipole moments as done in [37], and thus cannot deduce
anything about the quadrupole moment. This is because the
calculation of multipole moments rests fundamentally on a
chosen theory of gravity. However, as stated above, we still
obtain a framework to analyse a variety of important physical
processes, supplementing existing literature with different
results from a different perspective.
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