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Abstract In this paper, we present the application of a
new method measuring Hubble parameter H(z) by using
the anisotropy of luminosity distance (dL ) of the gravita-
tional wave (GW) standard sirens of neutron star (NS) binary
system. The method has never been put into practice so far
due to the lack of the ability of detecting GW. However,
LIGO’s success in detecting GW of black hole (BH) binary
system merger announced the potential possibility of this
new method. We apply this method to several GW detecting
projects, including Advanced LIGO (aLIGO), Einstein Tele-
scope (ET) and DECIGO, and evaluate its constraint ability
on cosmological parameters of H(z). It turns out that the
H(z) by aLIGO and ET is of bad accuracy, while the H(z)
by DECIGO shows a good one. We simulate H(z) data at
every 0.1 redshift span using the error information of H(z)
by DECIGO, and put the mock data into the forecasting of
cosmological parameters. Compared with the previous data
and method, we get an obviously tighter constraint on cos-
mological parameters by mock data, and a concomitantly
higher value of Figure of Merit (FoM, the reciprocal of the
area enclosed by the 2σ confidence region). For a 3-year-
observation by standard sirens of DECIGO, the FoM value
is as high as 170.82. If a 10-year-observation is launched,
the FoM could reach 569.42. For comparison, the FoM of 38
actual observed H(z) data (OHD) is 9.3. We also investigate
the undulant universe, which shows a comparable improve-
ment on the constraint of cosmological parameters. These
improvement indicates that the new method has great poten-
tial in further cosmological constraints.

a e-mail: tjzhang@bnu.edu.cn

1 Introduction

In the twenty-first century, we witnessed the bloom of preci-
sion cosmology. Precision cosmology even ranked second on
a list named “Insights of the decade” from Science magazine
in 2010 [1]. The key of accurate cosmology is to accurately
constrain cosmological parameters and their state equations,
which can lead us to a better understanding of the evolution
of our universe. Four main observations have been developed
to constrain cosmological parameters so far [2]: Supernova
(SN, [3]), Baryon Acoustic Oscillation (BAO, [4]), Galaxy
Cluster (CL, [5]), Weak Lensing (WL, [6]). Actually, a rela-
tively new tool, observational Hubble parameter data (OHD),
is becoming increasingly popular these years because of its
effective constraint on cosmological parameters. H(z)’s high
efficiency lies on the fact that it is the only observation that
can directly represent the expanding history of our universe.
Compared with the Luminosity distance (dL ) of SN, H(z)
contains no integral terms and directly connects with cosmo-
logical parameters, which makes it powerful in constraining
cosmological parameters, because the integral term can con-
ceal many details and hide important information. As Ma and
Zhang [7] reported, H(z) constrains cosmological parame-
ters much tighter than the same-number SN does. To achieve
the same constraint effect of SN subset ConstitutionT, ones
need only 64 H(z) data sets under gaussian prior on H0,
H0 + σH0 .

There are various ways to detect H(z), which can be gen-
erally classified into three types: (1) differential age method
[8]; (2) radial BAO method [9]; (3) standard sirens method
[10]. The first two techniques have been employed in the
past measurement of H(z), but the number of observed hub-
ble parameter data (OHD) are still insufficient. We get only
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38 OHD sets so far, whose accuracies are far from desir-
able. Now with the development of gravitational wave (GW)
detecting technology, it is time to look forwards to the third
method: GW standard sirens. GW standard sirens was first
proposed and discussed by Schutz [10]. Schutz presented his
idea that one can determine the Hubble constant through the
observation of GW emitted by decaying orbit of neutron star
(NS) binary system. In 2015, although the second generation
GW detector Advanced LIGO (aLIGO) operated even not
at its design sensitivity, it still detected the first GW signal
at its first run [11]. According to theoretical understanding,
GW formula of compact binary system encodes the informa-
tion of dL , providing an access to the direct measurement of
dL , the crucial parameter we use in this paper. We sense the
possibility and potential from detecting gravitational wave.

The detection of GW not only conforms to the general rel-
ativity, but also let us see the hope of standard sirens [12–14].
Toshiya Namikawa et al. [15] studied GW standard sirens as
a cosmological probe without redshift. But it is hard to get the
corresponding redshift information without electromagnetic
counterpart. The absence of redshift impedes some further
research. If one were given the H(z) and its corresponding
redshift, the scope of research would be wildly broaden. In
2006, a new way to narrow the relative error of H(z) by the
dipole of dL has been proposed [16]. The relative error is
measured by the dipole of SN. But the problem is that the
new method needs plenty of SNs if we want to get a relatively
accurate H(z), which can not be met in reality. Although this
method also has problem in measuring high-z H(z), it is an
instructive idea. Atsushi Nishizawa and Atsushi Tamga et al.
[17] gave us an alternative by pointing it out that we can
get information of dL through the gravitational wave func-
tion of NS binary system, instead of SN . We follow his idea
and choose NS binary system as our research subject in this
paper, because a rough estimate would tell us that the num-
ber of observed NS binary system turns out much bigger than
that of SN. NS binary system can help us dramatically narrow
down the statistical error.

Pozzo [18] proposed a general Bayesian theoretical frame-
work for cosmological inference, which can conveniently
include the prior information about the GW source. This
framework defines the likelihood based on the difference
between the strain of each detector and the GW template,
and the posterior probability distribution for the cosmolog-
ical parameters is calculated through the quasi-likelihood
obtained by marginalizing over the GW signal intrinsic
parameters. Applying the framework the author constrained
the Hubble constant H0 to an accuracy of 4–5% at 95% con-
fidence. Nearly all subsequent work of using GW sources for
cosmological inference is based on this Bayesian framework.
The same framework was adopted by Taylor et al. [19], but
the likelihood was defined on the assumption that the num-
ber count of GW events detected by a detector is a Poisson

distributed random variate. They measured the Hubble con-
stant using GW signals of NS binaries by narrowing the dis-
tribution of masses of the underlying NS population. That
is, H0 was determined to ±10% using ∼ 100 observations.
By assuming that the masses of NS binaries can be mod-
eled by a Gaussian distribution and that both masses of the
double NS systems are equal, the authors found their chirp
masses are approximately normally distributed and got the
corresponding mean and standard deviation. Then, using the
same method, they explored the prospects for constraining
cosmology using GW observations of neutron star binaries
by the proposed Einstein Telescope (ET), a third-generation
ground-based interferometer. This time they fixed H0, Ωm,0

and ΩΛ,0 and constrained the dark-energy equation of state
(EOS) parameters [20]. With a 105-event catalog, they con-
strained the dark-energy EOS parameters to an accuracy sim-
ilar to forecasted constraints from future CMB + BAO + SNIa
measurements. Chen et al. [21] investigated the measurement
of Hubble constant at various cases: with and without electro-
magnetic counterpart, binary NS mergers and binary black
hole mergers. They showed that that LIGO and Virgo can
be expected to constrain the Hubble constant to a precision
of 2% within 5 years and 1% within a decade. Vitale and
Chen [22] dealt with neutron star black hole mergers and
focused on measuring the luminosity distance to a source.
They concluded that the 1 − σ statistical uncertainty of the
luminosity distance for spinning black hole neutron star bina-
ries can be up to a factor of ∼ 10 better than for a non-
spinning binary neutron star merger with the same signal-to-
noise ratio. Pozzo et al. [23] investigated the accuracy of the
measured cosmological parameters using information com-
ing only from the gravitational wave observations of binary
neutron star systems by the Einstein Telescope. They used
Fisher matrix method to extract redshift information of a
source given that information about the equation of state of
the source is available [24]. They found by direct simulation
of 103 detections of binary neutron stars, H0, Ωm , ΩΛ, w0

and w1 can be measured at the 95% level with an accuracy of
∼ 8%, 65%, 39%, 80% and 90%, respectively. Different to
the previous studies that focussed on constraining the param-
eters of specific cosmological models, our work emphasises
a model independent measurement of H(z). A model free
approach will generally produce a weaker constraint on any
particular model than the model-specific analysis, but it has
more flexibility if the true model deviates from the model
assumed.

For the current observational status of GW, several fre-
quency windows of its are targeted by different detectors. The
second generation detector are mainly aimed at frequency
window 10– 1000 Hz, such as aLIGO and VIRGO. The next
generation detector plan to reach lower frequency band. The
project DECIGO was designed most sensitive at 0.1–10 Hz,
while the Einstein Telescope (ET) may also reach the fre-
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quency ∼ 1 Hz. The space-based eLISA can even detect GW
of 10−4–10−1 Hz. In this paper, we make use of GW sirens
to measure H(z) by estimating the error of dL , a little differ-
ent from the method proposed by Schutz [10]. Because NS
binary system are used as the source of GW in this paper,
the GW signal frequency of whom mostly ranges in 10–
1000 Hz, we ignore the projects whose optimal sensitivity
are far away from 10–1000 Hz, such as eLISA, and choose
the ones whose optimal sensitivity locate around 10– 1000
Hz. Finally, aLIGO, Einstein Telescope (ET) and DECIGO
are chosen as our research subject.

Most importantly, the Advanced LIGO and Advanced
Virgo gravitational-wave detectors made their first observa-
tion of a binary neutron star inspiral, and detected the sig-
nal of GW170817 with a combined signal-to-noise ratio of
32.4 [13,14]. In addition it provides the first direct evidence
of a link between binary neutron star mergers and short
γ -ray bursts. The combined analyses of the gravitational-
wave data and electromagnetic emissions are providing new
insights into independent tests of cosmological models, so
GW170817 marks the beginning of a new era of cosmol-
ogy. Using the data of GW170817, they performed the
gravitational-wave standard siren measurement of the Hub-
ble constant [14] to be 70+12

−8 km s−1 Mpc−1. Different from
their works, in this paper, we focus mainly on two aspect:
(1) how will it work out if we apply the new method to
some projects? (2) how about the quality of the H(z) by this
method, or to what degree could we constrain cosmological
parameters? This paper is organized as follows. In Sect. 2,
we sketch the idea of GW standard sirens method, and apply
it to some GW detecting projects. In Sect. 3, we simulate the
H(z) data, and analyze the constraint ability of the mock data
for ΛCDM and the undulant universe. In Sect. 4, we discuss
the result and talk a little about the corresponding redshift.
All through this paper, we adopt the natural unit, c = G = 1.

2 Methods

2.1 Dipole of luminosity distance

If the universe is completely homogeneous and isotropic on
large scale, and the observer is relatively rest with the cosmic
microwave background (CMB), the luminosity distance, dL ,
would be just the same form and has the same expression
as in standard cosmology. But in fact, there are perturbations
around ideal condition leading into the appearance of correc-
tion term of dL [25]. Therefore dL can be written as follow:

dL = d(0)
L + d(1)

L + higher order terms, (1)

Fig. 1 The value of d(1)
L /d(0)

L at different redshift for v0 = 369 km/s
[27]. As shown in the picture, the ratio goes very large , even bloom up,
at low redshift. That is caused by the fact that the ratio approximate to
(1 + z)|v0|/z at the limit of z = 0

where d(0)
L represents the traditional meaning of luminosity

distance in unperturbed Friedmann universe, also the average
of dL on all direction, and d(1)

L means the dipole of dL . The
contribution to higher order terms coming from the weak
gravitational lensing effect is so small compared with dipole
that we ignore them here [26]. The dipole is dominated by
the peculiar velocity of observers. If you want to check it or
feel intrigued by the theory, you can look up the reference
for the details [16]. Here is the final result:

d(1)
L = (1 + z)2

H(z)
|v0|; ΔH(z)

H(z)
= √

3

[
d(1)
L

d(0)
L

]−1 [
Δd(0)

L

d(0)
L

]
,

(2)

where |v0|, z, H(z), ΔH(z) respectively denote the projec-
tion of observer peculiar velocity on the direction of sight,
the redshift of the observed celestial body, the expanding
rate at the redshift z, the absolute error of H(z), and Δd(0)

L ,

Δd(1)
L means the error of d(0)

L , d(1)
L respectively. From the

equations above,given the value of d(1)
L /d(0)

L and Δd(0)
L /d(0)

L ,
ΔH(z)/H(z) can be easily calculated. The result of the term
d(1)
L /d(0)

L is shown in Fig. 1. To get ΔH(z)/H(z), the only

remaining problem is to find out Δd(0)
L /d(0)

L , which can be
solved by analyzing observed GW function in following sub-
section. Also, the mean error ΔH(z) reduces to ΔH(z)/

√
N

if we observe N independent sources at the given redshift.
Thus, we can improve the accuracy by the observation of a
large number of sources.
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2.2 GW standard sirens

One can use SN to illustrate the method of reducing the error
of H(z). But due to the number and distribution of SN, it
doesn’t work well, especially at high-z region. Consider-
ing the advantage of the larger number of observed sources,
which can dramatically narrow down the error of H(z), we
choose NS binary system as an alternative of SN. There is
another problem for black hole binary system: black hole sel-
dom radiates electromagnetic wave, rendering it hard to mea-
sure its corresponding redshift up to now. This is an important
factor to choose NS binary system.

In GW experiments, one can extract the property of the
source and cosmological information by comparing detected
waveform with theoretical template. That is what LIGO team
did when the first detected the GW of two back holes merged
[11]. The typical Fourier transform of GW waveform can be
expressed by

h̃( f ) = A

dL(z)
M5/6

z f −7/6eiΨ ( f ), (3)

which is based on the average over sky location. Here A =
(
√

6π2/3)−1 is a constant geometrically averaged over the
inclination angle of a binary system. dL(z) is the luminos-
ity distance at redshift z, and we can set it as d(0)

L because
we need to observe plenty of source at the given redshift.
Mz = (1 + z)η3/5Mt with the definition of total mass
Mt = m1 + m2 and symmetric mass ratio η = m1m2/M2

t .
The last unknown function Ψ ( f ) is a little intricate. It is
the frequency-dependent phase caused by orbital evolution.
Usually we deal with it by post-Newtanion (PN) approxima-
tion, an approximation to general relativity in the weak-field,
slow-motion regime [28]. Its concrete expression will not
affect the final result, because this term will be eliminated
when we do the following calculation. Here we just need to
know that it is a function of the coalescence time tc, the phase
when emitted φc, Mz , f , η.

There are five unknown parameters, namely: Mz , η, tc, φc,
dL , where dL is the only parameter that has nothing do with
the own property of binary system. For the convenience of
calculating, we just take account of equal mass NS binary
system with 1.4M⊙, and set tc = 0, φc = 0. Then we have
Mz = 1.22(1 + z)M⊙, η = 0.25. Though GW may tell us
some information about the redshift [24,29], we have no data
about the redshift and we need a general method to get the
reshift information. We should still resort to electromagnetic
observation to find out corresponding redshift. Cutler and
Holz [30] demonstrated its technological viability.

We use fisher matrix to estimate error. Fisher matrix has
its limit: the Cramer–Rao bound, and it’s break down at low
SNR. The error estimate for dL is based on Fisher matrix that
is given by

Fig. 2 The noise power spectrum. Green curve represents P1( f ) for
DECIGO, blue curve represents P2( f ) for ET, red curve represents
P3( f ) for aLIGO respectively

Γab = 4Re
∫ fmax

fmin

∂ah̃∗
i ( f )∂bh̃i ( f )

P( f )
d f , (4)

where ∂a means derivative with respect to parameter θa .
For DECIGO, there exist eight interferometric signals, Γab

should multiplied by 8. We set values to parameters expect
for dL , so the only parameter in Γab is dL . P( f ) is the noise
power spectrum, and the P( f ) for DECIGO, ET and aLIGO
are shown in Fig. 2. Here we give the expression of each
detector’s noise curve, P1( f ), P2( f ), P3( f ) for DECIGO,
ET and aLIGO respectively.

DECIGO Deci-Hertz Interferometer Gravitational Wave
Observatory (DECIGO) is a planed space-based GW obser-
vation aimed at 0.1–10 Hz frequency window. Its configu-
ration is still to be decided. Here we adopt the following
parameters in its configuration: the arm length 1000 km, the
output laser power 10 W with wavelength λ = 532 nm, the
mirror diameter 1 m with its mass 100 kg, and the finesse of
FP cavity 10. Thus its noise curve is [31]

P1( f ) = 6.53×10−49

[
1 +

(
f

7.36 Hz

)2
]

+ 4.45 × 10−51×
(

f

1 Hz

)−4

× 1

1 +
(

f

7.36 Hz

)2

+ 4.94 × 10−52×
(

f

1 Hz

)−4

Hz−1.

(5)

ET Einstein Telescope (ET) is a third generation GW detec-
tor, whose design is not finished. Here we just consider the
simplest case with 10km arms. We adopt the fitting expres-
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sion given by Keppel and Ajith [32]

P2( f ) =1 × 10−50
[
2.39 × 10−27

(
f

100 Hz

)−15.64

+ 0.349 ×
(

f

100 Hz

)−2.145

+ 1.76 ×
(

f

100 Hz

)−0.12

+ 0.409 ×
(

f

100 Hz

)1.1 ]2
Hz−1.

(6)

aLIGO aLIGO is an available second generation detector
whose optimal sensitivity band match with the frequency
window of GW from NS binary system . The first run of
aLIGO did not reach its design sensitivity. Here we use the
noise curve fitted by Ref. [33]. It is not an accurate expression,
but an approximation of the original curve is given by Ref.
[34]

P3( f ) = 1 × 10−49
[ (

f

215 Hz

)−4.14

− 5 ×
(

f

215 Hz

)−2

+111×

⎛
⎜⎜⎜⎝

1−
(

f

215 Hz

)2

+
(

f

215 Hz

)4

/2

1 +
(

f

215 Hz

)2

/2

⎞
⎟⎟⎟⎠

]
Hz−1.

(7)

In the expression of Γab, the lower cutoff of frequency,
fmin , is a function of observation time Tobs , fmin =
0.233(1M⊙/Mz)

5/8(1yr/Tobs)3/8 Hz. In the case of our
paper, for a given Tobs , fmin changes little with Mz , which
is always in the high strain noise region. It makes no big dif-
ference to the result of the integral. A reasonable setting of
the value of fmin will work. But for prudence, we just take
the original expression of fmin when calculating the integral.
And the higher cutoff, fmax , is the inner-most stable circular
orbit frequency, whose typical value is of kHz order [35].
More specific, fmax � 2000 Hz in our case. In the calcula-
tion, fmax can be set by the property of the integrand. The
value of integrand sharply drops with f getting larger, so
its contribution to Γab can be neglected. For the reason of
integrand property, we set the fmax of DECIGO, ET, aLIGO
respectively to be 100 Hz, 2000 Hz and 2000 Hz. Then the
one-sigma instrument error is

σ
θa
instr (z) = Δθa =

√
{Γ −1}aa . (8)

If we launch an observation for a given source, the one-sigma
error estimate σinstr of dL arises from instrumental noise. For
a given device, no matter it is DECIGO, ET or aLIGO, the
accuracy of dL is the same even for different observation
time. It makes no difference for the σinstr no matter how

Fig. 3 The device error σinstr (z) for DECIGO (Red line), ET (green
line) and aLIGO (blue line), respectively

long the observation continues, which is mainly because that
the error is due to the property of device. The observation
is band-limited. The source is visible only for the time it
takes to move form the low frequency list of the detector’s
sensitivity to merger. For any observation longer than that
time the precision is the same since you do not observe the
source any more. The σinstr of three devices are showed in
Fig. 3. As we can see, the accuracy is far from desirable. The
H(z) error would increase if we include other errors . We
need to take measure to narrow down the error. This is what
we do in next subsection

2.3 H(z) error

In last subsection, we already calculate the device error σinstr
for a given NS binary system under a given observation
device. Besides the device error-the dominating error, there
are two main errors, namely the lensing error and the peculiar-
velocity error. The lensing error is due to the lens effect. Here
we take a recent fitting by [36],

σlens(z) = 0.066 ×
[

1 − (1 + z)−0.25

0.25

]1.8

. (9)

And the peculiar-velocity error is a kind of Doppler effect of
the movement of the celestial body, essentially. The peculiar-
velocity error can be described as [37]

σpv(z) = |1 − (1 + z)2

H(z)dL(z)
|σv,gal , (10)

where σv,gal = 300 km/s is the approximation of the 1-
dimensional velocity dispersion of the galaxy. Then we get

123



900 Page 6 of 13 Eur. Phys. J. C (2019) 79 :900

Fig. 4 The number of merger events in each redsshift bin of Δz = 0.1
at a redshift z during 10-year observation

the expression of relative error of dL(z):

[
Δd(0)

L

d(0)
L

]2

= σ 2
instr (z) + σ 2

lens(z) + σ 2
pv(z). (11)

Before we do the calculation to get the relative error of
H(z), there is one more step we can do for a better accuracy.
The mean error will statistically abate if we have many inde-
pendent sources. Reducing the error of H(z) by observing
many NS binary system at the same redshift may be feasi-
ble. The problem is to what degree can we reduce the error?
First we need to figure out the number distribution ṅ(z) of
NS binary system at different redshift. The distribution of NS
binary system can be described and estimated. According to
Cutler and Harms [38], the fitting of NS–NS merger rate can
be given by:

ṅ(z) = ṅ0s(z), s(z) =

⎧⎪⎨
⎪⎩

1 + 2z, z ≤ 1

0.75(5 − z), 1 < z < 5

0, z ≥ 5,

(12)

where s(z) is estimated from star formation history inferred
from UV luminosity, and ṅ0 represents the merger rate at
present time. Then ΔN , the number of NS–NS merger at
redshift bin Δz, is expressed by: ΔN (z) = Tobs

∫ z+Δz/2
z−Δz/2 4π

[dL(z′)/(1 + z′)]2ṅ(z′)/(1 + z′)/H(z′)dz′.
Recent work doesn’t provide solid evidence of the exact

value of ṅ0. he latest ṅ0 range inferred by the observation
of GW170817 is 0.32 − 4.7 × 10−6 Mpc−3 year−1 [13].
Also not every merger event would be detected. Here we
encounter an conundrum. Considering that we are aimed at
evaluating the method, not launching an actual observation
here, we decide to, a bit arbitrarily, set ṅ0 equal to 1.0 ×
10−6Mpc−3yr−1, and assume all the merger events could be
detected, and the redshift width Δz = 0.1. Thus we get the

Fig. 5 Relative error of H(z) for DECIGO. The dash lines and the solid
lines indicate relative errors without and with lens errors respectively.
The different colors of of the lines represent different observation time,
blue for 1-year, red for 3-year, black for 10-year observation respectively

Fig. 6 Same as Fig. 5, but for ET

Fig. 7 Same as Fig. 5, but for aLIGO. For a given observation time, the
dash line and the solid line overlaps, because the lens error is relatively
small compared with the instrument error of aLIGO

estimate of 10-year observed number of NS binary system
merger at different redshift, which is shown in Fig. 4.

The total number of SN is just of hundred-magnitude by
now, while the observed number of NS–NS merger event will
be much larger than that of SN, showing a tremendous poten-
tial in reducing the mean error of H(z). And from above equa-
tion, the number of NS–NS merger at fixed redshift increases
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with T 1/2
obs . The elongation of observation time can remedy

the drawback of the device sensibility.
Combining with the information we get above, we can cal-

culate the H(z) error for a specific device under a given obser-
vation time now. The relative error of H(z) by DECIGO,
ET and aLIGO is shown in Figs. 5, 6, and 7, for 1-year, 3-
year, 10-year observation respectively. The relative error by
aLIGO is a total disaster, which basically has little appli-
cation value in constraining cosmological parameters. The
error by ET is a little better, especially at low redshift region,
because ET is more sensitive than aLIGO. Thus DECIGO
plays best in this method. When redshift reach 3, due to the
decreasing of the number of observed NS-NS merger event
with redshift, the relative error of H(z) is magnified, but still
quite small. And the elongation of T 1/2

obs shows a great abil-
ity in narrowing down the error. We stress here that σlens(z)
contributes a lot to the distance error Δd(0)

L /d(0)
L . Of course,

various techniques have been developed to reduce σlens(z).
Stefan Hilbert [39] suggested that deep shear survey can nar-
row the lens error. Hirata [36] found that ones can improve
the distance determination typically by a factor of 2–3 by
exploiting the non-Gaussian nature of the lens magnification
distribution. Shapiro [40] used the procedure ‘delensing’, to
estimate the magnification and thereby remove it by a weak
lensing map. It may be too optimistic to remove all the lens
error. But we can rely on it that we could reduce the lens
error to a very low level in the near future. Therefore, for
simplicity, we will ignore σlens(z) in the following sections.

3 Evaluation

3.1 Simulating data

The new method for measuring H(z) has been presented
and its error analysis has been done above. The problem is
how H(z) can accurately observed by this way to constrain
cosmological parameters? So far, we did not obtain actual
OHD by this way. But it doesn’t necessarily mean we can
do nothing about it. A reasonable and rational simulation
can help us forecast and evaluate. Since H(z) by aLIGO
has a bad accuracy, we carry on no simulation and forecast
for aLIGO here. H(z) by ET can do some simulation and
forecast. The problem is that the effect is a little bad, even
worse than 38 OHD sets. We do not plan to show it here, too.
Thus, DECIGO is the only device we discuss in following
sections.

Now that we have the error information of H(z), we can
simulate the OHD. We follow the method Shuo [41] to gen-
erate mock data for ΛCDM:

Hsim = HΛCDM + Hdri f t . (13)

Fig. 8 Mock data for 3-year-observation. The blue curve denotes H(z)
value under ΛCDM, while the dots with error bars represent simulation
data

Fig. 9 38 OHD sets. The dots with error bars represent 38 available
OHD sets so far. For the purpose of illustrating, we also plot H(z) value
under ΛCDM, the blue curve

We treat Hsim as a drift, Hdri f t , based on the theoreti-
cal H(z) value under ΛCDM, HΛCDM , caused by various
errors. Hdri f t is a random value under gaussian distribu-
tion, N (0,ΔH). ΔH is calculated by relative error we get in
last section. Using a piece of python code, we generate our
mock Hsim data of 3-year observation at very 0.1 redshift
bin, shown in Fig. 8. We get 38 OHD sets up to now. The
datas were obtained by different ways from different groups
[8,9,42–51]. Figure 9 shows HΛCDM at every redshift and
the 38 OHD sets so far. As we can see, the OHD value goes
up and down around the HΛCDM at the same redshift, which
justifies the validity of our simulation. Compared with our
mock data, the actual OHD sets’ accuracy is obviously worse.
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3.2 Forecasting

Now that we have got the 3-year-observation mock data,
we can use them to forecast. Before that, we need a crite-
ria to evaluate the constraining ability of the dataset-Figure
of Merit (FoM). We can define FoM in different ways, as long
as its value can reflect how tightly or loosely the data con-
strains parameters. Here for the convenience of our analysis,
we adopt the definition by Albrecht [52], the reciprocal of
the area enclosed by the 2σ confidence region contour, coin-
ciding with a specially appointed confidence region under
gaussian distribution.

We choose the ΛCDM as our prior model. In such a
standard ΛCDM universe with a curvature term Ωk =
1 − Ωm − ΩΛ, the Hubble parameter is given by

H(z)=H0E(z); E(z)=
√

Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2.

(14)

The determination of H0 has been carried on in different
H0 tension projects. For 7-year WMAP observation, H0 =
73 ± 3 kms−1 Mpc−1 [53]. In this paper, we take the most
recent value H0 = 74.2 ± 3.6 kms−1 Mpc−1 [54]. The best
value of Ωm , ΩΛ we adopt is 0.27, 0.73 respectively, due to
the coherence that they are consistent with the observations
and the fact that we use these value to generate our simulation
data. All the three parameters are assumed under gaussian
distribution. By Bayes’ theorem, the posterior probability
density function of parameters is

P(Ωm,ΩΛ|{Hi }) =
∫

P(Ωm,ΩΛ, H0|{Hi })dH0

=
∫

�({Hi }|Ωm,ΩΛ, H0)P(H0)dH0,

(15)

where � is the likelihood and P(H0) is the prior probability
density function of H0. And the expression of � is given
by(assuming no covariance between parameters)

�({Hi }|Ωm,ΩΛ, H0) =
⎛
⎝∏

i

1√
2πσ 2

i

⎞
⎠ exp

(
−χ2

2

)
,

χ2 =
∑
i

[H0E(z) − Hi ]2

σ 2
i

,

(16)

where σi is the uncertainty of the data Hi . And the P(H0) is
Gaussian prior, given by

Fig. 10 Constraint on Ωm and ΩΛ for 3-year-observation. The blue,
red, green curve denote 1σ, 2σ, 3σ confidence region respectively. And
the FoM of simulation data is 170.82

P(H0) = 1√
2πσ 2

H

exp

[
− (H0 − μH )2

2σ 2
H

]
. (17)

Then the integral can be worked out for the given Gaussian
prior P(H0). There is a point in the parameter space max-
imizing the probability density, Pmax . Because of what we
have described in last paragraph, such a point in this fore-
casting is {0.27, 0.73, 74.2}. The formula

P = Pmax × exp

(
−Δχ2

2

)
(18)

means the contour of a given confidence region, which cor-
responds to the value of Δχ2. We have three parameters
here, Ωm,ΩΛ, H0. Δχ2 is statistically set to 2.3, 6.17, 11.8
respectively for 1σ, 2σ, 3σ confidence region. For a direct
comparing and understanding, here we choose 2σ confidence
region, namely Δχ2 = 6.17, when calculating FoM.

To order to calculate the confidence region and FoM, we
take the Fisher Matrix forecast technique [55],

Fi j = 1

2

∂2χ2

∂θi∂θ j
, (19)

where the value of matrix elements is taken at the most-likely
value of parameters. Let’s denote the marginalized Fisher
matrix by F̃ , then the contour in subspace is given by

(Δθ)T F̃Δθ = Δχ2;Δθ = θ − θbest−value, (20)

where Δθ is the deviation from the beat value of the param-
eters. When calculating FoM, we take Δχ2 as 6.17. The
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Fig. 11 Same as Fig. 10, but for 38 actual OHD sets. The FoM here is
9.3

enclosed area is π/

√
det (F̃/Δχ2). So FoM, the reciprocal

of the area, is

FoM =
√
det (F̃/Δχ2)

π
. (21)

The contour is shown in Fig. 10. As we can see, the contour
is an ellipse, which is consistent with the equation of F̃ . For a
more direct and concrete comparison, we perform constraint
for the 38 OHD sets. Their constraint on Ωm and ΩΛ is
shown in Fig. 11. Apparently, the constraint of the mock
data on parameters is much tighter, compared with that of
available OHD sets, which has an significant improvement
on precision cosmology. The simulation and forecast of 10-
year-observation is just carried out in the same way. As Fig.
12 shows, its constraint on cosmological parameters is even
much tighter, implying a consequent higher FoM value.

For the FoM value of 3-year-observation mock data, it is
about 170.82, while that of 38 OHD sets is just about 9.3. It
is a remarkable improvement. For 10-year-observation mock
data, the FoM has a farther improvement, reaching 569.42.
We have enough reason to look forward to the excellent appli-
cation of H(z) data by this method.

3.3 Nonstandard model

The ΛCDM universe do match the observation quite well.
But it doesn’t answer the question that why matter and vac-
uum energy should be of the same order of magnitude at this
moment. Here we consider another model which can give us
an answer to this problem by alternating periods of acceler-
ation and deceleration. In undulant universe, the equation of
state of the vacuum energy is an oscillatory function of state
of the scale of the universe, w(a) = −cos(I na). It meets the

Fig. 12 Same as Fig. 10, but for 10-year-observation simulation. The
FoM is 569.42

Fig. 13 The constraining of undulant universe for 3-year-observation
simulation. The FoM is 153.07

fact that w(a = 1) = −1 in the current universe. Then the
Hubble parameter is given by:

H(z) = H0

√
Ωm(1 + z)3+ΩΛ(1 + z)3e−3sin(I n(1+z)) + Ωk(1 + z)2,

(22)

where ΩΛ + Ωm + Ωk = 1. The simulation and forecasting
carry out just the same as above. Here we consider the case of
3-year-observation. The corresponding FoM is 153.07. And
the constraint is displayed in Fig. 13

4 Discussion and conclusions

In this paper, we mainly evaluate the quality of H(z) data by
GW standard sirens method of several GW detection plans,
whose optimal frequency locate around the frequency win-
dow of GW from typical NS binary system. We calculate the
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relative error of H(z) by three devices, DECIGO and ET and
aLIGO. Though the sensitivity of the three devices is almost
of the same order of magnitude, the H(z) error of DECIGO is
quite optimistic while that of other two is far from satisfying.
But it does not mean that H(z) data by this method is a dead
end or of no meaning, which is justified by the forecasting
of DECIGO-based H(z) data. If the sensitivity of aLIGO
or ET is sightly improved, or just move the most sensitive
frequency to a lower region, the error of H(z) will be com-
parable that by DECIGO. To get a better H(z) data, we have
two ways: (1) the noise curve could be moved down, and the
signal-to-noise ratio of a given sore increases, so we get more
events above threshold and more “bright” events which have
smaller errors; (2) the noise curve could be moved to the left,
then we can see more of the inspiral which can help improve
parameter estimation at fixed signal-to-noise.

Considering the absence of real H(z) data by DECIGO,
we simulate H(z) and the data show an alluring constraint
ability on cosmological parameters. After all, we are aimed
at evaluating the viability and quality of H(z) data by GW
standard sirens method, not putting the method into actual
operation. We find that, under ΛCDM universe, the FoM of
mock data shows a huge improvement compared with that
of 38 actual OHD sets. For contrast, the FoM is 9.3 for 38
OHD sets, 170.82 for 3-year-observation, 569.42 for 10-year-
observation respectively. The advantage of H(z) is that it is
the direct measurement of the expansion history, so H(z) can
be powerful in constraining nonstandard universe. Besides
the standard model, we also explore its ability when applied
to undulant universe. H(z) by DECIGO still shows a excel-
lent constraining ability and a comparably excellent result.
For 3-year-observation simulation, the FoM is 153.07. The
tight constraint of mock data and the FoM of the correspond-
ing contour indicate a bright future of measuring H(z) data
by this method.

To extract as much physical information as possible, all the
known sources of error should be quantified. Apart from the
three error mentioned above, there is another kind of errors,
the calibration error. In GW detection, the response function
is used to convert the electronic output of a GW detector
into the measured GW signal. The calibration error is pro-
duced on the experimentally measurement of the response
function [56]. The calibration error in the response function
degrades the ability to measure the physical properties of the
GW source. Thus it is meaningful to investigate the calibra-
tion error. Lee Lindblom [56] derived the optimal calibration
accuracy: the lower accuracy level would reduce the quantity
and the quality of the scientific information extracted from
the data, and the higher accuracy would be made irrelevant
by the intrinsic noise level of the detector. And Vitate at al.
[57] also investigated the effect introduced by calibration
error based on the estimates obtained during LIGO’s fifth
and VIRGO’s third science runs. They found that the cali-

Fig. 14 The FoM variation with z. This Figure shows the correspond-
ing value of FoM under the condition that if the detecting range reach
redshift z. The result is based on 3-year-observation

bration error would slightly damage the parameter estimate
in GW data analysis. But the calibration-introduced system
has a better ability in locating the source, facilitating the EM
counterpart detecting. Considering the damage caused by cal-
ibration error is relatively small and its hard to quantify the
calibration error, we ignore it in this work. We expect future
study can give us more precise estimate.

It is well worth to point out that at current stage, the detect-
ing of electromagnetic counterpart is still a problem. Cur-
rently, we are not able to make a good evaluation and con-
clusion about it. Finding the EM counterpart in the GW event
is crucial for GW astronomy, which can reveal the process
and interaction during the merger process [58]. Mwtzger et al.
[59] showed that the transient EM counterpart can possibly
occur within a few seconds after the binary merger. And a lot
of theoretical and experimental progress have been achieved
[60,61].

Also there are some recent development in astronomical
and computing technologies. During the proposal and test of
a number of low-latency GW trigger-generation pipelines,
the pipeline has been improved and capable of generating
event triggers within minutes upon the arrival of a detectable
signal [60,62–64]. More and more detectors to be constructed
can form a network, rendering it likely to improve the local-
ization efficiency [65–67]. Some methods have been pro-
posed to identifying GW source for a large sky error [68,69].
Considering the fact that the early detector networks error
in GW localization will be of order 200 deg2 [70], such
method would improve the feasibility of EM detector a lot.
The devices that aim at facilitating the prompt EM detection
mainly focus on high energy region and the optical region,
while radio region is also a good candidate [58]. By next
decade, the Large Synoptic Survey Telescope (LSST), will
be in its sky survey. It will bring us great hope to find the
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prompt EM counterpart. Such EM detection demand multi-
wavelength programs by sensitive telescope capable of cover-
ing large areas on the sky, and a strong synergy exists between
LSST and radio survey in identifying the EM counterpart at
both optic and radio wavelengths, and the information from
both wavelengths about the physics of the post-merger will be
complementary [71]. Here we stress the evaluation of H(z)
by standard sirens, not the exact technical details. Another
problem is that the detecting range for NS binary system
is just 300 Mpc now [72]. This range is much smaller than
what we assumed above. We explore how the FoM changes
with the variation of detecting range, which is shown in Fig.
14. The FoM can be comparable with that of 38 OHD sets at
z = 0.7. For 10-year-observation, this critical value would be
smaller.In other words, if we launch a 10-year-observation,
even if the detecting range is just z = 0.7, we can do much
better than 38 OHD sets. The reason why the limited data can
produce such good effect lies on the fact that the GW stan-
dard sirens can measure low-z H(z) with excellent accuracy.
This demonstrates that even if we could not detect the high-z
H(z) data by GW standard sirens method, the low-z data can
still be valuable and powerful. In the further, if we want to
measure high-z H(z) by this way, some improvement, prob-
ably a lower strain noise, is necessary. But it is undoubtable
that the H(z) by this method is of great power and potential.
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M. Jurić, N.E. Kassim, S.T. Myers, S. Nissanke, R. Osten, B.A.
Zauderer, Publ. Astron. Soc. Pac. 126, 196 (2014). https://doi.org/
10.1086/675262

72. B.F. Schutz, Class. Quantum Gravity 28(12), 125023 (2011).
https://doi.org/10.1088/0264-9381/28/12/125023

123

https://doi.org/10.1088/0004-637X/814/1/25
https://doi.org/10.1088/0004-637X/795/2/105
https://doi.org/10.1086/675262
https://doi.org/10.1086/675262
https://doi.org/10.1088/0264-9381/28/12/125023

	The constraint ability of Hubble parameter by gravitational wave standard sirens on cosmological parameters
	Abstract 
	1 Introduction
	2 Methods
	2.1 Dipole of luminosity distance
	2.2 GW standard sirens
	2.3 H(z) error

	3 Evaluation
	3.1 Simulating data
	3.2 Forecasting
	3.3 Nonstandard model

	4 Discussion and conclusions
	Acknowledgements
	References




