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Abstract We consider the general model of an accelerat-
ing, expanding and shearing radiating star in the presence of
charge. Using a new set of variables arising from the Lie sym-
metries of differential equations we transform the boundary
equation into ordinary differential equations. We present sev-
eral new exact models for a charged gravitating sphere. A par-
ticular family of solution may be interpreted as a generalised
Euclidean star in the presence of the electromagnetic field.
This family admits a linear barotropic equation of state. In the
uncharged limit, we regain general relativistic stellar models
where proper and areal radii are equal, and its generalisa-
tions. Our group theoretical approach selects the physically
important cases of Euclidean stars and equations of state.

1 Introduction

Studying relativistic radiating stars with the kinematical
quantities of shear, expansion and acceleration is an impor-
tant area of research in relativistic astrophysics and cosmol-
ogy. Such models are important in investigating the physical
features of radiating stars such as gravitational collapse, sta-
bility, surface luminosity, relaxation causal thermodynamic
effects, temperature profiles and particle production at the
surface. Several exact models have been investigated in the
past where the interior spacetime with the heat flux matches
smoothly to the exterior radiating Vaidya spacetime. For
some recent investigations considering the physical activ-
ities linked with the gravitational collapse and dissipative
processes see Sarwe and Tikekar [1], Sharma and Tikekar
[2], Reddy et al. [3], Ivanov [4] and Tewari [5,6]. In these
and other analyses the interior energy momentum tensor is
taken to be a neutral relativistic anisotropic fluid with heat
flow. The presence of the electromagnetic field may substan-
tially change the physical features in a relativistic radiating
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star and will affect the nature of gravitational interactions.
For example, Sharif and Azam [7] showed that the electric
field reduces the unstable spacetime region during dissipa-
tive collapse when studying the dynamical instability of an
expansion-free radiating fluid sphere.

The junction conditions matching the interior radiating
matter distribution to the Vaidya exterior were completed
by Santos [8] for neutral matter. The junction conditions
were later generalised to include the electromagnetic field by
De Oliveira and Santos [9], Banerjee and Choudhury [10],
Tikekar and Patel [11] and Maharaj and Govender [12]. Bar-
reto and Da Silva [13] analysed charged and self-similar dis-
tributions and spheres in the diffusion approximations which
is valid at the final stages of collapse. Barreto et al. [14] also
considered self-similar radiating spheres in the presence of
anisotropy in the diffusion limit. A systematic and exten-
sive investigation of nonadiabatic charged spherical grav-
itational collapse in both the diffusion and free-streaming
limits was completed by Di Prisco et al. [15]. Fayos et al.
[16] and Fayos and Torres [17] considered the matching of
a general spherical spacetime with a charged Vaidya exte-
rior and applied the results to relativistic stars and voids.
Barreto and Rosales [18], extending their earlier approach
in the diffusion regime, considered charged and self-similar
spheres in the free-streaming approximations which is appli-
cable in the early stages of collapse. Cipolletta and Giambo
[19] found a class of charged anisotropic collapsing mod-
els and demonstrated that the shell focussing singularities
may be avoided. The presence of charge in the gravitational
collapse delays back hole formation and can even prevent
collapse as shown by Pinheiro and Chan [20] by numerically
integrating the fluid equations and stellar boundary condition.
A similar numerical integration allowed Sharif and Iftikhar
[21] to model charged dissipative collapse which highlights
the dominate role of the electric field. Thirukkanesh and
Govender [22] found a class of exact models by investigating
the boundary condition in the presence of charge and shear.
These analyses highlight the prominent role that the electro-
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magnetic field plays in the modelling of a radiating star in
general relativity.

Charged radiating stars with anisotropic matter interiors
have been recently studied by Ivanov [23] for geodesic flows,
and also for accelerating matter [24]. In these studies sev-
eral families of exact solutions have been obtained by trans-
forming the boundary condition to a Riccati using a trans-
formation related to formation of horizons. Here we generate
exact solutions for a general charged accelerating, expanding
and shearing radiating matter distribution using a symmetry
approach. The Lie point symmetry approach has recently
been used, under different physical situations, in solving the
Einstein field equations for a general relativistic star. The
junction condition relating the radial pressure with the heat
flux for neutral fluids has been studied with the help of Lie
symmetries. Govinder and Govender [25] were the first to
study the junction condition in Euclidean stars. Subsequently
Abebe et al. [26] analysed a conformally flat radiating star
in the absence of charge. Abebe et al. [27] also studied a
shearing neutral fluid model in geodesic motion. Recently
Abebe et al. [28] considered the junction condition of an
accelerating, expanding and shearing stellar in the absence
of charge. Note that a comprehensive analysis of shear-free
stellar models has been made by Abebe et al. [29] with the
help of Lie point symmetries. Other recent treatments with
shearing matter utilizing the Lie method include the works
of Mohanlal et al. [30], and also [31]. It will be helpful if
these investigations could be extended to include the effects
of the electromagnetic field.

The main objective of this paper is to generate exact solu-
tions to the boundary condition equation of a charged radiat-
ing star using transformations arising from the Lie symme-
tries of differential equations. In Sect. 2 we briefly discuss the
general spherically symmetric spacetime and field equations.
We present the junction condition equation for an accelerat-
ing, expanding and shearing star with charge. The resulting
junction equation is a highly nonlinear partial differential
equation which is difficult to solve directly using traditional
methods. Thus we use the Lie symmetry approach to trans-
form the partial differential to ordinary differential equations.
In Sect. 3 we obtain the Lie point symmetries admitted by the
junction condition. We transform the boundary condition to
ordinary differential equations using the linear combination
of the symmetries. Several explicit solutions are obtained. In
Sect. 4 we discuss the role of equation of state and recover the
earlier models for uncharged stars. Some concluding remarks
are made in Sect. 5.

2 The model

The line element determining the interior spacetime of accel-
erating, expanding and shearing general relativistic radiating

stars may be written as

ds2 = −A2dt2 + B2dr2 + Y 2
(
dθ2 + sin2 θdφ2

)
, (1)

with metric functions A = A(r, t), B = B(r, t) and Y =
Y (r, t). The timelike, unit fluid four-velocity u is comoving
and has the form ua = 1

A δa0 . The kinematical quantities have
the specific forms

u̇a =
(

0,
Ar

AB2 , 0, 0

)
, (2a)

Θ = 1

A

(
Bt

B
+ 2

Yt
Y

)
, (2b)

σ = − 1

3A

(
Bt

B
− Yt

Y

)
, (2c)

where u̇a is the acceleration, Θ is the expansion scalar and
σ is the magnitude of the shear scalar. Note that subscripts
denote differentiation with respect to the coordinates r and
t .

The energy momentum tensor for the general model has
the form

Tab = (μ + p) uaub+ pgab+qaub+qbua+πab+Eab, (3)

where μ is the density, p is the isotropic pressure, and qa is
the heat flux. The anisotropic stress tensor is

πab = (
p‖ − p⊥

) (
nanb − 1

3
hab

)
, (4)

where p⊥ is the radial pressure, p⊥ is the tangential pressure,
hab = uaub + gab is the projection tensor and na = 1

B δa1 is
a unit radial vector orthogonal to u. Note that the isotropic
pressure p = 1

3

(
p‖ + 2p⊥

)
. The tensor Eab is the electro-

magnetic energy tensor which is given by

Eab = Fa
cFbc − 1

4
Fcd Fcdgab. (5)

Since the heat flow is directed radially the vector q has the
form

qa = (0, q, 0, 0), (6)

and qaua = 0.
The Einstein–Maxwell equations are given by

Gab = Tab, (7a)

Fab;c + Fbc;a + Fca;b = 0, (7b)

Fab;c = Ja, (7c)

where Faraday’s tensor Fab = φ̃b;a − φ̃a;b and the four-
current Ja = εua . Note that ε is the proper charge density
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and φ̃a is the four-potential. The simplest form for the four-
potential is

φ̃a = (Φ(r, t), 0, 0, 0), (8)

so that F01 = −F10 = −Φr is the nonzero component of F.
From (7) we have

Φrr +
(

2
Yr
Y

− Br
B

− Ar

A

)
Φr = εAB2, (9a)

(
1

A2B2 Φr

)

t
+ 1

A2B2

(
At

A
+ Bt

B

)
Φr

+ 2

A2B2

Yt
Y

Φr = 0. (9b)

On integration we obtain

Φr = AB

Y 2 l, (10a)

l(r) =
∫ r

εBY 2dr, (10b)

where l is strictly a function of r . Note that we can interpret
l(r) as the total charge contained in the sphere up to the radius
r .

Then the Einstein-Maxwell equations for the line ele-
ment (1) and the four-potential (8) can be written as the
system of nonlinear partial differential equations

μ + 1

2

l2

Y 4 = 2

A2

Bt

B

Yt
Y

+ 1

Y 2 + 1

A2

Y 2
t

Y 2

− 1

B2

(
2
Yrr
Y

+ Y 2
r

Y 2 − 2
Br
B

Yr
Y

)
, (11a)

p‖ − 1

2

l2

Y 4 = 1

A2

(
−2

Ytt
Y

− Y 2
t

Y 2 + 2
At

A

Yt
Y

)

+ 1

B2

(
Y 2
r

Y 2 + 2
Ar

A

Yr
Y

)
− 1

Y 2 , (11b)

p⊥ + 1

2

l2

Y 4 = − 1

A2

(
Btt

B
− At

A

Bt

B
+ Bt

B

Yt
Y

− At

A

Yt
Y

+ Ytt
Y

)
+ 1

B2

(
Arr

A

− Ar

A

Br
B

+ Ar

A

Yr
Y

− Br
B

Yr
Y

+ Yrr
Y

)
, (11c)

q = − 2

AB2

(
−Yrt

Y
+ Bt

B

Yr
Y

+ Ar

A

Yt
Y

)
, (11d)

ε = l ′(r)
BY 2 . (11e)

The matter variables μ, p‖, p⊥, q, and the proper charge den-
sity ε can be determined explicitly once the potential func-
tions A, B and Y are known. The function l(r) determines
the charge distribution in the interior spacetime of the star.
Equations (11) describe the gravitational and electromag-
netic interactions in the interior of an accelerating, expand-

ing and shearing charged star with heat flux and anisotropic
pressure.

The surface of a spherically symmetric radiating star is the
boundary between the interior and the exterior spacetimes.
The interior spacetime (1) has to be matched at the surface
of the star to the exterior charged Vaidya spacetime

ds2 = −
(

1 − 2m(v)

R
+ Q2

R2

)
dv2 − 2dvdR

+ R2
(
dθ2 + sin2 θdφ2

)
. (12)

In (12) the function m(v) is the mass of the star and Q is
the total charge as measured by an observer at infinity. The
metrics (1) and (12) have to be matched at the boundary of the
star. The matching of the metrics and the extrinsic curvature
at the surface of the star give the junction condition

(p‖)Σ = (Bq)Σ, (13)

at the hypersurface Σ of the charged radiating sphere. For
more information on the matching and junction conditions
in the presence of electric field see Maharaj and Govender
[12]. From Eqs. (13), (11c) and (11e) we have the junction
condition equation

4AB2Y 3Ytt + 2AB2Y 2Y 2
t − 4B2Y 3AtYt

− 4ABY 3ArYt + 4A2BY 3Yrt − 4A2Y 3ArYr

− 4A2Y 3BtYr − 2A3Y 2Y 2
r + 2A3B2Y 2

− l2A3B2 = 0, (14)

at the boundary of the star. The charged boundary condi-
tion (14) is similar to the uncharged condition derived by
Ivanov [24] and Thirukkanesh et al. [32]. When we set l = 0
then we regain the result of [32]. However the presence of
charge makes equation (14) very complicated. It is for this
reason that very few exact solutions to (14) have been found
when l �= 0. As the equation (14) holds at the boundary Σ

we treat l as a constant quantity in the integration process;
clearly in the interior of the star l = l(r).

3 Exact solutions

The method of applying Lie point symmetries in a group
theoretical approach has proved to be very successful in gen-
erating new exact solutions for radiating stars in relativistic
astrophysics. Some results are contained in analyses involv-
ing conformally flat stars [26], geodesic stars [27], gener-
alised Euclidean stars [28] and shear-free stars with equation
of state [29].
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It is relatively straight forward to show that (14) admits
the Lie symmetries

X1 = Aβ ′(t) ∂

∂A
− β(t)

∂

∂t
, (15a)

X2 = Bα′(r) ∂

∂B
− α(r)

∂

∂r
, (15b)

where β(t) and α(r) are arbitrary functions. These symme-
tries may be used to generate group invariant solutions. With
the linear combination of these symmetries

aX2 − bX1 = −bAβ ′(t) ∂

∂A
+ aBα′(r) ∂

∂B

+bβ(t)
∂

∂t
− aα(r)

∂

∂r
, (16)

we can find the invariants from the conditions

dt

bβ(t)
= dr

−aα(r)
= d A

−bAβ ′(t)
= dB

aBα′(r)
= dY

0
. (17)

These invariants are

x = 1

b

∫ t dt

β(t)
+ 1

a

∫ r dr

α(r)
, (18a)

A = f (x)

β(t)
, (18b)

B = g(x)

α(r)
, (18c)

Y = h(x), (18d)

for the generator bX1 − aX2. Here f , g and h are arbitrarily
functions of the variable x . With the transformation (18),
equation (14) becomes

g′ +
(

f ′

f
− h′′

h′

)
g

+
([

a
(

4h3h′ f ′ − 2h2
(

2hh′′ + h′2) f

+ b2
(
l2 − 2h2

)
f 3

)] [
4b f 2h3h′]−1

)
g2

+
(
b

(
2h f ′ + f h′)

2ah

)
= 0. (19)

This can be written compactly as

g′ + ξ(x)g + ϕ(x)g2 + ψ(x) = 0, (20)

where we have set

ξ(x) = f ′

f
− h′′

h′ , (21a)

ϕ(x) =
[
a

(
4h3h′ f ′ − 2h2

(
2hh′′ + h′2) f

+b2
(
l2 − 2h2

)
f 3

)] [
4b f 2h3h′]−1

, (21b)

ψ(x) = b
(
2h f ′ + f h′)

2ah
. (21c)

Here the primes denote derivatives with respect to the new
independent variable x . Equation (20) is a Riccati equation
in g. It is difficult to complete the integration in general.
We make assumptions to integrate and produce new exact
solutions.

We observe that in the presence of the electric field l �= 0
there are only two Lie point symmetries (15); in the absence
of charge three Lie point symmetries arise as shown by Abebe
et al. [28]. This leads to a different nonlinear equation (20)
governing the evolution of the charged radiating star. When
l = 0 and a = 1 then we regain the boundary condition for
a neutral radiating star in [28].

3.1 Linear equation

To progress we set

ϕ(x) = 0, (22)

in (20). We note that (22) is a Bernoulli equation in f and
can be integrated to give

f =
√

2hh′
√−2b2h2 − b2l2 + kh

, (23)

where k is a constant of integration. On substitution (20)
becomes

g′ −
(

h′ (kh − 2b2l2
)

2h
(
2b2h2 + b2l2 − kh

)
)
g

−
[
b

(
2hh′′ (2b2h2 + b2l2 − kh

)
+ h′2 (

2b2h2 + 3b2l2

−.2kh
))] [√

2b
(
−2b2h2 − b2l2 + kh

)3/2
]−1

= 0,

(24)

which is linear in g. Equation (24) can be integrated to give

g =
√

2b2h2 + b2l2 − kh

h

×
(∫ x {[

bh
(
h′2 (

2h
(
k − b2h

)
− 3b2l2

)

− 2hh′′ (2b2h2 − kh + b2l2
))] [

a
(

2b2h2 − kh

+ b2l2
)3/2 √

2h
(
k − 2b2h

) − 2b2l2
]−1

}
dx

+m

)
, (25)

where m is a constant of integration.
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Hence we have the gravitational potentials

A =
√

2hh′

β(t)
√−2b2h2 − b2l2 + kh

, (26a)

B =
√

2b2h2 + b2l2 − kh

hα(r)

×
( ∫ x {[

bh
(
h′2 (

2h
(
k − b2h

)
− 3b2l2

)

− 2hh′′ (2b2h2 − kh + b2l2
)) ]

×
[
a

(
2b2h2 − kh + b2l2

)3/2

√
2h

(
k − 2b2h

) − 2b2l2
]−1}

dx + m

)
, (26b)

Y = h, (26c)

which a solution to the master equation (14). Note that h is
a function of x = 1

b

∫ t dt
β(t) + 1

a

∫ r dr
α(r) .

3.2 Bernoulli equation

In this case we set

ψ(x) = 0, (27)

in (20). We observe that (27) is a linear in f and yields

f (x) = k√
h

, (28)

on integration. Here k is a constant of integration. Substitut-
ing (28) into (20) we have

g′ +
(

− h′

2h
− h′′

h′

)
g

−a
(
2b2k2h2 − b2k2l2 + 4h4h′′ + 4h3h′2)

4bkh7/2h′ g2 = 0,

(29)

which is a Bernoulli equation in g . It can be integrated to
yield

g =
√
hh′

m − ∫ x a
4bk

(
b2k2(2h2−l2)

h3 + 4hh′′ + 4h′2
)
dx

, (30)

where m is a constant of integration.
Therefore we have the metric functions

A = k

β(t)
√
h

, (31a)

B =
√
hh′

α(r)
[
m−∫ x a

4bk

(
b2k2(2h2−l2)

h3 + 4hh′′ + 4h′2
)
dx

] ,

(31b)

Y = h, (31c)

which another solution to the master equation.

3.3 Riccati equation

Here we set

ξ(x) = 0, (32)

in (20) for simplicity. Equation (32) is a separable equation
and we find that

f (x) = kh′, (33)

on integration where k is an arbitrary constant. Then on sub-
stitution (20) becomes

g′+a
(
b2k2l2 − 2

(
b2k2 + 1

)
h2

)

4bkh3 g2+bk
(
2hh′′ + h′2)

2ah
= 0,

(34)

which is a simpler Riccati equation in g. Equation (34) is dif-
ficult to integrate in general. Abebe et al. [28] demonstrated
a solution for a neutral fluid (l = 0) for a particular form of
the function h.

3.4 Case: f (x) = cg(x)

Another Bernoulli equation can obtained if we set

f = cg, (35)

where c is an arbitrary constant. Then (20) becomes

g′ +
(

(bc − a)h′2 − 2ahh′′

2h(bc + a)h′

)
g

+
(
b2a2c2

(
l2 − 2h2

)

4h3(bc + a)2h′

)
g3 = 0, (36)

which is a Bernoulli equation in g. Although h is an unknown
function of the new variable x we can integrate (36) to obtain

g(x) =

× h
a−bc

2bc+2a h′ a
bc+a

(
b2a2c2

2(bc+a)2

∫ x (
l2 − 2h2

) h
′ a−bc
bc+a

h
2a+4bc
bc+a

dx + d

)1/2 , (37)

where d is a constant of integration. Thus we have found an
exact solution to the boundary condition (14).
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The solution is expressible in terms of the functionh which
is arbitrary. Thus the potential functions become

A = ch
a−bc

2bc+2a h′ a
bc+a

β(t)

(
b2a2c2

2(bc+a)2

∫ x (
l2 − 2h2

) h
′ a−bc
bc+a

h
2a+4bc
bc+a

dx + d

)1/2 ,

(38a)

B = h
a−bc

2bc+2a h′ a
bc+a

α(r)

(
b2a2c2

2(bc+a)2

∫ x (
l2 − 2h2

) h
′ a−bc
bc+a

h
2a+4bc
bc+a

dx + d

)1/2 ,

(38b)

Y = h, (38c)

which is a solution to the master equation (14). Note that
h is an arbitrary function of the variable x = 1

b

∫ t dt
β(t) +

1
a

∫ r dr
α(r) . This solution consists of the arbitrary functions

α(r), β(t), and arbitrary constants a, b, c and d. This may
help us to generate infinitely many solutions for particular
choices of these functions and constants.

4 Equation of state

The solutions found in this paper are physically reasonable.
An important physical feature for an astrophysical object
is an equation of state. The potentials in (38) produce this
feature. For this case the Einstein-Maxwell field equations
for the interior matter distribution become

μ = b2c2 + bac + a2

bac

[
2(a − bc)

(
hh′′ + h′2) ζ(x)

bac(bc + a)h
3a+bc
bc+a h′ 2a

bc+a

+bac
(
2h2 − l2

)

(bc + a)2h4

]
, (39a)

p‖ = 2(bc − a)
(
hh′′ + h′2) ζ(x)

bac(bc + a)h
3a+bc
bc+a h′ 2a

bc+a

+ bac
(
l2 − 2h2

)

(bc + a)2h4 ,

(39b)

p⊥ = b2a2c2(bc − a)
(
l2 − 2h2

)2

8(a + bc)3h
5a+7bc
a+bc h′ 2bc

a+bc ζ(x)
+ (a − bc)2l2h′′

4(a + bc)2h3h′2

+
[
(bc − a)ζ(x)

(
(bc − a)h′4 + (3a + bc)hh′′h′2

+2ah2h(3)h′ − 2ah2h′′2)] [
2b2a2c2h

3a+bc
a+bc

×h′ 4a+2bc
a+bc

]−1 + bc(a − bc)

(a + bc)2h2 − l2

2h4

− (a − bc)(a + 2bc)l2

2(a + bc)2h4 − (a − bc)2h′′

2(a + bc)2hh′2 , (39c)

q = ζ(x)α(r)

bac(bc + a)2h
3a

bc+a + 7
2 h′ 3a

bc+a

(
b2a2c2

(
l2 − 2h2

)

×h
2a

bc+a h′ 2a
bc+a − 2ζ(x)h3(a − bc)(bc + a)

×
(
hh′′ + h′2))

, (39d)

ε = α(r)l ′(r)

h
3bc+5a
2(bc+a) h′ a

bc+a

ζ(x)1/2, (39e)

where we set ζ(x) = d + b2a2c2

2(bc+a)2

∫ x (
l2 − 2h2

) h
′ a−bc
bc+a

h
2a+4bc
bc+a

dx .

We observe that

p‖ = λμ, λ = − bac

b2c2 + bac + a2 . (40)

Therefore the charged stellar model (39) satisfies a linear
equation of state (40) which barotropic. It is remarkable that
an equation of state exists even though h(x) is an arbitrary
function; we are free to select any analytic form for h. The Lie
theory of differential equations has generated a rich family of
of new solutions for radiating charged stellar models which
satisfies a barotropic equation of state.

If we omit the charge, (l = 0) and set a = 1 in (38) then
we have

A = ch
1−bc

2(bc+1) h′ 1
bc+1

β(t)
(
d − b2c2

(bc+1)2

∫ x
1 h

−2bc
bc+1 h′ 1−bc

bc+1 dx
)1/2 , (41a)

B = h
1−bc

2(bc+1) h′ 1
bc+1

α(r)
(
d − b2c2

(bc+1)2

∫ x
1 h

−2bc
bc+1 h′ 1−bc

bc+1 dx
)1/2 , (41b)

Y = h, (41c)

The model (41) for an uncharged generalised Euclidean star
was obtained by Abebe et al. [28]. In an Euclidean star
the gravitational potentials are related by B = Yr which
was first introduced by Herrera and Santos [33]. Therefore
our model (38) may be interpreted as a charged generalised
Euclidean star. Note that the particular Govinder and Goven-
der [25] solution

A = xn−1

β(t)
, (42a)

B = kn
xn−1

α(r)
, (42b)

Y = kxn, where x =
∫

dt

β(t)
+

∫
dr

α(r)
, (42c)

where k2n3 − 2kn2 + 2n(k − 1)+ 2 = 0 is contained in (41)
if we set the functional value h(x) = kxn . The solution
(42) is an example of an Euclidean general relativistic star.
Note that the particular uncharged models (41) and (42) also
admit an equation of state; these can be regained from our
general equation of state (40). The various possible models
with equation of state are given in Table 1. It is interesting to
note that separable metric potentials also yield an equation
of state as shown by Abebe and Maharaj [34]
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Table 1 Stars, metric functions and equations of state

Star Metric functions Equation of state

Charged generalised Euclidean star A = ch
a−bc

2bc+2a h
′ a
bc+a

β(t)

(
b2a2c2

2(bc+a)2

∫ x
(l2−2h2) h

′ a−bc
bc+a

h
2a+4bc
bc+a

dx+d

)1/2 p‖ = λμ,

B = h
a−bc

2bc+2a h
′ a
bc+a

α(r)

(
b2a2c2

2(bc+a)2

∫ x
(l2−2h2) h

′ a−bc
bc+a

h
2a+4bc
bc+a

dx+d

)1/2 λ = − bac
b2c2+bac+a2

Y = h(x)

Uncharged generalised Euclidean star A = ch
1−bc

2(bc+1) h
′ 1
bc+1

β(t)

(
d− b2c2

(bc+1)2

∫ x
1 h

−2bc
bc+1 h

′ 1−bc
bc+1 dx

)1/2 p‖ = λμ,

B = h
1−bc

2(bc+1) h
′ 1
bc+1

α(r)

(
d− b2c2

(bc+1)2

∫ x
1 h

−2bc
bc+1 h

′ 1−bc
bc+1 dx

)1/2 λ = − bc
b2c2+bc+1

Y = h(x)

Euclidean star A = xn−1

β(t) p‖ = λμ,

B = kn xn−1

α(r) λ = 2n−k2n3−2
2k2n3−2k2n2

Y = kxn provided that k2n3 − 2kn2 + 2n(k − 1) + 2 = 0

5 Conclusion

Earlier studies involving group theoretical approaches to
study bounded matter distributions were completed in the
absence of charge. In this study we have attempted to include
the effect of the electric field in the stellar model. We stud-
ied the junction condition of an accelerating, expanding and
shearing radiating star in the presence of charge. We found
that the boundary equation admits two Lie point symmetries.
In the uncharged limit there are three Lie point symmetries;
only two symmetries have the consequence of producing a
completely different form for the boundary equation, in the
presence of charge, which is difficult to analyse. Using the
two Lie symmetries we transformed the partial differential
equations into ordinary differential equations with new vari-
ables. We solved the transformed ordinary equation and pro-
duced new solutions in terms of the original variables.We
showed that one family of solutions admits a linear barotropic
equation of state. We can interpret this family as a charged
generalised Euclidean star model. The uncharged Euclidean
and generalised Euclidean models of Govinder and Goven-
der [25] and Abebe et al. [28] respectively were regained
in the uncharged limit. Our analysis in the presence of the
electromagnetic field shows the relevance of using a group
theoretic approach in solving problems with the electromag-
netic field. It is interesting to observe that the group theo-
retical approach selects important physical models, namely
Euclidean stars and the equation of state.
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