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Abstract Wereview lattice results related to pion, kaon, D-  tion of the light-quark masses, the form factor f5 (0) arising
meson, B-meson, and nucleon physics with the aim of mak-  in the semileptonic K — m transition at zero momentum
ing them easily accessible to the nuclear and particle physics  transfer, as well as the decay constant ratio fx / f and its con-
communities. More specifically, we report on the determina- sequences for the CKM matrix elements V,; and V,,4. Fur-

thermore, we describe the results obtained on the lattice for
2 e-mail: a.juttner @soton.ac.uk (corresponding author) some of the low-energy constants of SU(2); x SU(2)g and
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SU (3) 1 x SU (3) g Chiral Perturbation Theory. We review the
determination of the Bx parameter of neutral kaon mixing as
well as the additional four B parameters that arise in theories
of physics beyond the Standard Model. For the heavy-quark
sector, we provide results for m. and my as well as those
for D- and B-meson decay constants, form factors, and mix-
ing parameters. These are the heavy-quark quantities most
relevant for the determination of CKM matrix elements and
the global CKM unitarity-triangle fit. We review the status
of lattice determinations of the strong coupling constant .
Finally, in this review we have added a new section reviewing
results for nucleon matrix elements of the axial, scalar and
tensor bilinears, both isovector and flavor diagonal.
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1 Introduction

Flavour physics provides an important opportunity for
exploring the limits of the Standard Model of particle physics
and for constraining possible extensions that go beyond it. As
the LHC explores a new energy frontier and as experiments
continue to extend the precision frontier, the importance of
flavour physics will grow, both in terms of searches for sig-
natures of new physics through precision measurements and
in terms of attempts to construct the theoretical framework
behind direct discoveries of new particles. Crucial to such
searches for new physics is the ability to quantify strong-
interaction effects. Large-scale numerical simulations of lat-
tice QCD allow for the computation of these effects from
first principles. The scope of the Flavour Lattice Averag-
ing Group (FLAG) is to review the current status of lattice
results for a variety of physical quantities that are important
for flavour physics. Set up in November 2007, it comprises
experts in Lattice Field Theory, Chiral Perturbation Theory
and Standard Model phenomenology. Our aim is to provide
an answer to the frequently posed question “What is cur-
rently the best lattice value for a particular quantity?” in a
way that is readily accessible to those who are not expert
in lattice methods. This is generally not an easy question to
answer; different collaborations use different lattice actions
(discretizations of QCD) with a variety of lattice spacings
and volumes, and with a range of masses for the u- and d-
quarks. Not only are the systematic errors different, but also
the methodology used to estimate these uncertainties varies
between collaborations. In the present work, we summarize
the main features of each of the calculations and provide a
framework for judging and combining the different results.
Sometimes it is a single result that provides the “best” value;
more often it is a combination of results from different col-
laborations. Indeed, the consistency of values obtained using
different formulations adds significantly to our confidence in
the results.

@ Springer

The first three editions of the FLAG review were made
public in 2010 [1], 2013 [2], and 2016 [3] (and will be
referred to as FLAG 10, FLAG 13 and FLAG 16, respec-
tively). The third edition reviewed results related to both light
(u-, d- and s-), and heavy (c- and b-) flavours. The quantities
related to pion and kaon physics were light-quark masses,
the form factor f, (0) arising in semileptonic K — 7 transi-
tions (evaluated at zero momentum transfer), the decay con-
stants fx and f, the Bx parameter from neutral kaon mix-
ing, and the kaon mixing matrix elements of new operators
that arise in theories of physics beyond the Standard Model.
Their implications for the CKM matrix elements V,,; and V4
were also discussed. Furthermore, results were reported for
some of the low-energy constants of SU(2); x SU (2)g and
SU3)r x SU(3)g Chiral Perturbation Theory. The quanti-
ties related to D- and B-meson physics that were reviewed
were the masses of the charm and bottom quarks together
with the decay constants, form factors, and mixing parame-
ters of B- and D-mesons. These are the heavy-light quanti-
ties most relevant to the determination of CKM matrix ele-
ments and the global CKM unitarity-triangle fit. Last but not
least, the current status of lattice results on the QCD coupling
oy was reviewed.

In the present paper we provide updated results for all the
above-mentioned quantities, but also extend the scope of the
review by adding a section on nucleon matrix elements. This
presents results for matrix elements of flavor nonsinglet and
singlet bilinear operators, including the nucleon axial charge
g4 and the nucleon sigma terms. These results are relevant
for constraining V,,4, for searches for new physics in neutron
decays and other processes, and for dark matter searches. In
addition, the section on up and down quark masses has been
largely rewritten, replacing previous estimates for m,,, mg,
and the mass ratios R and Q that were largely phenomeno-
logical with those from lattice QED+QCD calculations. We
have also updated the discussion of the phenomenology of
isospin-breaking effects in the light meson sector, and their
relation to quark masses, with a lattice-centric discussion. A
short review of QED in lattice-QCD simulations is also pro-
vided, including a discussion of ambiguities arising when
attempting to define “physical” quantities in pure QCD.

Our main results are collected in Tables 1, 2 and 3. As is
clear from the tables, for most quantities there are results from
ensembles with different values for N ¢. In most cases, there
is reasonable agreement among results with Ny = 2,2 + 1,
and 2 + 1 4 1. As precision increases, we may some day be
able to distinguish among the different values of N 7, in which
case, presumably 2 + 1 4 1 would be the most realistic. (If
isospin violation is critical, then 1 + 1+1orl1 4+ 14+1 4+ 1
might be desired.) At present, for some quantities the errors
inthe Ny = 2 + 1 results are smaller than those with Ny =
2+ 1+ 1(e.g.,form.), while for others the relative size of the
errors is reversed. Our suggestion to those using the averages
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Table 1 Summary of the main results of this review concerning quark
masses, light-meson decay constants, LECs, and kaon mixing parame-
ters. These are grouped in terms of N, the number of dynamical quark
flavours in lattice simulations. Quark masses and the quark conden-
sate are given in the MS scheme at running scale ;4 = 2GeV or as
indicated. BSM bag parameters Bj 3 4.5 are given in the MS scheme at
scale u© = 3 GeV. Further specifications of the quantities are given in
the quoted sections. Results for Ny = 2 quark masses are unchanged
since FLAG 16 [3]. For each result we list the references that enter

the FLAG average or estimate, and we stress again the importance of
quoting these original works when referring to FLAG results. From the
entries in this column one can also read off the number of results that
enter our averages for each quantity. We emphasize that these numbers
only give a very rough indication of how thoroughly the quantity in
question has been explored on the lattice and recommend consulting
the detailed tables and figures in the relevant section for more signifi-
cant information and for explanations on the source of the quoted errors

Quantity Sects. Nyp=2+1+1 Refs. Nyp=2+1 Refs. Np=2 Refs.

muq (MeV) 3.14 3.410(43) [8,9] 3.364(41) [10-14]

ms (MeV) 3.14 93.44(68) [8,9,15,16] 92.0(1.1) [10-13,17]

My /Myq 3.15 27.23(10) [5,9,18] 27.42(12) [10-12,17]

my, (MeV) 3.1.6 2.50(17) [19] 2.27(9) [20]

mq (MeV) 3.1.6 4.88(20) [19] 4.67(9) [20]

my /mq 3.1.6 0.513(31) [19] 0.485(19) [20]

m.(3 GeV) (GeV) 322 0.988(7) [8,9,15,16,21]  0.992(6) [13,22,23]

me/mg 323 11.768(33) [8,9,16] 11.82(16) [22,24]

mp(mp) (GeV) 33 4.198(12) [8,16,25-27] 4.164(23) [13]

f+(0) 43 0.9706(27) [28,29] 0.9677(27) [30,31] 0.9560(57)(62)  [32]

Sr=/ [t 43 1.1932(19) [5,33,34] 1.1917(37) [10,35-39] 1.205(18) [40]

Sfrt MeV) 4.6 130.2(8) [10,35,36]

fx= MeV) 4.6 155.7(3) [18,33,34] 155.7(7) [10,35,36] 157.5(2.4) [40]

=13 (MeV) 522 286(23) [41,42] 272(5) [14,43-47] 266(10) [41,48-50]
F./F 522 1.077(3) [51] 1.062(7) [36,43-45,52] 1.073(15) [48-50,53]
2 523 3.53(26) [51] 3.07(64) [36,43-45,52]  3.41(82) [48,49,53]
£y 523 4.73(10) [51] 4.02(45) [36,43-45,52]  4.40(28) [48,49,53,54]
123 523 15.1(1.2) [49,53]
Bg 6.2 0.717(18)(16) [55] 0.7625(97) [10,56-58] 0.727(22)(12) [59]

B> 6.3 0.46(1)(3) [55] 0.502(14) [58,60] 0.47(2)(1) [59]

B; 6.3 0.79(2)(4) [55] 0.766(32) [58,60] 0.78(4)(2) [59]

By 6.3 0.78(2)(4) [55] 0.926(19) [58,60] 0.76(2)(2) [59]

Bs 6.3 0.49(3)(3) [55] 0.720(38) [58,60] 0.58(2)(2) [59]

is to take whicheverof the Ny =2 + 1TorNy =2 + 1 + 1
results has the smaller error. We do not recommend using the
Ny = 2 results, except for studies of the N y-dependence of
condensates and o, as these have an uncontrolled systematic
error coming from quenching the strange quark.

Our plan is to continue providing FLAG updates, in the
form of a peer reviewed paper, roughly on a triennial basis.
This effort is supplemented by our more frequently updated
website http://flag.unibe.ch [4], where figures as well as pdf-
files for the individual sections can be downloaded. The
papers reviewed in the present edition have appeared before
the closing date 30 September 2018.!

! Working groups were given the option of including papers submitted
to arxiv.org before the closing date but published after this date.

This review is organized as follows. In the remainder of
Sect. 1 we summarize the composition and rules of FLAG
and discuss general issues that arise in modern lattice calcu-
lations. In Sect. 2, we explain our general methodology for
evaluating the robustness of lattice results. We also describe
the procedures followed for combining results from different
collaborations in a single average or estimate (see Sect. 2.2
for our definition of these terms). The rest of the paper con-
sists of sections, each dedicated to a set of closely connected
physical quantities. Each of these sections is accompanied by

Footnote 1 continued

This flexibility allows this review to be up-to-date at the time of sub-
mission. Three papers of this type were included: Ref. [5] in Sects. 7
and 8, and Refs. [6,7] in Sect. 10.
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Table 2 Summary of the main results of this review concerning heavy—
light mesons and the strong coupling constant. These are grouped in
terms of Ny, the number of dynamical quark flavours in lattice simula-
tions. The quantities listed are specified in the quoted sections. For each
result we list the references that enter the FLAG average or estimate, and
we stress again the importance of quoting these original works when
referring to FLAG results. From the entries in this column one can also

read off the number of results that enter our averages for each quantity.
We emphasize that these numbers only give a very rough indication
of how thoroughly the quantity in question has been explored on the
lattice and recommend consulting the detailed tables and figures in the
relevant section for more significant information and for explanations
on the source of the quoted errors

Quantity Sects. Np=2+1+1 Refs. Nf=2+1 Refs. Nf=2 Refs.
fp (MeV) 7.1 212.0(7) [5,34] 209.0(2.4) [61-63] 208(7) [64]
fp, MeV) 7.1 249.9(5) [5,34] 248.0(1.6) [22,62,63,65] 242.5(5.8)  [64,66]
% 7.1 1.1783(16) [5,34] 1.174(7) [61-63] 1.20(2) (64]
1P 0) 72 0.612(35) [67] 0.666(29) [68]

1P ) 72 0.765(31) [67] 0.747(19) [69]

f5 (MeV) 8.1 190.0(1.3) [5.26,70,71]  192.0(4.3) [62,72-75] 188(7) [64,76]
fp, (MeV) 8.1 230.3(1.3) [5,26,70,71]  228.4(3.7) [62,72-75] 227(7) [64,76]
I 8.1 1.209(5) [5.26,70,71]  1.201(16) [62,72-75] 1.206(23) [64,76]
Fo,Bs, MeV) 82 225(9) [74,77,78] 216(10) [64]
fo,\/Bp, MeV) 82 274(8) [74,77,78] 262(10) [64]
B, 8.2 1.30(10) [74,77,78] 1.30(6) [64]
B, 8.2 1.35(6) [74,77,78] 1.32(5) [64]

£ 8.2 1.206(17) [74,78] 1.225(31) [64]
By, /B, 8.2 1.032(38) [74,78] 1.007(21) [64]
Quantity Sects. Ny=24+landNy=2+1+1 Refs.

al(My) 9.10 0.1182(8) [13,16,23,79-82]

ASL (MeV) 9.10 211(10) [13,16,23,79-82]

ASL (MeV) 9.10 294(12) [13,16,23,79-82]

ASL (MeV) 9.10 343(12) [13,16,23,79-82]

Table 3 Summary of the main results of this review concerning nuclear
matrix elements, grouped in terms of Ny, the number of dynamical
quark flavours in lattice simulations. The quantities listed are specified
in the quoted sections. For each result we list the references that enter
the FLAG average or estimate, and we stress again the importance of
quoting these original works when referring to FLAG results. From the

entries in this column one can also read off the number of results that
enter our averages for each quantity. We emphasize that these numbers
only give a very rough indication of how thoroughly the quantity in
question has been explored on the lattice and recommend consulting
the detailed tables and figures in the relevant section for more signifi-
cant information and for explanations on the source of the quoted errors

Quantity Sects. Np=2+1+1 Refs. Nf=2+1 Refs. Nf=2 Refs.
g4 10.3.1 1.251(33) [83,84] 1.254(16)(30) [6] 1.278(86) [85]
g5 10.3.2 1.022(80)(60) (83]

g 10.3.3 0.989(32)(10) [83]

g4 104.1 0.777(25)(30) [86] 0.847(18)(32) [6]

g4 10.4.1 —0.438(18)(30) [86] —0.407(16)(18) (6]

g 10.4.1 —0.053(8) [86] —0.035(6)(7) (6]

oy (MeV) 10.4.4 64.9(1.5)(13.2) [21] 39.7(3.6) [87-89] 37(8)(6) [90]
o5 (MeV) 10.4.4 41.0(8.8) 1] 52.9(7.0) [87-89.91,92]

g 10.4.5 0.784(28)(10) (7]

g¢ 104.5 —0.204(11)(10) 7]

gy 10.4.5 —0.027(16) (7]
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an Appendix with explicatory notes.” Finally, in Appendix
A we provide a glossary in which we introduce some stan-
dard lattice terminology (e.g., concerning the gauge, light-
quark and heavy-quark actions), and in addition we summa-
rize and describe the most commonly used lattice techniques
and methodologies (e.g., related to renormalization, chiral
extrapolations, scale setting).

1.1 FLAG composition, guidelines and rules

FLAG strives to be representative of the lattice commu-
nity, both in terms of the geographical location of its mem-
bers and the lattice collaborations to which they belong. We
aspire to provide the nuclear- and particle-physics commu-
nities with a single source of reliable information on lattice
results.

In order to work reliably and efficiently, we have adopted
a formal structure and a set of rules by which all FLAG
members abide. The collaboration presently consists of an
Advisory Board (AB), an Editorial Board (EB), and eight
Working Groups (WG). The rdle of the Advisory Board is to
provide oversight of the content, procedures, schedule and
membership of FLAG, to help resolve disputes, to serve as a
source of advice to the EB and to FLAG as a whole, and to
provide a critical assessment of drafts. They also give their
approval of the final version of the preprint before it is ren-
dered public. The Editorial Board coordinates the activities of
FLAG, sets priorities and intermediate deadlines, organizes
votes on FLAG procedures, writes the introductory sections,
and takes care of the editorial work needed to amalgamate the
sections written by the individual working groups into a uni-
form and coherent review. The working groups concentrate
on writing the review of the physical quantities for which
they are responsible, which is subsequently circulated to the
whole collaboration for critical evaluation.

The current list of FLAG members and their Working
Group assignments is:

e Advisory Board (AB): S. Aoki, M. Golterman, R. Van
De Water, and A. Vladikas

e Editorial Board (EB): G. Colangelo, A. lJiittner, S.
Hashimoto, S.R. Sharpe, and U. Wenger

e Working Groups (coordinator listed first):

Quark masses: T. Blum, A. Portelli, and A. Ramos;
— Vus, Vua: S. Simula, T. Kaneko, and J. N. Simone;
— LEC: S. Diirr, H. Fukaya, and U.M. Heller;

— Bk :P.Dimopoulos, G. Herdoiza, and R. Mawhinney;
- fB(A,) s fDm, Bp:D.Lin, Y. Aoki, and M. Della Morte;

2 In some cases, in order to keep the length of this review within
reasonable bounds, we have dropped these notes for older data, since
they can be found in previous FLAG reviews [1-3].

— By, D semileptonic and radiative decays: E. Lunghi,
D. Becirevic, S. Gottlieb, and C. Pena;

— o: R. Sommer, R. Horsley, and T. Onogi;

— NME:R. Gupta, S. Collins, A. Nicholson, and H. Wit-

tig;

The most important FLAG guidelines and rules are the
following:

e the composition of the AB reflects the main geographi-
cal areas in which lattice collaborations are active, with
members from America, Asia/Oceania, and Europe;

e the mandate of regular members is not limited in time,
but we expect that a certain turnover will occur naturally;

e whenever a replacement becomes necessary this has to
keep, and possibly improve, the balance in FLAG, so
that different collaborations, from different geographical
areas are represented;

e in all working groups the three members must belong to
three different lattice collaborations;3 4

e a paper is in general not reviewed (nor colour-coded, as
described in the next section) by any of its authors;

e lattice collaborations will be consulted on the colour cod-
ing of their calculation;

e there are also internal rules regulating our work, such as
voting procedures.

For this edition of the FLAG review, we sought the advice
of external reviewers once a complete draft of the review was
available. For each review section, we have asked one lat-
tice expert (who could be a FLAG alumnus/alumna) and one
nonlattice phenomenologist for a critical assessment. This is
similar to the procedure followed by the Particle Data Group
in the creation of the Review of Particle Physics. The review-
ers provide comments and feedback on scientific and stylistic
matters. They are not anonymous, and enter into a discussion
with the authors of the WG. Our aim with this additional step
is to make sure that a wider array of viewpoints enter into
the discussions, so as to make this review more useful for its
intended audience.

1.2 Citation policy

We draw attention to this particularly important point. As
stated above, our aim is to make lattice-QCD results easily

3 The WG on semileptonic D and B decays currently has four members,
but only three of them belong to lattice collaborations.

4 The NME WG, new in this addition of the FLAG review, has been
formed with four members (all members of lattice collaborations) rather
than three. This reflects the large amount of work needed to create a
section for which some of the systematic errors are substantially dif-
ferent from those described in other sections, and to provide a better
representation of relevant collaborations.
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accessible to those without lattice expertise, and we are well
aware that it is likely that some readers will only consult the
present paper and not the original lattice literature. It is very
important that this paper not be the only one cited when our
results are quoted. We strongly suggest that readers also cite
the original sources. In order to facilitate this, in Tables 1, 2,
and 3, besides summarizing the main results of the present
review, we also cite the original references from which they
have been obtained. In addition, for each figure we make
a bibtex file available on our webpage [4] which contains
the bibtex entries of all the calculations contributing to the
FLAG average or estimate. The bibliography at the end of
this paper should also make it easy to cite additional papers.
Indeed, we hope that the bibliography will be one of the most
widely used elements of the whole paper.

1.3 General issues

Several general issues concerning the present review are thor-
oughly discussed in Sect. 1.1 of our initial 2010 paper [1], and
we encourage the reader to consult the relevant pages. In the
remainder of the present section, we focus on a few impor-
tant points. Though the discussion has been duly updated,
it is similar to that of Sect. 1.2 in the previous two reviews
[2,3], with the addition of comments on the contributions
from excited states that are particularly relevant for the new
section on NMEs.

The present review aims to achieve two distinct goals:
first, to provide a description of the relevant work done on
the lattice; and, second, to draw conclusions on the basis of
that work, summarizing the results obtained for the various
quantities of physical interest.

The core of the information about the work done on the
lattice is presented in the form of tables, which not only
list the various results, but also describe the quality of the
data that underlie them. We consider it important that this
part of the review represents a generally accepted description
of the work done. For this reason, we explicitly specify the
quality requirements used and provide sufficient details in
appendices so that the reader can verify the information given
in the tables.’

On the other hand, the conclusions drawn on the basis
of the available lattice results are the responsibility of FLAG
alone. Preferring to err on the side of caution, in several cases
we draw conclusions that are more conservative than those
resulting from a plain weighted average of the available lat-
tice results. This cautious approach is usually adopted when
the average is dominated by a single lattice result, or when
only one lattice result is available for a given quantity. In
such cases, one does not have the same degree of confidence

LIS LT

> We also use terms like “quality criteria”, “rating”, “colour coding”,
etc., when referring to the classification of results, as described in Sect. 2.

@ Springer

in results and errors as when there is agreement among sev-
eral different calculations using different approaches. The
reader should keep in mind that the degree of confidence
cannot be quantified, and it is not reflected in the quoted
errors.

Each discretization has its merits, but also its shortcom-
ings. For most topics covered in this review we have an
increasingly broad database, and for most quantities lattice
calculations based on totally different discretizations are now
available. This is illustrated by the dense population of the
tables and figures in most parts of this review. Those cal-
culations that do satisfy our quality criteria indeed lead, in
almost all cases, to consistent results, confirming universality
within the accuracy reached. In our opinion, the consistency
between independent lattice results, obtained with different
discretizations, methods, and simulation parameters, is an
important test of lattice QCD, and observing such consis-
tency also provides further evidence that systematic errors
are fully under control.

In the sections dealing with heavy quarks and with «, the
situation is not the same. Since the b-quark mass can barely
be resolved with current lattice spacings, most lattice meth-
ods for treating b quarks use effective field theory at some
level. This introduces additional complications not present in
the light-quark sector. An overview of the issues specific to
heavy-quark quantities is given in the introduction of Sect. 8.
For B- and D-meson leptonic decay constants, there already
exists a good number of different independent calculations
that use different heavy-quark methods, but there are only
one or two independent calculations of semileptonic B and
D meson form factors and B meson mixing parameters. For
o, most lattice methods involve a range of scales that need
to be resolved and controlling the systematic error over a
large range of scales is more demanding. The issues specific
to determinations of the strong coupling are summarized in
Sect. 9.

Number of sea quarks in lattice simulations

Lattice-QCD simulations currently involve two, three or
four flavours of dynamical quarks. Most simulations set the
masses of the two lightest quarks to be equal, while the
strange and charm quarks, if present, are heavier (and tuned
to lie close to their respective physical values). Our nota-
tion for these simulations indicates which quarks are non-
degenerate, e.g., Ny = 2 + 1if my = my < my and
Ny =2+ 1+ 1ifmy = mg < my < m. Calcula-
tions with Ny = 2, i.e., two degenerate dynamical flavours,
often include strange valence quarks interacting with gluons,
so that bound states with the quantum numbers of the kaons
can be studied, albeit neglecting strange sea-quark fluctua-
tions. The quenched approximation (Ny = 0), in which all
sea-quark contributions are omitted, has uncontrolled sys-
tematic errors and is no longer used in modern lattice sim-
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ulations with relevance to phenomenology. Accordingly, we
will review results obtained with Ny =2, Ny =2 + 1, and
Ny =2 + 1 + 1, but omit earlier results with Ny = 0.
The only exception concerns the QCD coupling constant o.
Since this observable does not require valence light quarks, it
is theoretically well defined also in the Ny = 0 theory, which
is simply pure gluodynamics. The N ¢-dependence of «y, or
more precisely of the related quantity o Ayg, is a theoretical
issue of considerable interest; here g is a quantity with the
dimension of length that sets the physical scale, as discussed
in Appendix A.2. We stress, however, that only results with
Ny > 3 are used to determine the physical value of a; at a
high scale.

Lattice actions, simulation parameters, and scale setting
The remarkable progress in the precision of lattice calcu-
lations is due to improved algorithms, better computing
resources, and, last but not least, conceptual developments.
Examples of the latter are improved actions that reduce lat-
tice artifacts and actions that preserve chiral symmetry to
very good approximation. A concise characterization of the
various discretizations that underlie the results reported in
the present review is given in Appendix A.1.

Physical quantities are computed in lattice simulations in
units of the lattice spacing so that they are dimensionless. For
example, the pion decay constant that is obtained from a sim-
ulation is fa, where a is the spacing between two neighbor-
ing lattice sites. (All simulations with results quoted in this
review use hypercubic lattices, i.e., with the same spacing
in all four Euclidean directions.) To convert these results to
physical units requires knowledge of the lattice spacing a at
the fixed values of the bare QCD parameters (quark masses
and gauge coupling) used in the simulation. This is achieved
by requiring agreement between the lattice calculation and
experimental measurement of a known quantity, which thus
“sets the scale” of a given simulation. A few details on this
procedure are provided in Appendix A.2.

Renormalization and scheme dependence

Several of the results covered by this review, such as quark
masses, the gauge coupling, and B-parameters, are for quan-
tities defined in a given renormalization scheme and at a
specific renormalization scale. The schemes employed (e.g.,
regularization-independent MOM schemes) are often chosen
because of their specific merits when combined with the lat-
tice regularization. For a brief discussion of their properties,
see Appendix A.3. The conversion of the results obtained in
these so-called intermediate schemes to more familiar reg-
ularization schemes, such as the MS-scheme, is done with
the aid of perturbation theory. It must be stressed that the
renormalization scales accessible in simulations are lim-
ited, because of the presence of an ultraviolet (UV) cut-
off of ~ m/a. To safely match to MS, a scheme defined
in perturbation theory, Renormalization Group (RG) run-

ning to higher scales is performed, either perturbatively or
nonperturbatively (the latter using finite-size scaling tech-
niques).

Extrapolations

Because of limited computing resources, lattice simulations
are often performed at unphysically heavy pion masses,
although results at the physical point have become increas-
ingly common. Further, numerical simulations must be done
at nonzero lattice spacing, and in a finite (four-dimensional)
volume. In order to obtain physical results, lattice data are
obtained at a sequence of pion masses and a sequence of
lattice spacings, and then extrapolated to the physical pion
mass and to the continuum limit. In principle, an extrap-
olation to infinite volume is also required. However, for
most quantities discussed in this review, finite-volume effects
are exponentially small in the linear extent of the lattice
in units of the pion mass, and, in practice, one often ver-
ifies volume independence by comparing results obtained
on a few different physical volumes, holding other param-
eters fixed. To control the associated systematic uncertain-
ties, these extrapolations are guided by effective theories.
For light-quark actions, the lattice-spacing dependence is
described by Symanzik’s effective theory [93,94]; for heavy
quarks, this can be extended and/or supplemented by other
effective theories such as Heavy-Quark Effective Theory
(HQET). The pion-mass dependence can be parameterized
with Chiral Perturbation Theory (xPT), which takes into
account the Nambu-Goldstone nature of the lowest excita-
tions that occur in the presence of light quarks. Similarly,
one can use Heavy—Light Meson Chiral Perturbation Theory
(HMx PT) to extrapolate quantities involving mesons com-
posed of one heavy (b or c) and one light quark. One can
combine Symanzik’s effective theory with x PT to simulta-
neously extrapolate to the physical pion mass and the contin-
uum; in this case, the form of the effective theory depends on
the discretization. See Appendix A.4 for a brief description
of the different variants in use and some useful references.
Finally, xPT can also be used to estimate the size of finite-
volume effects measured in units of the inverse pion mass,
thus providing information on the systematic error due to
finite-volume effects in addition to that obtained by compar-
ing simulations at different volumes.

Excited-state contamination

In all the hadronic matrix elements discussed in this review,
the hadron in question is the lightest state with the cho-
sen quantum numbers. This implies that it dominates the
required correlation functions as their extent in Euclidean
time is increased. Excited-state contributions are suppressed
by e "AEAT where AE is the gap between the ground and
excited states, and At the relevant separation in Euclidean
time. The size of AE depends on the hadron in question,
and in general is a multiple of the pion mass. In practice, as
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discussed at length in Sect. 10, the contamination of signals
due to excited-state contributions is a much more challeng-
ing problem for baryons than for the other particles discussed
here. This is in part due to the fact that the signal-to-noise
ratio drops exponentially for baryons, which reduces the val-
ues of At that can be used.

Critical slowing down

The lattice spacings reached in recent simulations go down
to 0.05 fm or even smaller. In this regime, long autocor-
relation times slow down the sampling of the configura-
tions [95—-104]. Many groups check for autocorrelations in a
number of observables, including the topological charge, for
which a rapid growth of the autocorrelation time is observed
with decreasing lattice spacing. This is often referred to as
topological freezing. A solution to the problem consists in
using open boundary conditions in time [105], instead of the
more common antiperiodic ones. More recently two other
approaches have been proposed, one based on a multiscale
thermalization algorithm [106,107] and another based on
defining QCD on a nonorientable manifold [108]. The prob-
lem is also touched upon in Sect. 9.2.1, where it is stressed
that attention must be paid to this issue. While large scale
simulations with open boundary conditions are already far
advanced [109], only one result reviewed here has been
obtained with any of the above methods (results for «s from
Ref. [79] which use open boundary conditions). It is usu-
ally assumed that the continuum limit can be reached by
extrapolation from the existing simulations, and that potential
systematic errors due to the long autocorrelation times have
been adequately controlled. Partially or completely frozen
topology would produce a mixture of different & vacua, and
the difference from the desired & = 0 result may be esti-
mated in some cases using chiral perturbation theory, which
gives predictions for the 8-dependence of the physical quan-
tity of interest [110,111]. These ideas have been systemati-
cally and successfully tested in various models in [112,113],
and a numerical test on MILC ensembles indicates that the
topology dependence for some of the physical quantities
reviewed here is small, consistent with theoretical expec-
tations [114].

Simulation algorithms and numerical errors

Most of the modern lattice-QCD simulations use exact algo-
rithms such as those of Refs. [115,116], which do not pro-
duce any systematic errors when exact arithmetic is avail-
able. In reality, one uses numerical calculations at double (or
in some cases even single) precision, and some errors are
unavoidable. More importantly, the inversion of the Dirac
operator is carried out iteratively and it is truncated once
some accuracy is reached, which is another source of poten-
tial systematic error. In most cases, these errors have been
confirmed to be much less than the statistical errors. In the
following we assume that this source of error is negligible.

@ Springer

Some of the most recent simulations use an inexact algo-
rithm in order to speed up the computation, though it may
produce systematic effects. Currently available tests indicate
that errors from the use of inexact algorithms are under con-
trol [117].

2 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem
of rating and averaging lattice quantities have been outlined
in our first publication [1]. Our aim is to help the reader assess
the reliability of a particular lattice result without necessarily
studying the original article in depth. This is a delicate issue,
since the ratings may make things appear simpler than they
are. Nevertheless, it safeguards against the common prac-
tice of using lattice results, and drawing physics conclusions
from them, without a critical assessment of the quality of
the various calculations. We believe that, despite the risks,
it is important to provide some compact information about
the quality of a calculation. We stress, however, the impor-
tance of the accompanying detailed discussion of the results
presented in the various sections of the present review.

2.1 Systematic errors and colour code

The major sources of systematic error are common to most
lattice calculations. These include, as discussed in detail
below, the chiral, continuum, and infinite-volume extrapo-
lations. To each such source of error for which systematic
improvement is possible we assign one of three coloured
symbols: green star, unfilled green circle (which replaced in
Ref. [2] the amber disk used in the original FLAG review [1])
or red square. These correspond to the following ratings:

J the parameter values and ranges used to generate the
data sets allow for a satisfactory control of the systematic
uncertainties;

o the parameter values and ranges used to generate the data
sets allow for a reasonable attempt at estimating system-
atic uncertainties, which however could be improved;

m the parameter values and ranges used to generate the
data sets are unlikely to allow for a reasonable control of
systematic uncertainties.

The appearance of a red tag, even in a single source of sys-
tematic error of a given lattice result, disqualifies it from
inclusion in the global average.

Note that in the first two editions [1,2], FLAG used the
three symbols in order to rate the reliability of the systematic
errors attributed to a given result by the paper’s authors. Start-
ing with the previous edition [3] the meaning of the symbols
has changed slightly — they now rate the quality of a partic-
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ular simulation, based on the values and range of the chosen
parameters, and its aptness to obtain well-controlled system-
atic uncertainties. They do not rate the quality of the analysis
performed by the authors of the publication. The latter ques-
tion is deferred to the relevant sections of the present review,
which contain detailed discussions of the results contributing
(or not) to each FLAG average or estimate.

For most quantities the colour-coding system refers to the
following sources of systematic errors: (i) chiral extrapola-
tion; (ii) continuum extrapolation; (iii) finite volume. As we
will see below, renormalization is another source of system-
atic uncertainties in several quantities. This we also classify
using the three coloured symbols listed above, but now with
a different rationale: they express how reliably these quan-
tities are renormalized, from a field-theoretic point of view
(namely, nonperturbatively, or with 2-loop or 1-loop pertur-
bation theory).

Given the sophisticated status that the field has attained,
several aspects, besides those rated by the coloured symbols,
need to be evaluated before one can conclude whether a par-
ticular analysis leads to results that should be included in an
average or estimate. Some of these aspects are not so easily
expressible in terms of an adjustable parameter such as the
lattice spacing, the pion mass or the volume. As a result of
such considerations, it sometimes occurs, albeit rarely, that
a given result does not contribute to the FLAG average or
estimate, despite not carrying any red tags. This happens,
for instance, whenever aspects of the analysis appear to be
incomplete (e.g., an incomplete error budget), so that the
presence of inadequately controlled systematic effects can-
not be excluded. This mostly refers to results with a statistical
error only, or results in which the quoted error budget obvi-
ously fails to account for an important contribution.

Of course, any colour coding has to be treated with cau-
tion; we emphasize that the criteria are subjective and evolv-
ing. Sometimes, a single source of systematic error domi-
nates the systematic uncertainty and it is more important to
reduce this uncertainty than to aim for green stars for other
sources of error. In spite of these caveats, we hope that our
attempt to introduce quality measures for lattice simulations
will prove to be a useful guide. In addition, we would like
to stress that the agreement of lattice results obtained using
different actions and procedures provides further validation.

2.1.1 Systematic effects and rating criteria

The precise criteria used in determining the colour coding are
unavoidably time-dependent; as lattice calculations become
more accurate, the standards against which they are measured
become tighter. For this reason FLAG reassesses criteria with
each edition and as a result some of the quality criteria (the
one on chiral extrapolation for instance) have been tightened
up over time [1-3].

In the following, we present the rating criteria used in
the current report. While these criteria apply to most quan-
tities without modification there are cases where they need
to be amended or additional criteria need to be defined. For
instance, when discussing results obtained in the e-regime of
chiral perturbation theory in Sect. 5 the finite volume crite-
rion listed below for the p-regime is no longer appropriate.°
Similarly, the discussion of the strong coupling constant in
Sect. 9 requires tailored criteria for renormalization, pertur-
bative behaviour, and continuum extrapolation. In such cases,
the modified criteria are discussed in the respective sections.
Apart from only a few exceptions the following colour code
applies in the tables:

e Chiral extrapolation:

o Mz min < 200 MeV, with three or more pion masses
used in the extrapolation
or two values of M, with one lying within 10 MeV
of 135MeV (the physical neutral pion mass) and the
other one below 200 MeV

0 200 MeV < Mz min < 400 MeV, with three or more
pion masses used in the extrapolation
or two values of My with Mz min < 200 MeV
or a single value of M, lying within 10 MeV of 135
MeV (the physical neutral pion mass)

m otherwise

This criterion has changed with respect to the previous
edition [3].
e Continuum extrapolation:

J at least three lattice spacings and at least two points
below 0.1 fm and a range of lattice spacings satisfying
[amax/amin]2 >2

O at least two lattice spacings and at least one point
below 0.1 fm and a range of lattice spacings satis-
fying [amax/amin]2 >14

m otherwise

Itis assumed that the lattice action is O(a)-improved (i.e.,
the discretization errors vanish quadratically with the lat-
tice spacing); otherwise this will be explicitly mentioned.
For unimproved actions an additional lattice spacing is
required. This condition is unchanged from Ref. [3].

e Finite-volume effects:
The finite-volume colour code used for a result is cho-
sen to be the worse of the QCD and the QED codes, as
described below. If only QCD is used the QED colour
code is ignored.
— For QCD:

6 We refer to Sect. 5.1 and Appendix A.4 in the Glossary for an expla-
nation of the various regimes of chiral perturbation theory.
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* [Mn,min/Mn,ﬁd]2 exp{4 — Mn,min[L(Mn',min)]max}
< 1, or at least three volumes

o [sz't,min/]uﬂ,ﬁd]2 exp{3 — Mﬂ,min[L(Mn,min)]max}
< 1, or at least two volumes

m otherwise

where we have introduced [L (M min)lmax, Which is the
maximum box size used in the simulations performed at
the smallest pion mass My min, as well as a fiducial pion
mass My g, which we set to 200 MeV (the cutoff value
for a green star in the chiral extrapolation). It is assumed
here that calculations are in the p-regime of chiral per-
turbation theory, and that all volumes used exceed 2 fm.
This condition has been improved between the second [2]
and the third [3] edition of the FLAG review but remains
unchanged since. The rationale for this condition is as fol-
lows. Finite volume effects contain the universal factor
exp{—L My}, and if this were the only contribution a cri-
terion based on the values of M min L would be appropri-
ate. This is what we used in Ref. [2] (with My minL > 4
for % and My minL > 3 for 0). However, as pion masses
decrease, one must also account for the weakening of
the pion couplings. In particular, 1-loop chiral pertur-
bation theory [118] reveals a behaviour proportional to
M j% exp{—L My}. Our new condition includes this weak-
ening of the coupling, and ensures, for example, that sim-
ulations with My min = 135 MeV and L My min = 3.2
are rated equivalently to those with My nin = 200 MeV
and L My min = 4.

— For QED (where applicable):

o 1/([M min L (M5 min) Imax)™" < 0.02, or at least four
volumes

O 1/(IMy min L (M min) Imax)"™" < 0.04, or at least
three volumes

m otherwise

Because of the infrared-singular structure of QED, elec-
tromagnetic finite-volume effects decay only like a power
of the inverse spatial extent. In several cases like mass
splittings [119,120] or leptonic decays [121], the leading
corrections are known to be universal, i.e., independent
of the structure of the involved hadrons. In such cases,
the leading universal effects can be directly subtracted
exactly from the lattice data. We denote n i, the smallest
power of % at which such a subtraction cannot be done.
In the widely used finite-volume formulation QED; , one
always has npyin < 3 due to the nonlocality of the the-
ory [122]. While the QCD criteria have not changed with
respect to Ref. [3] the QED criteria are new. They are
used here only in Sect. 3.

Isospin breaking effects (where applicable):

Y all leading isospin breaking effects are included in the
lattice calculation
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O isospin breaking effects are included using the electro-
quenched approximation
m otherwise

This criterion is used for quantities which are break-
ing isospin symmetry or which can be determined at the
sub-percent accuracy where isospin breaking effects, if
not included, are expected to be the dominant source of
uncertainty. In the current edition, this criterion is only
used for the up and down quark masses, and related quan-
tities (e, Q% and R?). The criteria for isospin breaking
effects feature for the first time in the FLAG review.
e Renormalization (where applicable):

Y& nonperturbative

o 1-loop perturbation theory or higher with a reasonable
estimate of truncation errors

m otherwise

In Ref. [1], we assigned a red square to all results which
were renormalized at 1-loop in perturbation theory. In
Ref. [2], we decided that this was too restrictive, since
the error arising from renormalization constants, calcu-
lated in perturbation theory at 1-loop, is often estimated
conservatively and reliably. We did not change these cri-
teria since.

e Renormalization Group (RG) running (where applica-
ble):
For scale-dependent quantities, such as quark masses
or Bg, it is essential that contact with continuum
perturbation theory can be established. Various differ-
ent methods are used for this purpose (cf. Appendix
A.3): Regularization-independent Momentum Subtrac-
tion (RI/MOM), the Schrodinger functional, and direct
comparison with (resummed) perturbation theory. Irre-
spective of the particular method used, the uncertainty
associated with the choice of intermediate renormaliza-
tion scales in the construction of physical observables
must be brought under control. This is best achieved by
performing comparisons between nonperturbative and
perturbative running over a reasonably broad range of
scales. These comparisons were initially only made in the
Schrodinger functional approach, but are now also being
performed in RI/MOM schemes. We mark the data for
which information about nonperturbative running checks
is available and give some details, but do not attempt to
translate this into a colour code.

The pion mass plays an important role in the criteria rele-
vant for chiral extrapolation and finite volume. For some of
the regularizations used, however, it is not a trivial matter
to identify this mass. In the case of twisted-mass fermions,
discretization effects give rise to a mass difference between
charged and neutral pions even when the up- and down-quark
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masses are equal: the charged pion is found to be the heav-
ier of the two for twisted-mass Wilson fermions (cf. Ref.
[123]). In early works, typically referring to Ny = 2 sim-
ulations (e.g., Refs. [123] and [48]), chiral extrapolations
are based on chiral perturbation theory formulae which do
not take these regularization effects into account. After the
importance of accounting for isospin breaking when doing
chiral fits was shown in Ref. [124], later works, typically
referring to Ny =2 + 1 + 1 simulations, have taken these
effects into account [9]. We use M+ for M min in the chiral-
extrapolation rating criterion. On the other hand, we identify
M min With the root mean square (RMS) of M+, M- and
M_0 in the finite-volume rating criterion.’

In the case of staggered fermions, discretization effects
give rise to several light states with the quantum numbers
of the pion.® The mass splitting among these “taste” part-
ners represents a discretization effect of O(a2), which can
be significant at large lattice spacings but shrinks as the spac-
ing is reduced. In the discussion of the results obtained with
staggered quarks given in the following sections, we assume
that these artifacts are under control. We conservatively iden-
tify My min With the root mean square (RMS) average of the
masses of all the taste partners, both for chiral-extrapolation
and finite-volume criteria.’

The strong coupling «; is computed in lattice QCD with
methods differing substantially from those used in the cal-
culations of the other quantities discussed in this review.
Therefore, we have established separate criteria for o results,
which will be discussed in Sect. 9.2.1.

In the new section on nuclear matrix elements, Sect. 10, an
additional criterion has been introduced. This concerns the
level of control over contamination from excited states, which
is a more challenging issue for nucleons than for mesons. In
addition, the chiral-extrapolation criterion in this section is
somewhat stricter than that given above.

2.1.2 Heavy-quark actions

For the b quark, the discretization of the heavy-quark action
follows a very different approach from that used for light
flavours. There are several different methods for treating
heavy quarks on the lattice, each with its own issues and
considerations. Most of these methods use Effective Field
Theory (EFT) at some point in the computation, either via

7 This is a change from FLAG 13, where we used the charged pion mass
when evaluating both chiral-extrapolation and finite-volume effects.

8 We refer the interested reader to a number of good reviews on the
subject [125-129].

9 In FLAG 13, the RMS value was used in the chiral-extrapolation
criteria throughout the paper. For the finite-volume rating, however,
M min Was identified with the RMS value only in Sects. 4 and 6, while
in Sects. 3, 5, 7 and 8 it was identified with the mass of the lightest
pseudoscalar state.

direct simulation of the EFT, or by using EFT as a tool to esti-
mate the size of cutoff errors, or by using EFT to extrapolate
from the simulated lattice quark masses up to the physical b-
quark mass. Because of the use of an EFT, truncation errors
must be considered together with discretization errors.

The charm quark lies at an intermediate point between the
heavy and light quarks. In our earlier reviews, the calcula-
tions involving charm quarks often treated it using one of the
approaches adopted for the b quark. Since the last report [3],
however, we found more recent calculations to simulate the
charm quark using light-quark actions. This has become pos-
sible thanks to the increasing availability of dynamical gauge
field ensembles with fine lattice spacings. But clearly, when
charm quarks are treated relativistically, discretization errors
are more severe than those of the corresponding light-quark
quantities.

In order to address these complications, we add a new
heavy-quark treatment category to the rating system. The
purpose of this criterion is to provide a guideline for the level
of action and operator improvement needed in each approach
to make reliable calculations possible, in principle.

A description of the different approaches to treating heavy
quarks on the lattice is given in Appendix A.1.3, includ-
ing a discussion of the associated discretization, truncation,
and matching errors. For truncation errors we use HQET
power counting throughout, since this review is focused on
heavy-quark quantities involving B and D mesons rather than
bottomonium or charmonium quantities. Here we describe
the criteria for how each approach must be implemented
in order to receive an acceptable (") rating for both the
heavy-quark actions and the weak operators. Heavy-quark
implementations without the level of improvement described
below are rated not acceptable (m). The matching is evalu-
ated together with renormalization, using the renormaliza-
tion criteria described in Sect. 2.1.1. We emphasize that
the heavy-quark implementations rated as acceptable and
described below have been validated in a variety of ways,
such as via phenomenological agreement with experimental
measurements, consistency between independent lattice cal-
culations, and numerical studies of truncation errors. These
tests are summarized in Sect. 8.

Relativistic heavy-quark actions
v atleast tree-level O(a) improved action and weak oper-
ators

This is similar to the requirements for light-quark actions.
All current implementations of relativistic heavy-quark
actions satisfy this criterion.
NRQCD
v tree-level matched through O(1/mj) and improved
through O(a?)
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The current implementations of NRQCD satisfy this cri-
terion, and also include tree-level corrections of O(1/ mﬁ) in
the action.

HQET
v tree-level matched through O(1/mj,) with discretization
errors starting at O(a2)

The current implementation of HQET by the ALPHA col-
laboration satisfies this criterion, since both action and weak
operators are matched nonperturbatively through O(1/my,).
Calculations that exclusively use a static-limit action do not
satisfy this criterion, since the static-limit action, by defi-
nition, does not include 1/mj, terms. We therefore include
static computations in our final estimates only if truncation
errors (in 1/my,) are discussed and included in the systematic
uncertainties.

Light-quark actions for heavy quarks

/ discretization errors starting at O(a”) or higher

This applies to calculations that use the tmWilson action,
a nonperturbatively improved Wilson action, domain wall
fermions or the HISQ action for charm-quark quantities. It
also applies to calculations that use these light quark actions
in the charm region and above together with either the static
limit or with an HQET-inspired extrapolation to obtain results
at the physical b-quark mass. In these cases, the continuum-
extrapolation criteria described earlier must be applied to the
entire range of heavy-quark masses used in the calculation.

2.1.3 Conventions for the figures

For a coherent assessment of the present situation, the quality
of the data plays a key role, but the colour coding cannot be
carried over to the figures. On the other hand, simply showing
all data on equal footing might give the misleading impres-
sion that the overall consistency of the information available
on the lattice is questionable. Therefore, in the figures we
indicate the quality of the data in a rudimentary way, using
the following symbols:

M corresponds to results included in the average or estimate
(i.e., results that contribute to the black square below);

[ corresponds to results that are not included in the average
but pass all quality criteria;

L corresponds to all other results;

M corresponds to FLAG averages or estimates; they are also
highlighted by a gray vertical band.

The reason for not including a given result in the average is
not always the same: the result may fail one of the quality
criteria; the paper may be unpublished; it may be superseded
by newer results; or it may not offer a complete error budget.
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Symbols other than squares are used to distinguish results
with specific properties and are always explained in the cap-
tion. !0

Often, nonlattice data are also shown in the figures for
comparison. For these we use the following symbols:

® corresponds to nonlattice results;
A corresponds to Particle Data Group (PDG) results.

2.2 Averages and estimates

FLAG results of a given quantity are denoted either as aver-
ages or as estimates. Here we clarify this distinction. To start
with, both averages and estimates are based on results with-
out any red tags in their colour coding. For many observ-
ables there are enough independent lattice calculations of
good quality, with all sources of error (not merely those
related to the colour-coded criteria), as analyzed in the orig-
inal papers, appearing to be under control. In such cases,
it makes sense to average these results and propose such
an average as the best current lattice number. The averag-
ing procedure applied to this data and the way the error is
obtained is explained in detail in Sect. 2.3. In those cases
where only a sole result passes our rating criteria (colour
coding), we refer to it as our FLAG average, provided it also
displays adequate control of all other sources of systematic
uncertainty.

On the other hand, there are some cases in which this
procedure leads to a result that, in our opinion, does not
cover all uncertainties. Systematic errors are by their nature
often subjective and difficult to estimate, and may thus end
up being underestimated in one or more results that receive
green symbols for all explicitly tabulated criteria. Adopt-
ing a conservative policy, in these cases we opt for an esti-
mate (or a range), which we consider as a fair assessment of
the knowledge acquired on the lattice at present. This esti-
mate is not obtained with a prescribed mathematical proce-
dure, but reflects what we consider the best possible anal-
ysis of the available information. The hope is that this will
encourage more detailed investigations by the lattice com-
munity.

There are two other important criteria that also play a role
in this respect, but that cannot be colour coded, because a sys-
tematic improvement is not possible. These are: i) the publi-
cation status, and i7) the number of sea-quark flavours Ny. As
far as the former criterion is concerned, we adopt the follow-
ing policy: we average only results that have been published

10" For example, for quark-mass results we distinguish between pertur-
bative and nonperturbative renormalization, for low-energy constants
we distinguish between the p- and e-regimes, and for heavy-flavour
results we distinguish between those from leptonic and semi-leptonic
decays.
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in peer-reviewed journals, i.e., they have been endorsed
by referee(s). The only exception to this rule consists in
straightforward updates of previously published results, typ-
ically presented in conference proceedings. Such updates,
which supersede the corresponding results in the published
papers, are included in the averages. Note that updates of
earlier results rely, at least partially, on the same gauge-field-
configuration ensembles. For this reason, we do not average
updates with earlier results. Nevertheless, all results are listed
in the tables,'! and their publication status is identified by the
following symbols:

e Publication status:
A published or plain update of published results
P preprint
C conference contribution

In the present edition, the publication status on the 30th of
September 2018 is relevant. If the paper appeared in print
after that date, this is accounted for in the bibliography, but
does not affect the averages.'?

As noted above, in this review we present results from
simulationswith Ny =2, Ny =2+ 1land Ny =2+ 1 +1
(except for ro Ayg where we also give the Ny = 0 result).
We are not aware of an a priori way to quantitatively estimate
the difference between results produced in simulations with a
different number of dynamical quarks. We therefore average
results at fixed Ny separately; averages of calculations with
different N are not provided.

To date, no significant differences between results with
different values of Ny have been observed in the quantities
listed in Tables 1, 2, and 3. In the future, as the accuracy
and the control over systematic effects in lattice calculations
increases, it will hopefully be possible to see a difference
between results from simulations with Ny = 2 and Ny =
241, and thus determine the size of the Zweig-rule violations
related to strange-quark loops. This is a very interesting issue
per se, and one which can be quantitatively addressed only
with lattice calculations.

The question of differences between results with Ny =
2 + land Ny =2 + 1 + 1 is more subtle. The dominant
effect of including the charm sea quark is to shift the lat-
tice scale, an effect that is accounted for by fixing this scale
nonperturbatively using physical quantities. For most of the
quantities discussed in this review, it is expected that resid-
ual effects are small in the continuum limit, suppressed by
o, (m) and powers of A2 / mg Here A is ahadronic scale that

11 Whenever figures turn out to be overcrowded, older, superseded

results are omitted. However, all the most recent results from each col-
laboration are displayed.

12° A noted above in footnote 1, three exceptions to this deadline were
made.

can only be roughly estimated and depends on the process
under consideration. Note that the A%/m? effects have been
addressed in Refs. [130,131]. Assuming that such effects
are small, it might be reasonable to average the results from
Nf=2+ land Ny =2 + 1 + 1 simulations.

2.3 Averaging procedure and error analysis

In the present report, we repeatedly average results obtained
by different collaborations, and estimate the error on the
resulting averages. Here we provide details on how averages
are obtained.

2.3.1 Averaging: generic case

We follow the procedure of the previous two editions [2,3],
which we describe here in full detail.

One of the problems arising when forming averages is that
not all of the data sets are independent. In particular, the same
gauge-field configurations, produced with a given fermion
discretization, are often used by different research teams with
different valence-quark lattice actions, obtaining results that
are not really independent. Our averaging procedure takes
such correlations into account.

Consider a given measurable quantity Q, measured by M
distinct, not necessarily uncorrelated, numerical experiments
(simulations). The result of each of these measurement is
expressed as

Oi=xitoV+ 0P +...+ 5", (1)

where x; is the value obtained by the ith experiment (i =
1,..., M)and a[(k) (fork =1, ..., E) are the various errors.
Typically al.(]) stands for the statistical error and oi(a) (¢ >12)
are the different systematic errors from various sources. For
each individual result, we estimate the total error o; by adding
statistical and systematic errors in quadrature:

Qi =x; + oy,

£ 2
> [a]" )

a=1

With the weight factor of each total error estimated in stan-
dard fashion,

o2

w; = M’—_z, 3)
2i=10;

the central value of the average over all simulations is given

by

M
Xay = Zx,- w;. (4)

i=1
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The above central value corresponds to a xém weighted aver-
age, evaluated by adding statistical and systematic errors in
quadrature. If the fit is not of good quality ( X%in /dof > 1),
the statistical and systematic error bars are stretched by a
factor S = /x2/dof.

Next, we examine error budgets for individual calcula-
tions and look for potentially correlated uncertainties. Spe-
cific problems encountered in connection with correlations
between different data sets are described in the text that
accompanies the averaging. If there is reason to believe that
a source of error is correlated between two calculations, a
100% correlation is assumed. The correlation matrix C;; for
the set of correlated lattice results is estimated by a prescrip-
tion due to Schmelling [132]. This consists in defining

oii= X [T ®)

o

with Z; running only over those errors of x; that are corre-
lated with the corresponding errors of the measurement x;.
This expresses the part of the uncertainty in x; that is corre-
lated with the uncertainty in x;. If no such correlations are
known to exist, then we take o;; ; = 0. The diagonal and off-
diagonal elements of the correlation matrix are then taken to
be

Ci=of (i=1,...,M),
@ # - (6)

Finally, the error of the average is estimated by

M M
GfV:ZZwiwj Cij N (7)

i=1 j=1

Cij = 0ij 0}

and the FLAG average is

Quy = Xay £ Oay. (8)

2.3.2 Nested averaging

We have encountered one case where the correlations
between results are more involved, and a nested averaging
scheme is required. This concerns the B-meson bag parame-
ters discussed in Sect. 8.2. In the following, we describe the
details of the nested averaging scheme. This is an updated
version of the section added in the web update of the FLAG
16 report.

The issue arises for a quantity Q that is given by a ratio,
Q = Y/Z.In most simulations, both Y and Z are calculated,
and the error in Q can be obtained in each simulation in
the standard way. However, in other simulations only Y is
calculated, with Z taken from a global average of some type.
The issue to be addressed is that this average value Z has
errors that are correlated with those in Q.
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In the example that arises in Sect. 8.2, Q = Bp, Y =
B f5 and Z = f3.In one of the simulations that contribute
to the average, Z is replaced by Z, the PDG average for f ;
[133] (obtained with an averaging procedure similar to that
used by FLAG). This simulation is labeled with i = 1, so
that

Q—ﬁ 9
==

The other simulations have results labeled Q;, with j > 2.
In this set up, the issue is that Z is correlated with the Q,
j=2.5

We begin by decomposing the error in Q1 in the same
schematic form as above,

o @ (E)
o o o Yo
OQr=xt ot L ... 0 £ TZ (10)
Z  Z Z Z

Here the last term represents the error propagating from that
in Z, while the others arise from errors in ¥;. For the remain-
ing Q; (j > 2) the decomposition is as in Eq. (1). The total
error of Q1 then reads

() 2 @\ 2 (E)\ 2
2 %, %y, %,
o =|—= + | — + o+ | =
Z Z Z

Y] 2 9
+ (?) = (11
while that for the Q; (j > 2) is
2 2 2
o) e

Correlations between Q; and Qy (j, k > 2) are taken care
of by Schmelling’s prescription, as explained above. What is
new here is how the correlations between Q1 and Q; (j > 2)
are taken into account.

To proceed, we recall from Eq. (7) that o7 is given by

M/
g%z Z wlZ1ywlZ];CIZ); . (13)
i’ j'=1

Here the indices i’ and j’ run over the M’ simulations that
contribute to Z, which, in general, are different from those
contributing to the results for Q. The weights w[Z] and cor-
relation matrix C[Z] are given an explicit argument Z to
emphasize that they refer to the calculation of this quantity
and not to that of Q. C[Z] is calculated using the Schmelling
prescription [Eqgs. (5)-(7)] in terms of the errors, U[Z]l(.?‘),

13 There is also a small correlation between Y and Z, but we follow

the original Ref. [78] and do not take this into account. Thus, the error
in Q| is obtained by simple error propagation from those in ¥ and Z.
Ignoring this correlation is conservative, because, as in the calculation of
By, the correlations between Bp f é and f 5 tend to lead to a cancelation
of errors. By ignoring this effect we are making a small overestimate of
the error in Q1.
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taking into account the correlations between the different
calculations of Z.

We now generalize Schmelling’s prescription for o, ;,
Eq. (5), to that for o714 (kK > 2), i.e., the part of the error
in Q; that is correlated with Q;. We take

/

1 SERND I
== 2 (o] + 25 D elzhelz1; Clzl o
@<k Z iy

(14)

The first term under the square root sums those sources of
error in Y; that are correlated with Q. Here we are using
a more explicit notation from that in Eq. (5), with (&) < k
indicating that the sum is restricted to the values of « for
which the error UI(/?) is correlated with Q. The second
term accounts for the correlations within Z with Qr, and
is the nested part of the present scheme. The new matrix
C[Z]isjrk is a restriction of the full correlation matrix
C[Z], and is defined as follows. Its diagonal elements are
given by

ClZlii ok = (@[Zlror)’ @ =1,..., M, 15)

> (elZ15) (16)

(a)<k

(0[Z]irs1)?

where the summation Z/(a)(_)  over () is restricted to those

G[Z]Efx) that are correlated with Q. The off-diagonal ele-
ments are

ClZlijrok =02l ok o[ Z)jrivor (' # J), (17)

/

> (e1zi)" (18)

() j'k

VAN

where the summation Zza)e ik over () is restricted to

J[Z]Efx) that are correlated with both Z ;; and Q.
The last quantity that we need to define is oy.1.

Ok:1 = (19)

where the summation Z’(a)el is restricted to those ak(a) that
are correlated with one of the terms in Eq. (11).

In summary, we construct the correlation matrix C;; using
Eq. (6), as in the generic case, except the expressions for o7
and oy, 1 are now given by Eqs. (14) and (19), respectively. All
other oy, ; are given by the original Schmelling prescription,
Eq. (5). In this way we extend the philosophy of Schmelling’s
approach while accounting for the more involved correla-
tions.

3 Quark masses

Authors: T. Blum, A. Portelli, A. Ramos

Quark masses are fundamental parameters of the Stan-
dard Model. An accurate determination of these parame-
ters is important for both phenomenological and theoreti-
cal applications. The bottom- and charm-quark masses, for
instance, are important sources of parametric uncertainties
in several Higgs decay modes. The up-, down- and strange-
quark masses govern the amount of explicit chiral sym-
metry breaking in QCD. From a theoretical point of view,
the values of quark masses provide information about the
flavour structure of physics beyond the Standard Model. The
Review of Particle Physics of the Particle Data Group con-
tains a review of quark masses [134], which covers light
as well as heavy flavours. Here we also consider light- and
heavy-quark masses, but focus on lattice results and dis-
cuss them in more detail. We do not discuss the top quark,
however, because it decays weakly before it can hadronize,
and the nonperturbative QCD dynamics described by present
day lattice simulations is not relevant. The lattice determi-
nation of light- (up, down, strange), charm- and bottom-
quark masses is considered below in Sects. 3.1, 3.2, and 3.3,
respectively.

Quark masses cannot be measured directly in experi-
ment because quarks cannot be isolated, as they are con-
fined inside hadrons. From a theoretical point of view, in
QCD with Ny flavours, a precise definition of quark masses
requires one to choose a particular renormalization scheme.
This renormalization procedure introduces a renormalization
scale p, and quark masses depend on this renormalization
scale according to the Renormalization Group (RG) equa-
tions. In mass-independent renormalization schemes the RG
equations reads

dm; (1)
S
where the function 7(g) is the anomalous dimension, which
depends only on the value of the strong coupling oy =
g2 /(4m). Note that in QCD t(g) is the same for all quark
flavours. The anomalous dimension is scheme dependent,
but its perturbative expansion

— (W), (20)

- &0 _ _
1@ = @ (do+ g +--) e

has a leading coefficient dy = 8/ (47)2, which is scheme
independent.'* Equation (20), being a first order differen-
tial equation, can be solved exactly by using Eq. (21) as
boundary condition. The formal solution of the RG equation
reads

14 We follow the conventions of Gasser and Leutwyler [135].
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M; = i ()[2bog" ()]~ 0/

xexp{—/g(#) W [r(x) _ ﬁ” 7 22)

0 B(x)  box

where by = (11-2N/3)/ (47)? is the universal leading per-
turbative coefficient in the expansion of the S-function 8(g).
The renormalization group invariant (RGI) quark masses M;
are formally integration constants of the RG Eq. (20). They
are scale independent, and due to the universality of the coef-
ficient dy, they are also scheme independent. Moreover, they
are nonperturbatively defined by Eq. (22). They only depend
on the number of flavours Ny, making them a natural candi-
date to quote quark masses and compare determinations from
different lattice collaborations. Nevertheless, it is customary
in the phenomenology community to use the MS scheme at a
scale i = 2 GeV to compare different results for light-quark
masses, and use a scale equal to its own mass for the charm
and bottom quarks. In this review, we will quote the final
averages of both quantities.

Results for quark masses are always quoted in the four-
flavour theory. Ny = 2 + 1 results have to be converted to
the four flavour theory. Fortunately, the charm quark is heavy
(Aqcp/ mc)2 < 1, and this conversion can be performed in
perturbation theory with negligible (~ 0.2%) perturbative
uncertainties. Nonperturbative corrections in this matching
are more difficult to estimate. Since these effects are sup-
pressed by a factor of 1/N¢, and a factor of the strong cou-
pling at the scale of the charm mass, naive power counting
arguments would suggest that the effects are ~ 1%. In prac-
tice, numerical nonperturbative studies [ 130, 131] have found
this power counting argument to be an overestimate by one
order of magnitude in the determination of simple hadronic
quantities or the A-parameter. Moreover, lattice determi-
nations do not show any significant deviation between the
Nt =2 4+ land Nf =2 + 1 + 1 simulations. For example,
the difference in the final averages for the mass of the strange
quark mg between Ny =2 + land Ny =2 + 1 + 1 deter-
minations is about a 0.8%, and negligible from a statistical
point of view.

We quote all final averages at 2 GeV in the MS scheme
and also the RGI values (in the four flavour theory). We use
the exact RG Eq. (22). Note that to use this equation we
need the value of the strong coupling in the MS scheme
at a scale 4 = 2 GeV. All our results are obtained from
the RG equation in the MS scheme and the 5-loop beta
function together with the value of the A-parameter in the
four-flavour theory A% = 294(12) MeV obtained in this
review (see Sect. 9). In the uncertainties of the RGI massses
we separate the contributions from the determination of the
quark masses and the propagation of the uncertainty of A%.
These are identified with the subscripts m and A, respec-
tively.
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Conceptually, all lattice determinations of quark masses
contain three basic ingredients:

1. Tuning the lattice bare-quark masses to match the exper-
imental values of some quantities. Pseudo-scalar meson
masses provide the most common choice, since they have
a strong dependence on the values of quark masses. In
pure QCD with Ny quark flavours these values are not
known, since the electromagnetic interactions affect the
experimental values of meson masses. Therefore, pure
QCD determinations use model/lattice information to
determine the location of the physical point. This is dis-
cussed at length in Sect. 3.1.1.

2. Renormalization of the bare-quark masses. Bare-quark
masses determined with the above-mentioned criteria
have to be renormalized. Many of the latest determina-
tions use some nonperturbatively defined scheme. One
can also use perturbation theory to connect directly the
values of the bare-quark masses to the values in the MS
scheme at 2 GeV. Experience shows that 1-loop calcu-
lations are unreliable for the renormalization of quark
masses: usually at least two loops are required to have
trustworthy results.

3. If quark masses have been nonperturbatively renormal-
ized, for example, to some MOMY/SF scheme, the values
in this scheme must be converted to the phenomeno-
logically useful values in the MS scheme (or to the
scheme/scale independent RGI masses). Either option
requires the use of perturbation theory. The larger the
energy scale of this matching with perturbation the-
ory, the better, and many recent computations in MOM
schemes do a nonperturbative running up to 3—4 GeV.
Computations in the SF scheme allow us to perform this
running nonperturbatively over large energy scales and
match with perturbation theory directly at the electro-
weak scale ~ 100 GeV.

Note that quark masses are different from other quanti-
ties determined on the lattice since perturbation theory is
unavoidable when matching to schemes in the continuum.

We mention that lattice-QCD calculations of the b-quark
mass have an additional complication which is not present in
the case of the charm and light quarks. At the lattice spacings
currently used in numerical simulations the direct treatment
of the b quark with the fermionic actions commonly used for
light quarks is very challenging. Only one determination of
the b-quark mass uses this approach, reaching the physical
b-quark mass region at two lattice spacings with am ~ 0.9
and 0.64, respectively (see Sect. 3.3). There are a few widely
used approaches to treat the b quark on the lattice, which have
been already discussed in the FLAG 13 review (see Sect. 8 of
Ref. [2]). Those relevant for the determination of the b-quark
mass will be briefly described in Sect. 3.3.
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3.1 Masses of the light quarks

Light-quark masses are particularly difficult to determine
because they are very small (for the up and down quarks) or
small (for the strange quark) compared to typical hadronic
scales. Thus, their impact on typical hadronic observables is
minute, and it is difficult to isolate their contribution accu-
rately.

Fortunately, the spontaneous breaking of SU3); X
SU(3)g chiral symmetry provides observables which are
particularly sensitive to the light-quark masses: the masses
of the resulting Nambu-Goldstone bosons (NGB), i.e., pions,
kaons, and eta. Indeed, the Gell-Mann-Oakes-Renner rela-
tion [136] predicts that the squared mass of a NGB is directly
proportional to the sum of the masses of the quark and anti-
quark which compose it, up to higher-order mass corrections.
Moreover, because these NGBs are light, and are composed
of only two valence particles, their masses have a partic-
ularly clean statistical signal in lattice-QCD calculations.
In addition, the experimental uncertainties on these meson
masses are negligible. Thus, in lattice calculations, light-
quark masses are typically obtained by renormalizing the
input quark mass and tuning them to reproduce NGB masses,
as described above.

3.1.1 The physical point and isospin symmetry

As mentioned in Sect. 2.1, the present review relies on the
hypothesis that, at low energies, the Lagrangian £ o, + £ e
describes nature to a high degree of precision. However, most
of the results presented below are obtained in pure QCD cal-
culations, which do not include QED. Quite generally, when
comparing QCD calculations with experiment, radiative cor-
rections need to be applied. In pure QCD simulations, where
the parameters are fixed in terms of the masses of some of the
hadrons, the electromagnetic contributions to these masses
must be discussed. How the matching is done is generally
ambiguous because it relies on the unphysical separation of
QCD and QED contributions. In this section, and in the fol-
lowing, we discuss this issue in detail. Of course, once QED
is included in lattice calculations, the subtraction of electro-
magnetic contributions is no longer necessary.

Let us start from the unambiguous case of QCD+QED.
As explained in the introduction of this section, the physical
quark masses are the parameters of the Lagrangian such that a
given set of experimentally measured, dimensionful hadronic
quantities are reproduced by the theory. Many choices are
possible for these quantities, but in practice many lattice
groups use pseudoscalar meson masses, as they are easily
and precisely obtained both by experiment, and through lat-
tice simulations. For example, in the four-flavour case, one
can solve the system

Mg+ (my, mg, mg, me, o) = M:ﬁrp' , (23)
M+ (my, mg, mg, me, ) = Mgy, (24)
Myo(my, ma, mg, me, ) = My, (25)
Mpo(my, ma, mg, me, o) = My, (26)

where we assumed that

e all the equations are in the continuum and infinite-volume
limits;

e the overall scale has been set to its physical value, gener-
ally through some lattice-scale setting procedure involv-
ing a fifth dimensionful input;

o the quark masses m, are assumed to be renormalized
from the bare, lattice ones in some given continuum
renormalization scheme;

% is the fine-structure constant expressed as func-
tion of the positron charge e, generally set to the Thomson
limit « = 0.007297352 ... [137];

e the mass My (m,, mg, mg, m., a) of the meson £ is a
function of the quark masses and «. The functional depen-
dence is generally obtained by choosing an appropriate
parameterization and performing a global fit to the lattice
data;

e the superscript exp. indicates that the mass is an experi-
mental input, lattice groups use in general the values in
the Particle Data Group review [137].

o 0 =

However, ambiguities arise with simulations of QCD only.
In that case, there is no experimentally measurable quan-
tity that emerges from the strong interaction only. The miss-
ing QED contribution is tightly related to isospin-symmetry
breaking effects. Isospin symmetry is explicitly broken by
the differences between the up- and down-quark masses
ém = m, — mg, and electric charges §Q = Q, — Q4. Both
these effects are, respectively, of order O(ém/Aqcp) and
O(w), and are expected to be O(1%) of a typical isospin-
symmetric hadronic quantity. Strong and electromagnetic
isospin-breaking effects are of the same order and therefore
cannot, in principle, be evaluated separately without intro-
ducing strong ambiguities. Because these effects are small,
they can be treated as a perturbation:

X(mua mdv msa va (X)
= X(mud» mg, me) +dmAx (myq, mg, me)
+ (YBX(mud, mSa mC) ’ (27)

for a given hadronic quantity X, where m,; = %(m,, +
my) is the average light-quark mass. There are several
things to notice here. Firstly, the neglected higher-order
O(m?, adm, a®) corrections are expected to be O(10™%)
relatively to X, which at the moment is way beyond the
relative statistical accuracy that can be delivered by a lat-
tice calculation. Secondly, this is not strictly speaking an
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expansion around the isospin-symmetric point, the electro-
magnetic interaction has also symmetric contributions. From
this last expression the previous statements about ambigui-
ties become clearer. Indeed, the only unambiguous predic-
tion one can perform is to solve Egs. (23)—(26) and use the
resulting parameters to obtain a prediction for X, which is
represented by the left-hand side of Eq. (27). This prediction
will be the sum of the QCD isospin-symmetric part X, the
strong isospin-breaking effects XSU® = smAy, and the
electromagnetic effects X¥ = o By. Obtaining any of these
terms individually requires extra, unphysical conditions to
perform the separation. To be consistent with previous edi-
tions of FLAG, we also define X = X + X5U® 10 be the
o — 0 limit of X.

With pure QCD simulations, one typically solves
Eqgs. (23)—(26) by equating the QCD, isospin-symmetric part
of a hadron mass M 1, result of the simulations, with its exper-
imental value M, ©". This will result in an O(8m, ) mis-
tuning of the theory parameters which will propagate as an
error on predicted quantities. Because of this, in principle,
one cannot predict hadronic quantities with a relative accu-
racy higher than O(1%) from pure QCD simulations, inde-
pendently on how the target X is sensitive to isospin breaking
effects. If one performs a complete lattice prediction of the
physical value of X, it can be of phenomenological inter-
est to define in some way X, XSU@ and X7. If we keep
myq, ms and m at their physical values in physical units, for
a given renormalization scheme and scale, then these three
quantities can be extracted by setting successively and simul-
taneously o and ém to 0. This is where the ambiguity lies: in
general the §m = 0 point will depend on the renormalization
scheme used for the quark masses. In the next section, we
give more details on that particular aspect and discuss the
order of scheme ambiguities.

3.1.2 Ambiguities in the separation of isospin-breaking
contributions

In this section, we discuss the ambiguities that arise in the
individual determination of the QED contribution X? and
the strong-isospin correction XSY® defined in the previ-
ous section. Throughout this section, we assume that the
isospin-symmetric quark masses m 4, ms and m, are always
kept fixed in physical units to the values they take at the
QCD+QED physical point in some given renormalization
scheme. Let us assume that both up and down masses have
been renormalized in an identical mass-independent scheme
which depends on some energy scale p. We also assume that
the renormalization procedure respects chiral symmetry so
that quark masses renormalize multiplicatively. The renor-
malization constants of the quark masses are identical for
o = 0 and therefore the renormalized mass of a quark has
the general form

@ Springer

M) = Z,() [1 4 00289 (0) + @ 0 043 ()
+ao Qég(zz) (/L)] mgo, (28)

up to (’)(az) corrections, where m, g is the bare quark mass,
and where Q. and Q2 are the sum of all quark charges
and squared charges, respectively. Throughout this section,
a subscript ud generally denotes the average between up and
down quantities and § the difference between the up and the
down quantities. The source of the ambiguities described in
the previous section is the mixing of the isospin-symmetric
mass m,q and the difference ém through renormalization.
Using Eq. (28) one can make this mixing explicit at leading
order in «:

Myq () _ s 0 "
<8m(u)> = Zm(/j*)|:1+Oth0t82 (M)+OlM (M)
+aM® (u)} <m5nfoo) (29)

with the mixing matrices

1
MD () =65 (W) Q. (Q”d 43Q) and

8Q Qud
2 1 2
?2) _ @ Qud ZBQ
MO 1) = 82 (1) (5 o Q5d>' (30)

Now let us assume that for the purpose of determining the
different components in Eq. (27), one starts by tuning the
bare masses to obtain equal up and down masses, for some
small coupling «g at some scale o, i.e., Sm(ug) = 0. At
this specific point, one can extract the pure QCD, and the
QED corrections to a given quantity X by studying the slope
of « in Eq. (27). From these quantities the strong isospin
contribution can then readily be extracted using a nonzero
value of §m (o). However, if now the procedure is repeated
at another coupling o and scale u with the same bare masses,
it appears from Eq. (29) that ém () # 0. More explicitly,

_ Zm (1)
Sm(e) = mua (o) —="[a Az (1) — apAz (o),  (31)
Zm (HO)
with
Az(1) = 010808 (1) +50%7 (), (32)

up to higher-order corrections in « and «g. In other words, the
definitions of X, X5Y® and X? depend on the renormal-
ization scale at which the separation was made. This depen-
dence, of course, has to cancel in the physical sum X . One can
notice that at no point did we mention the renormalization
of « itself, which, in principle, introduces similar ambigui-
ties. However, the corrections coming from the running of «
are (’)(az) relatively to X, which, as justified above, can be
safely neglected. Finally, important information is provided
by Eq. (31): the scale ambiguities are O(am,4). For physical
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quark masses, one generally has m, 4 >~ ém. So by using this
approximation in the first-order expansion Eq. (27), it is actu-
ally possible to define unambiguously the components of X
up to second-order isospin-breaking corrections. Therefore,
in the rest of this review, we will not keep track of the ambigu-
ities in determining pure QCD or QED quantities. However,
in the context of lattice simulations, it is crucial to notice that
myq == 8m is only accurate at the physical point. In sim-
ulations at larger-than-physical pion masses, scheme ambi-
guities in the separation of QCD and QED contributions are
generally large. Once more, the argument made here assumes
that the isospin-symmetric quark masses m, g, mg, and m,
are kept fixed to their physical value in a given scheme while
varying «. Outside of this assumption there is an additional
isospin-symmetric O (am,) ambiguity between X and X7.
Such separation on lattice-QCD+QED simulation results
appeared for the first time in RBC 07 [138] and Blum 10
[139], where the scheme was implicitly defined around the
xPT expansion. In that setup, the §m(ug) = 0 point is
defined in pure QCD, i.e., ®p = 0 in the previous discus-
sion. The QCD part of the kaon-mass splitting from the first
FLAG review [1] is used as an input in RM123 11 [140],
which focuses on QCD isospin corrections only. It therefore
inherits from the convention that was chosen there, which
is also to set ém(ug) = 0 at zero QED coupling. The same
convention was used in the follow-up works RM 123 13 [141]
and RM123 17 [19]. The BMW collaboration was the first to
introduce a purely hadronic scheme in its electro-quenched
study of the baryon octet mass splittings [142]. In this work,
the quark mass difference §m(u) is swapped with the mass
splitting AM? between the connected iiu and dd pseu-
doscalar masses. Although unphysical, this quantity is pro-
portional [143] to m () up to O(am,y) chiral corrections.
In this scheme, the quark masses are assumed to be equal at
AM? = 0, and the O(amyy) corrections to this statement are
analogous to the scale ambiguities mentioned previously. The
same scheme was used with the same data set for the deter-
mination of light-quark masses BMW 16 [20]. The BMW
collaboration used a different hadronic scheme for its deter-
mination of the nucleon-mass splitting BMW 14 [119] using
full QCD+QED simulations. In this work, the §m = 0 point
was fixed by imposing the baryon splitting My+ — My -
to cancel. This scheme is quite different from the other
ones presented here, in the sense that its intrinsic ambi-
guity is not O(am,y;). What motivates this choice here is
that My+ — Mx- = 0 in the limit where these baryons
are point particles, so the scheme ambiguity is suppressed
by the compositeness of the X baryons. This may sounds
like a more difficult ambiguity to quantify, but this scheme
has the advantage of being defined purely by measurable
quantities. Moreover, it has been demonstrated numerically
in BMW 14 [119] that, within the uncertainties of this study,
the Ms+ — Msx— = 0 scheme is equivalent to the AM? =

0 one, explicitly Ms+ — Mx- = —0.18(12)(6) MeV at
AM? = 0. The calculation QCDSF/UKQCD 15 [144] uses
a “Dashen scheme,” where quark masses are tuned such
that flavour-diagonal mesons have equal masses in QCD
and QCD+QED. Although not explicitly mentioned by the
authors of the paper, this scheme is simply a reformulation
of the AM? = 0 scheme mentioned previously. Finally, the
recent preprint MILC 18 [145] also used the AM? = 0
scheme and noticed its connection to the “Dashen scheme”
from QCDSF/UKQCD 15.

In the previous edition of this review, the contributions X,
XSU@ and X¥ were given for pion and kaon masses based
on phenomenological information. Considerable progress
has been achieved by the lattice community to include
isospin-breaking effects in calculations, and it is now pos-
sible to determine these quantities precisely directly from
a lattice calculation. However, these quantities generally
appear as intermediate products of a lattice analysis, and are
rarely directly communicated in publications. These quanti-
ties, although unphysical, have a phenomenological interest,
and we encourage the authors of future calculations to quote
them explicitly.

3.1.3 Inclusion of electromagnetic effects in lattice-QCD
simulations

Electromagnetism on a lattice can be formulated using
a naive discretization of the Maxwell action S[A,] =
1 [ad*x > unlBu AL (x) — dyA,(x)]%. Bven in its noncom-
pact form, the action remains gauge-invariant. This is not
the case for non-Abelian theories for which one uses the
traditional compact Wilson gauge action (or an improved
version of it). Compact actions for QED feature spurious
photon-photon interactions which vanish only in the contin-
uum limit. This is one of the main reason why the noncom-
pact action is the most popular so far. It was used in all the
calculations presented in this review. Gauge-fixing is neces-
sary for noncompact actions. It was shown [146,147] that
gauge fixing is not necessary with compact actions, includ-
ing in the construction of interpolating operators for charged
states.

Although discretization is straightforward, simulating
QED in a finite volume is more challenging. Indeed, the
long range nature of the interaction suggests that impor-
tant finite-size effects have to be expected. In the case of
periodic boundary conditions, the situation is even more
critical: a naive implementation of the theory features an
isolated zero-mode singularity in the photon propagator. It
was first proposed in [148] to fix the global zero-mode
of the photon field A, (x) in order to remove it from the
dynamics. This modified theory is generally named QEDry .
Although this procedure regularizes the theory and has the
right classical infinite-volume limit, it is nonlocal because
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of the zero-mode fixing. As first discussed in [119], the
nonlocality in time of QEDyy, prevents the existence of a
transfer matrix, and therefore a quantum-mechanical inter-
pretation of the theory. Another prescription named QEDy ,
proposed in [149], is to remove the zero-mode of A, (x)
independently for each time slice. This theory, although
still nonlocal in space, is local in time and has a well-
defined transfer matrix. Wether these nonlocalities consti-
tute an issue to extract infinite-volume physics from lattice-
QCD+QED, simulations is, at the time of this review, still
an open question. However, it is known through analytical
calculations of electromagnetic finite-size effects at O («) in
hadron masses [119,120,122,141,149-151], meson leptonic
decays [151], and the hadronic vacuum polarization [152]
that QED;, does not suffer from a problematic (e.g., UV
divergent) coupling of short and long-distance physics due
to its nonlocality. Another strategy, first prosposed in [153]
and used by the QCDSF collaboration, is to bound the zero-
mode fluctuations to a finite range. Although more mini-
mal, it is still a nonlocal modification of the theory and so
far finite-size effects for this scheme have not been inves-
tigated. More recently, two proposals for local formula-
tions of finite-volume QED emerged. The first one described
in [154] proposes to use massive photons to regulate zero-
mode singularities, at the price of (softly) breaking gauge
invariance. The second one presented in [147] avoids the
zero-mode issue by using anti-periodic boundary conditions
for A, (x). In this approach, gauge invariance requires the
fermion field to undergo a charge conjugation transformation
over a period, breaking electric charge conservation. These
local approaches have the potential to constitute cleaner
approaches to finite-volume QED. All the calculations pre-
sented in this review used QED; or QEDry , with the excep-
tion of QCDSF.

Once a finite-volume theory for QED is specified, there
are various ways to compute QED effects themselves on a
given hadronic quantity. The most direct approach, first used
in [148], is to include QED directly in the lattice simulations
and assemble correlation functions from charged quark prop-
agators. Another approach proposed in [141], is to exploit the
perturbative nature of QED, and compute the leading-order
corrections directly in pure QCD as matrix elements of the
electromagnetic current. Both approaches have their advan-
tages and disadvantages and as shown in [19], are not mutu-
ally exclusive. A critical comparative study can be found
in [155].

Finally, most of the calculations presented here made
the choice of computing electromagnetic corrections in the
electro-quenched approximation. In this limit, one assumes
that only valence quarks are charged, which is equivalent
to neglecting QED corrections to the fermionic determinant.
This approximation reduces dramatically the cost of lattice-
QCD + QED calculations since it allows the reuse of pre-
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viously generated QCD configurations. It also avoids com-
puting disconnected contributions coming from the electro-
magnetic current in the vacuum, which are generally chal-
lenging to determine precisely. The electromagnetic con-
tributions from sea quarks are known to be flavour-SU (3)
and large- N, suppressed, thus electro-quenched simulations
are expected to have an O(10%) accuracy for the lead-
ing electromagnetic effects. This suppression is in princi-
ple rather weak and results obtained from electro-quenched
simulations might feature uncontrolled systematic errors.
For this reason, the use of the electro-quenched approx-
imation constitutes the difference between * and o in
the FLAG criterion for the inclusion of isospin breaking
effects.

3.1.4 Lattice determination of ms and m 4

We now turn to areview of the lattice calculations of the light-
quark masses and begin with mg, the isospin-averaged up-
and down-quark mass m,,4, and their ratio. Most groups quote
only m, 4, not the individual up- and down-quark masses. We
then discuss the ratio m, /mg and the individual determina-
tions of m, and my.

Quark masses have been calculated on the lattice since the
mid-nineties. However, early calculations were performed in
the quenched approximation, leading to unquantifiable sys-
tematics. Thus, in the following, we only review modern,
unquenched calculations, which include the effects of light
sea quarks.

Tables 4 and 5 list the results of Ny =2 + 1 and Ny =
2 + 1 + 1 lattice calculations of m, and m ;. These results
are given in the MS scheme at 2 GeV, which is standard
nowadays, though some groups are starting to quote results
at higher scales (e.g., Ref. [156]). The tables also show the
colour coding of the calculations leading to these results. As
indicated earlier in this review, we treat calculations with
different numbers, N ¢, of dynamical quarks separately.

Ny =2 + 1 lattice calculations

We turn now to Ny = 2 + 1 calculations. These and
the corresponding results for m,,4 and m are summarized in
Table 4. Given the very high precision of a number of the
results, with total errors on the order of 1%, it is important to
consider the effects neglected in these calculations. Isospin-
breaking and electromagnetic effects are small on m,4 and
my, and have been approximately accounted for in the calcu-
lations that will be retained for our averages. We have already
commented that the effect of the omission of the charm quark
in the sea is expected to be small, below our current preci-
sion. In contrast with previous editions of the FLAG report,
we do not add any additional uncertainty due to these effects
in the final averages.
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Table4 Ny =2 + 1 lattice results for the masses n,4 and m;

.NOQ
S & s &F
& S 5 3
{,S;v ’@Q‘Jﬁr § QJA é& QS%
SRS 3
Collaboration Ref. Q? T OOQ ‘QQ &@Q &§ Maud Ms
Maezawa 16 1577 A m *x K K d - 92.0(1.7)
RBC/UKQCD 14B® [10] A * * * K« d 3314)4) 90.3(0.9)(1.0)
RBC/UKQCD 12° [156] A * O K« % d 33709)(7(1)2)  92.3(1.9)(0.9)(0.4)(0.8)
PACS-CS 12* 158 A + ®m m * b 312(24)(8) 83.60(0.58)(2.23)
Laiho 11 77 C o * K« O — 331(7)(20)(17) 94.2(1.4)(3.2)(4.7)
BMW 10A, 10B* [11,12] A * H* K K ¢ 3.469(47)(48) 95.5(1.1)(1.5)
PACS-CS 10 159 A  =m ®m % b 278027 86.7(2.3)
MILC 10A 14 C o * * o — 319(4)(5)(16) -
HPQCD 10** 3] A o * * — — 3396) 92.2(1.3)
RBC/UKQCD 10A 160 A O O * H* a 3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)
Blum 10f [139) A o ®m O * — 3.44(12)(22) 97.6(2.9)(5.5)
PACS-CS 09 [16]] A + m ®m * b 297(28)(3) 92.75(58)(95)
HPQCD 09A® 24 A o * K — — 340(7) 92.4(1.5)
MILC 09A 177 € o * * o — 325(1)(7)(16)(0) 89.0(0.2)(1.6)(4.5)(0.1)
MILC 09 [129] A o * * o — 3.200)(1)(2)(0) 88(0)(3)(4)(0)
PACS-CS 08 162 A * m = ®m — 2527(47) 72.72(78)
RBC/UKQCD 08 163 A O ® 4 A — 372(16)(33)(18)  107.3(4.4)(9.7)(4.9)
?5@%%0(8)4 164 A m * * m — 3551939 90.1(4.3)(*157)
HPQCD 05 [165] A o o o o — 3.20)(2)(2)(0)} 87(0)(4)(4)(0)*
MILC 04, HPQCD/ )y o 5 o o m — 280)1)B3)0)  76(0)3)(7)0)

MILC/UKQCD 04

©The results are given in the MS scheme at 3 instead of 2 GeV. We run them down to 2 GeV using numerically integrated 4-loop running [168,169]
with Ny = 3 and with the values of a;(M7), my,, and m, taken from Ref. [170]. The running factor is 1.106. At three loops it is only 0.2% smaller,
indicating that perturbative running uncertainties are small. We neglect them here

*The calculation includes electromagnetic and m,, # mg effects through reweighting

TThe fermion action used is tree-level improved

**my is obtained by combining m, and HPQCD 09A’s m./ms = 11.85(16) [24]. Finally, m,4 is determined from m; with the MILC 09 result for
mg/myq. Since m./my is renormalization group invariant in QCD, the renormalization and running of the quark masses enter indirectly through
that of m. (see below)

TThe calculation includes quenched electromagnetic effects

©What is calculated is m./my = 11.85(16). my is then obtained by combining this result with the determination m.(m.) = 1.268(9) GeV from Ref.
[171]. Finally, m,4 is determined from m with the MILC 09 result for my/m,q

#The bare numbers are those of MILC 04. The masses are simply rescaled, using the ratio of the 2-loop to 1-loop renormalization factors

“The masses are renormalized nonperturbatively at a scale of 2 GeV in a couple of Ny = 3 RI-SMOM schemes. A careful study of perturbative
matching uncertainties has been performed by comparing results in the two schemes in the region of 2 GeV to 3 GeV [160]

bThe masses are renormalized and run nonperturbatively up to a scale of 40 GeV in the N r = 3 SF scheme. In this scheme, nonperturbative and
NLO running for the quark masses are shown to agree well from 40 GeV all the way down to 3 GeV [159]

“The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Ny = 3 RI-MOM scheme. In this scheme, nonperturbative
and N°LO running for the quark masses are shown to agree from 6 GeV down to 3 GeV to better than 1% [12]

4 All required running is performed nonperturbatively

The only new calculation since FLAG 16 is the m deter-
mination of Maezawa 16 [157]. This new result agrees well
with other determinations; however because it is computed
with a single pion mass of about 160 MeV, it does not meet

our criteria for entering the average. RBC/UKQCD 14 [10]
significantly improves on their RBC/UKQCD 12 [156] work
by adding three new domain wall fermion simulations to
three used previously. Two of the new simulations are per-
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TableS5 Ny =2 + 1 + 1 lattice results for the masses m,4 and my

.Q’Q
&
g N
¢ & &
s §F S
G S
$ &£ & § ¥
o‘? & S L é’ S
s & §F e § F
¥ 5 5 F £ 35
. N2 S ) A QO S
Collaboration Ref. N S S & 5 < Mayd ms
HPQCD 181 15 A Kk Kk kK k- 94.49(96)
FNAL/MILC/TUMQCD 18 [§] A * * * * — 3.404(14)(21) 92.52(40)(56)
HPQCD 14A @ 6] A * * K - - 93.7(8)
ETM 149 O A o A K Kk —  370(13)(11) 99.6(3.6)(2.3)

TBare quark masses are renormalized nonperturbatively in the RI-SMOM scheme at scales . ~ 2 — 5 GeV for different lattice spacings and
translated to the MS scheme. Perturbative running is then used to run all results to a reference scale u = 3 GeV

® As explained in the text, m; is obtained by combining the results m.(5 GeV; Ny =4) =0.8905(56) GeV and (m./mg)(Ny = 4) = 11.652(65),
determined on the same data set. A subsequent scale and scheme conversion, performed by the authors, leads to the value 93.6(8). In the table, we
have converted this to ms(2 GeV; Ny = 4), which makes a very small change

formed at essentially physical pion masses (M, ~ 139 MeV)
on lattices of about 5.4 fm in size and with lattice spacings
of 0.114fm and 0.084 fm. It is complemented by a third
simulation with M,; ~ 371 MeV, a >~ 0.063 and a rather
small L ~ 2.0fm. Altogether, this gives them six simula-
tions with six unitary (mgea = Mmva) My’s in the range of
139 to 371 MeV, and effectively three lattice spacings from
0.063 to 0.114 fm. They perform a combined global contin-
uum and chiral fit to all of their results for the 7 and K masses
and decay constants, the 2 baryon mass and two Wilson-flow
parameters. Quark masses in these fits are renormalized and
run nonperturbatively in the RI-SMOM scheme. This is done
by computing the relevant renormalization constant for a ref-
erence ensemble, and determining those for other simulations
relative to it by adding appropriate parameters in the global
fit. This new calculation passes all of our selection criteria.
Its results will replace the older RBC/UKQCD 12 results in
our averages.

Ny =2 + 1 MILC results for light-quark masses go back
to 2004 [166,167]. They use rooted staggered fermions. By
2009 their simulations covered an impressive range of param-
eter space, with lattice spacings going down to 0.045 fm, and
valence-pion masses down to approximately 180 MeV [17].
The most recent MILC Ny = 2 + 1 results, i.e., MILC 10A
[14] and MILC 09A [17], feature large statistics and 2-loop
renormalization. Since these data sets subsume those of their
previous calculations, these latest results are the only ones
that must be kept in any world average.

The PACS-CS 12 [158] calculation represents an impor-
tant extension of the collaboration’s earlier 2010 compu-
tation [159], which already probed pion masses down to
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M, =~ 135MeV, i.e., down to the physical-mass point.
This was achieved by reweighting the simulations performed
in PACS-CS 08 [162] at M, =~ 160MeV. If adequately
controlled, this procedure eliminates the need to extrapo-
late to the physical-mass point and, hence, the correspond-
ing systematic error. The new calculation now applies sim-
ilar reweighting techniques to include electromagnetic and
m, # mg isospin-breaking effects directly at the physical
pion mass. Further, as in PACS-CS 10 [159], renormalization
of quark masses is implemented nonperturbatively, through
the Schrodinger functional method [172]. As it stands, the
main drawback of the calculation, which makes the inclu-
sion of its results in a world average of lattice results inap-
propriate at this stage, is that for the lightest quark mass
the volume is very small, corresponding to LM, =~ 2.0, a
value for which finite-volume effects will be difficult to con-
trol. Another problem is that the calculation was performed
at a single lattice spacing, forbidding a continuum extrap-
olation. Further, it is unclear at this point what might be
the systematic errors associated with the reweighting pro-
cedure.

The BMW 10A, 10B [11,12] calculation still satisfies our
stricter selection criteria. They reach the physical up- and
down-quark mass by interpolation instead of by extrapola-
tion. Moreover, their calculation was performed at five lattice
spacings ranging from 0.054 to 0.116 fm, with full nonper-
turbative renormalization and running and in volumes of up
to (6 fm)3, guaranteeing that the continuum limit, renormal-
ization, and infinite-volume extrapolation are controlled. It
does neglect, however, isospin-breaking effects, which are
small on the scale of their error bars.



Eur. Phys. J. C (2020) 80:113

Page 25 of 268 113

Finally, we come to another calculation which satisfies our
selection criteria, HPQCD 10 [13]. It updates the staggered-

And the RGI values

MRS — 4.682(57),,(55)a MeV = 4.682(79) MeV  Refs. [10-14],

Nf=2+1:

MRO! = 128.1(1.6),,(1.5)4 MeV = 128.1(2.2) MeV  Refs. [10-13,17]. (34)

fermions calculation of HPQCD 09A [24]. In these papers,
the renormalized mass of the strange quark is obtained by
combining the result of a precise calculation of the renormal-
ized charm-quark mass, m., with the result of a calculation
of the quark-mass ratio, m./mg. As described in Ref. [171]
and in Sect. 3.2, HPQCD determines m. by fitting Euclidean-
time moments of the cc pseudoscalar density two-point func-
tions, obtained numerically in lattice-QCD, to fourth-order,
continuum perturbative expressions. These moments are nor-
malized and chosen so as to require no renormalization with
staggered fermions. Since m./mg requires no renormaliza-
tion either, HPQCD’s approach displaces the problem of lat-
tice renormalization in the computation of mz; to one of com-
puting continuum perturbative expressions for the moments.
To calculate m,; HPQCD 10 [13] use the MILC 09 determi-
nation of the quark-mass ratio mg/m, 4 [129].

HPQCD 09A [24] obtains m./mg; = 11.85(16) [24]
fully nonperturbatively, with a precision slightly larger than
1%. HPQCD 10’s determination of the charm-quark mass,
me(me) = 1.268(6)," is even more precise, achieving an
accuracy better than 0.5%.

This discussion leaves us with five results for our final
average for my: MILC 09A [17], BMW 10A, 10B [11,12],
HPQCD 10 [13] and RBC/UKQCD 14 [10]. Assuming that
the result from HPQCD 10 is 100% correlated with that of
MILC 09A, as it is based on a subset of the MILC 09A
configurations, we find m; = 92.03(88) MeV with a x2/dof
=1.2.

For the light-quark mass m,4, the results satisfying our
criteria are RBC/UKQCD 14B, BMW 10A, 10B, HPQCD
10, and MILC 10A. For the error, we include the same 100%
correlation between statistical errors for the latter two as for
the strange case, resulting in m, s = 3.364(41) at 2 GeV in
the MS scheme ( X2 /d.of.=1.1). Our final estimates for the
light-quark masses are

myq = 3.364(41) MeV  Refs. [10-14],
Np=2+1:
mg = 92.0(1.1) MeV  Refs. [10-13,17].
(33)

15 To obtain this number, we have used the conversion from u = 3
GeV to m, given in Ref. [171].

Ny =2 + 1 + 1 lattice calculations

Since the previous FLAG review, two new results for
the strange-quark mass have appeared, HPQCD 18 [15]
and FNAL/MILC/TUMQCD 18 [8]. In the former quark
masses are renormalized nonperturbatively in the RI-SMOM
scheme. The mass of the (fictitious) ss meson is used to
tune the bare strange mass. The “physical” ss mass is given
in QCD from the pion and kaon masses. In addition, they
use the same HISQ ensembles and valence quarks as those
in HPQCD 14A, where the quark masses were computed
from time moments of vector-vector correlation functions.
The new results are consistent with the old, with roughly the
same size error, but of course with different systematics. In
particular the new results avoid the use of high-order pertur-
bation theory in the matching between lattice and continuum
schemes. It is reassuring that the two methods, applied to the
same ensembles, agree well.

The Ny =2 + 1 + 1results are summarized in Table 5.
Note that the results of Ref. [16] are reported as m(2 GeV;
Ny = 3) and those of Ref. [9] as m,4(5) (2 GeV; Ny = 4). We
convert the former to Ny = 4 and obtain my(2 GeV; Ny =
4) = 093.12(69)MeV. The average of FNAL/MILC/
TUMQCD 18, HPQCD 18, ETM 14 and HPQCD 14A is
93.44(68)MeV with x?/dof = 1.7. For the light-quark aver-
age we use ETM 14A and FNAL/MILC/TUMQCD 18 with
an average 3.410(43) and a x?/dof = 3. We note these x>
values are large. For the case of the light-quark masses this is
mostly due to ETM 14(A) masses lying significantly above
the rest, but in the case of m; there is also some tension
between the recent and very precise results of HPQCD 18
and FNAL/MILC/TUMQCD 18. Also note that the 2+ 1-
flavour values are consistent with the four-flavour ones, so in
all cases we have decided to simply quote averages accord-
ing to FLAG rules, including stretching factors for the errors
based on x? values of our fits.

Myua = 3.410(43) MeV  Refs. [8,9],
Nyp=2+41+1:
mg = 93.44(68) MeV  Refs. [8,9,15,16].
35)
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Fig. 1 MS mass of the strange quark (at 2 GeV scale) in MeV. The
upper two panels show the lattice results listed in Tables 4 and 5, while
the bottom panel collects sum rule results [173—177]. Diamonds and
squares represent results based on perturbative and nonperturbative
renormalization, respectively. The black squares and the grey bands
represent our estimates (33) and (35). The significance of the colours is
explained in Sect. 2

and the RGI values
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Fig. 2 Mean mass of the two lightest quarks, m,; = %(mu + mg).
The bottom panel shows results based on sum rules [173,176,178] (for
more details see Fig. 1)

tion drop out in the ratio, the uncertainties are even smaller
than in the case of the quark masses themselves: the above
number for mg/m, 4 amounts to an accuracy of 0.5%.

MRS = 4.746(60),,(55) A MeV = 4.746(82) MeV  Refs. [8,9],

Np=2+1+1:

MR = 130.0(0.9),,(1.5) A MeV = 130.0(1.8) MeV  Refs. [8,9,15,16]. (36)

In Figs. 1 and 2 the lattice results listed in Tables 4 and 5
and the FLAG averages obtained at each value of N s are pre-
sented and compared with various phenomenological results.

3.1.5 Lattice determinations of mg/mq

The lattice results for mg/m,; are summarized in Table 6.
In the ratio my/m,4, one of the sources of systematic error —
the uncertainties in the renormalization factors — drops out.
Ny =2 + 1 lattice calculations

For Ny = 2 + 1 our average has not changed since the last
version of the review and is based on the result RBC/UKQCD
14B, which replaces RBC/UKQCD 12 (see Sect. 3.1.4), and
on the results MILC 09A and BMW 10A, 10B. The value
quoted by HPQCD 10 does not represent independent infor-
mation as it relies on the result for mg/m,, obtained by the
MILC collaboration. Averaging these results according to the
prescriptions of Sect. 2.3 gives ms/myq = 27.42(12) with
x 2 /dof 2~ 0.2. Since the errors associated with renormaliza-
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At this level of precision, the uncertainties in the elec-
tromagnetic and strong isospin-breaking corrections might
not be completely negligible. Nevertheless, we decide not
to add any uncertainty associated with this effect. The main
reason is that most recent determinations try to estimate this
uncertainty themselves and found an effect smaller than naive
power counting estimates (see Ny =2 + 1 + 1 section).

Ny=2+4+1: mg/m,q=27.42 (12) Refs. [10-12,16].
(37)

Ny =2 + 1 + 1 lattice calculations

For Ny =2 + 1 + 1 there are three results, MILC 17 [5],
ETM 14 [9] and FNAL/MILC 14A [18], all of which satisfy
our selection criteria.

MILC 17 uses 24 HISQ staggered-fermion ensembles at
six values of the lattice spacing in the range 0.15 fm—0.03 fm.

ETM 14 uses 15 twisted mass gauge ensembles at three
lattice spacings ranging from 0.062 to 0.089 fm (using f
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Table 6 Lattice results for the ratio m /myq

.QQ
&
< N
> NJ <
& g & ¢
& & s s
S 5 S S
s I & £
N > & o
yoF o5 &
Collaboration Ref. Ny ) O S & Ms/Mud
MILC 17 * [5] 2+1+1 A * * * 27.178(47)*+38
FNAL/MILC 14A [18] 24141 A * * * 27.35(5) 10
ETM 14 [9] 24141 A o * o 26.66(32)(2)
RBC/UKQCD 14B [10] 2+1 A * * * 27.34(21)
RBC/UKQCD 12° [156] 2+1 A * o) * 27.36(39)(31)(22)
PACS-CS 12* [158] 2+1 A * u . 26.8(2.0)
Laiho 11 [57) 2+1 C o * * 28.4(0.5)(1.3)
BMW 10A, 10B* [11, 12] 2+1 A * * * 27.53(20)(8)
RBC/UKQCD 10A [160] 2+1 A o o * 26.8(0.8)(1.1)
Blum 107 [139] 241 A o ] o 28.31(0.29)(1.77)
PACS-CS 09 [161] 241 A * u . 31.2(2.7)
MILC 09A [17] 241 C o * * 27.41(5)(22)(0)(4)
MILC 09 [129] 241 A o * * 27.2(1)(3)(0)(0)
PACS-CS 08 [162] 241 A * . . 28.8(4)
RBC/UKQCD 08 [163] 241 A o u * 28.8(0.4)(1.6)
MILC 04, HPQCD/ 6 1671 94 A o o o 2TA)@)(0)(1)

MILC/UKQCD 04

#The calculation includes electromagnetic effects
©The errors are statistical, chiral and finite volume

*The calculation includes electromagnetic and m, # my effects through reweighting

*The fermion action used is tree-level improved
TThe calculation includes quenched electromagnetic effects

as input), in boxes of size ranging from 2.0 to 3.0 fm, and
pion masses from 210 to 440 MeV (explaining the tag o
in the chiral extrapolation and the tag s for the continuum
extrapolation). The value of M L at their smallest pion mass
is 3.2 with more than two volumes (explaining the tag o in
the finite-volume effects). They fix the strange mass with the
kaon mass.

FNAL/MILC 14A employs HISQ staggered fermions.
Their result is based on 21 ensembles at four values of the
coupling B corresponding to lattice spacings in the range
from 0.057 to 0.153 fm, in boxes of sizes up to 5.8 fm, and
with taste-Goldstone pion masses down to 130 MeV, and
RMS pion masses down to 143 MeV. They fix the strange
mass with Mjq, corrected for electromagnetic effects with
€ = 0.84(20) [179]. All of our selection criteria are satis-
fied with the tag s. Thus our average is given by m/m,q =
27.23 (10), where the error includes a large stretching fac-
tor equal to v/ x2/dof ~ 1.6, coming from our rules for the
averages discussed in Sect. 2.2. As mentioned already this is

mainly due to ETM 14(A) values lying significantly above
the averages for the individual masses.

Ny=2+ 1+ 1: mg/myg =2723(10) Refs.[5,9,18],
(38)

which corresponds to an overall uncertainty equal to 0.4%.
It is worth noting that [5] estimates the EM effects in this
quantity to be ~ 0.18%.

All the lattice results listed in Table 6 as well as the FLAG
averages for each value of Ny are reported in Fig. 3 and
compared with xPT and sum rules.

3.1.6 Lattice determination of m, and mg
In addition to reviewing computations of individual m, and

mg quark masses, we will also determine FLAG averages for
the parameter € related to the violations of Dashen’s theorem
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Fig. 3 Results for the ratio mg /m,,4. The upper part indicates the lattice
results listed in Table 6 together with the FLAG averages for each value
of Ny. The lower part shows results obtained from x PT and sum rules
[176,180-183]

(aM; — am2)”
AM2

€= , (39)
where AMJ% = M§+ - Mﬁo and AM,Z( = Mlz(+ — MIZ(O are
the pion and kaon squared mass splittings, respectively. The
superscript y, here and in the following, denotes corrections
that arise from electromagnetic effects only. This parameter
is often a crucial intermediate quantity in the extraction of the
individual light-quark masses. Indeed, it can be shown using
the G-parity symmetry of the pion triplet that AM}T does
not receive O(ém) isospin-breaking corrections. In other
words

(AMg)"

AM? = (AMZ)V and € = — K)_
T T - AM%

-1, (40)
at leading-order in the isospin-breaking expansion. The dif-
ference (AM%)SUO) was estimated in previous editions of
FLAG through the €, parameter. However, consistent with
our leading-order truncation of the isospin-breaking expan-
sion, it is simpler to ignore this term. Once known, € allows
one to consistently subtract the electromagnetic part of the
kaon splitting to obtain the QCD splitting (AM%)SY?. In
contrast with the pion, the kaon QCD splitting is sensitive to
dm, and, in particular, proportional to it at leading order in
x PT. Therefore, the knowledge of € allows for the determi-
nation of §m from a chiral fit to lattice-QCD data. Originally
introduced in another form in [184], € vanishes in the SU (3)
chiral limit, a result known as Dashen’s theorem. However,
in the 1990’s numerous phenomenological papers pointed
out that € might be an O (1) number, indicating a significant
failure of SU(3) xPT in the description of electromagnetic
effects on light meson masses. However, the phenomenolog-
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ical determinations of € feature some level of controversy,
leading to the rather imprecise estimate ¢ = 0.7(5) given in
the first edition of FLAG. In this edition of the review, we
quote below more precise averages for €, directly obtained
from lattice-QCD+QED simulations. We refer the reader to
the previous editions of FLAG, and to the review [185] for
discusions of the phenomenological determinations of €.

Regarding finite-volume effects for calculations including
QED, this edition of FLAG uses a new quality criterion pre-
sented in Sect. 2.1.1. Indeed, due to the long-distance nature
of the electromagnetic interaction, these effects are domi-
nated by a power law in the lattice spatial size. The coeffi-
cients of this expansion depend on the chosen finite-volume
formulation of QED. For QEDy , these effects on the squared
mass M? of a charged meson are given by [119,120,122]
e =t {77 + s + 0 |+
with ¢; >~ —2.83730. It has been shown in [119] that the
two first orders in this expansion are exactly known for
hadrons, and are equal to the pointlike case. However, the
O[1/(ML)?] term and higher orders depend on the structure
of the hadron. The universal corrections for QEDy, can also
be found in [119]. In all this part, for all computations using
such universal formulae, the QED finite-volume quality cri-
terion has been applied with nyi, = 3, otherwise npin = 1
was used.

Since FLAG 16, six new results have been reported for
nondegenerate light-quark masses. Inthe Ny =2 + 1 + 1
sector, MILC 18 [145] computed € using Ny = 2 + 1 asqtad
electro-quenched QCD+QEDy;, simulations and extracted
the ratio m, /mg from anew setof Ny =2 + 1 + 1 HISQ
QCD simulations. Although € comes from Ny = 2 + 1
simulations, (AM#%)SY®) which is about three times larger
than (AM%)”, has been determined inthe Ny =2 + 1 + 1
theory. We therefore chose to classify this result as a four-
flavour one. This result is explicitly described by the authors
as an update of MILC 17 [5]. In MILC 17 [5], m,/my is
determined as a side-product of a global analysis of heavy-
meson decay constants, using a preliminary version of € from
MILC 18 [145]. In FNAL/MILC/TUMQCD 18 [8] the ratio
m,, /mg from MILC 17 [5] is used to determine the individual
masses m, and m, from a new calculation of m,,4. The work
RM123 17 [19] is the continuation the Ny = 2 result named
RM123 13 [141] in the previous edition of FLAG. This group
now uses Ny =2 + 1 + 1 ensembles from ETM 10 [186],
however still with a rather large minimum pion mass of
270 MeV, leading to the o rating for chiral extrapolations.
Inthe Ny =2 + 1 sector, BMW 16 [20] reuses the data set
produced from their determination of the light baryon octet
mass splittings [142] using electro-quenched QCD+QEDy,
smeared clover fermion simulations. Finally, MILC 16 [187],
which is a preliminary result for the value of € published in
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MILC 18 [145], also provides a Ny = 2 + 1 computation
of the ratio m, /mg.

MILC 09A [17] uses the mass difference between K°
and KT, from which they subtract electromagnetic effects
using Dashen’s theorem with corrections, as discussed in the
introduction of this section. The up and down sea quarks
remain degenerate in their calculation, fixed to the value
of m,q obtained from M_o. To determine m, /my, BMW
10A, 10B [11,12] follow a slightly different strategy. They
obtain this ratio from their result for mg/m,4 combined with
a phenomenological determination of the isospin-breaking
quark-mass ratio Q = 22.3(8), from n — 37 decays [188]
(the decay n — 3 is very sensitive to QCD isospin break-
ing but fairly insensitive to QED isospin breaking). Instead
of subtracting electromagnetic effects using phenomenology,
RBC07[138] and Blum 10 [139] actually include a quenched
electromagnetic field in their calculation. This means that
their results include corrections to Dashen’s theorem, albeit
only in the presence of quenched electromagnetism. Since
the up and down quarks in the sea are treated as degen-
erate, very small isospin corrections are neglected, as in
MILC’s calculation. PACS-CS 12 [158] takes the inclusion
of isospin-breaking effects one step further. Using reweight-
ing techniques, it also includes electromagnetic and m,, —my
effects in the sea. However, they do not correct for the large
finite-volume effects coming from electromagnetism in their
M, L ~ 2 simulations, but provide rough estimates for their
size, based on Ref. [149]. QCDSF/UKQCD 15 [189] uses
QCD+QED dynamical simulations performed at the SU (3)-
flavour-symmetric point, but at a single lattice spacing, so
they do not enter our average. The smallest partially quenched
(mgea 7 Mmyal) pion mass is greater than 200 MeV, so our
chiral-extrapolation criteria require a o rating. Concerning
finite-volume effects, this work uses three spatial extents L of
1.6 fm, 2.2 fm, and 3.3 fm. QCDSF/UKQCD 15 claims that
the volume dependence is not visible on the two largest vol-
umes, leading them to assume that finite-size effects are under
control. As a consequence of that, the final result for quark
masses does not feature a finite-volume extrapolation or an
estimation of the finite-volume uncertainty. However, in their
work on the QED corrections to the hadron spectrum [189]
based on the same ensembles, a volume study shows some
level of compatibility with the QED; finite-volume effects
derived in [120]. We see two issues here. Firstly, the analyt-
ical result quoted from [120] predicts large, O (10%) finite-
size effects from QED on the meson masses at the values of
M L considered in QCDSF/UKQCD 15, which is inconsis-
tent with the statement made in the paper. Secondly, it is not
known that the zero-mode regularization scheme used here
has the same volume scaling as QED; . We therefore chose to
assign the m rating for finite volume to QCDSF/UKQCD 15.
Finally, for Ny = 2 + 1 + 1, ETM 14 [9] uses simula-
tions in pure QCD, but determines m, — my from the slope

FLAG2019 m, /mg
‘_T_ 1 FLAG average for Ny=2+1+1
+ ™ MILC 18
‘ﬂ‘ H MILC 17
> | RM123 17
T ETM 14
HHEH- FLAG average for N¢=2+1
I+l BMW 16
H MILC 16
— H— QCDSF/UKQCD 15
& ———— PACS-CS 12
I | Laiho 11
zZ —{HH BMW 10A, 108
1 Blum 10
—— MILC 09A
—H— MILC 09
T MILC 04, HPQCD/MILC/UKQCD 04
—A———— PDG

04 05 06
Fig. 4 Latticeresultsand FLAG averagesat Ny =2+ land2+ 141

for the up—down quark masses ratio m, /mg, together with the current
PDG estimate

8M12< /0m,4 and the physical value for the QCD kaon-mass
splitting taken from the phenomenological estimate in FLAG
13 (Fig. 4).

Lattice results for m,, my and m,/mg are summarized
in Table 7. It is important to notice two major changes in
the grading of these results: the introduction of an “isospin
breaking” criterion and the modification of the “finite vol-
ume” criterion in the presence of QED. The colour coding
is specified in detail in Sect. 2.1. Considering the impor-
tant progress in the last years on including isospin-breaking
effects in lattice simulations, we are now in a position where
averages for m, and m, can be made without the need of
phenomenological inputs. Therefore, lattice calculations of
the individual quark masses using phenomenological inputs
for isospin-breaking effects will be coded m.

We start by recalling the Ny = 2 FLAG estimate for the
light-quark masses, entirely coming from RM123 13 [141],

m, = 2.40(23) MeV Ref. [141],
Ny =2: mg =4.80(23)MeV Ref. [141],
my/mg = 0.50(4) Ref. [141], 42)

with errors of roughly 10%, 5% and 8%, respectively. In
these results, the errors are obtained by combining the lattice
statistical and systematic errors in quadrature. For Ny =
2 + 1, the only result, which qualifies for entering the FLAG
average for quark masses, is BMW 16 [20],

my = 2.27(9)MeV  Ref. [20],
Np=2+1: my=467(9)MeV Ref.[20],
my/mg = 0.485(19) Ref. [20], (43)
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Table 7 Lattice results for m,,, my (MeV) and for the ratio m, /my. The values refer to the MS scheme at scale 2 GeV. The top part of the table
lists the result obtained with Ny =2 + 1 + 1, while the lower part presents calculations with Ny =2 + 1
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S s .$
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F £ s & &
T §F § §F ¥ 3
L N §F S s 8 4560
g §FF &S S
Collaboration Ref. & & & & % & & M ma Mu/Mma
MILC 18 [145] P %« % * O Kk - 0.4529(48)(T43%)
FNAL/MILC/TUMQCD 18 8 A x K Kk O K — 2118(17)(32)(12)(03)  4.690(30)(36)(26)(06)
MILC 17F Bl A * *x *x 0O K - 0.4556(55)(F53*)(13)
RM123 17 9 A o % Kk O K b 250(15)(8)(2) 4.88(18)(8)(2) 0.513(18)(24)(6)
ETM 14 O A x K Kk m Kk b 236(24) 5.03(26) 0.470(56)
BMW 16 200 A x K Kk O Kk — 2276)(5)(4) 4.67(6)(5)(4) 0.485(11)(8)(14)
MILC 16 1877 C o * * 0 * - 0.4582(38)(F43)(1)(110)
QCDSF/UKQCD 15 189y A o m ®m * — - 0.52(5)
PACS-CS 12 58] A * ®m ®m K« Kk a 257(26)(7) 3.68(29)(10) 0.698(51)
Laiho 11 B7] C o K« K« m O — 1.90(8)(21)(10) 4.73(9)(27)(24) 0.401(13)(45)
HPQCD 10* M A o * * = * — 201(14) 4.77(15)
BMW 10A, 10B* 11,12 A % K * ® % b 215(03)(10) 4.79(07)(12) 0.448(06)(29)
Blum 10 139 A o ®m O O H — 22410)(34) 4.65(15)(32) 0.4818(96) (860)
MILC 09A 77 ¢ o * K« m o — 1.96(0)(6)(10)(12) 4.53(1)(8)(23)(12) 0.432(1)(9)(0)(39)
MILC 09 1290 A o * * m o — 190)(1)(1)(1) 4.6(0)(2)(2)(1) 0.42(0)(1)(0)(4)
MILC 04, HPQCD/ 166167 A o o o w ® — LI0)(1)2)2 3.9(0)(1)(4)(2) 0.43(0)(1)(0)(8)

MILC/UKQCD 04

TMILC 17 additionally quotes an optional 0.0032 uncertainty on n,, /mg corresponding to QED and QCD separation scheme ambiguities. Because
this variation is not per se an error on the determination of m, /mg, and because it is generally not included in other results, we choose to omit it
here. This result critically depends on € determined in MILC 18, which is unpublished at present

#Values obtained by combining the HPQCD 10 result for mg with the MILC 09 results for mg/m,q and m, /m4.

TThe fermion action used is tree-level improved

“The masses are renormalized and run nonperturbatively up to a scale of 100 GeV in the Ny = 2 SF scheme. In this scheme, nonperturbative and
NLO running for the quark masses are shown to agree well from 100 GeV all the way down to 2 GeV [190]

bThe masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Ny = 3 RI-MOM scheme. In this scheme, nonperturbative
and N3LO running for the quark masses are shown to agree from 6 GeV down to 3 GeV to better than 1% [12]

with errors of roughly 4%, 2% and 4%, respectively. This
estimate is slightly more precise than in the previous edition
of FLAG. More importantly, it now comes entirely from a
lattice-QCD+QED calculation, whereas phenomenological
input was used in previous editions. These numbers result in
the following RGI averages

with errors of roughly 7%, 4% and 6%, respectively. In the
previous edition of FLAG, ETM 14 [9] was used for the
average. The RM123 17 result used here is slightly more
precise and is free of phenomenological input. The value of
my /mg in MILC 17 [5] depends critically on the value of €
given in MILC 18 [145], which was unpublished at the time

MRO! = 3.16(13),,(4)5 MeV = 3.16(13) MeV  Ref. [20],

Np=2+1:

MRC = 6.50(13),,(8) o MeV = 6.50(15) MeV  Ref. [20].
d

(44)

Finally, for Ny =2 + 1 + 1, only RM123 17 [19] enters
the average, giving

my, =2.50(17)MeV Ref. [19],
mg = 4.88(20) MeV  Ref. [19],

my/mg = 0.513(31) Ref. [19].
(45)

Np=2+1+1:

@ Springer

of the review deadline. As a consequence we did not include
the result MILC 17 [5] in the average. The value will appear in
the average of the online version of the review. It is, however
important to point out that both MILC 17 and MILC 18 results
show a marginal discrepancy with RM123 17 [19] of 1.7
standard deviations. The RGI averages are
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MRO! = 3.48(24),,(4), MeV = 3.48(24) MeV  Ref. [19],

Np=2+1+1:

MRC! — 6.80(28),,(8) A MeV = 6.80(29) MeV  Ref. [19]. (46)
d

Every result for m, and m, used here to produce the FLAG
averages relies on electro-quenched calculations, so there is
some interest to comment on the size of quenching effects.
Considering phenomenology and the lattice results presented
here, it is reasonable for a rough estimate to use the value
(AMZ) ~ 2000 MeV? for the QED part of the kaon split-
ting. Using the arguments presented in Sect. 3.1.3, one can
assume that the QED sea contribution represents O (10%)
of (AMIZ()V. Using SU (3) PQxPT+QED [143,191] gives
a ~ 5% effect. Keeping the more conservative 10% esti-
mate and using the experimental value of the kaon split-
ting, one finds that the QCD kaon splitting (AM%)SU®
suffers from a reduced 3% quenching uncertainty. Con-
sidering that this splitting is proportional to m, — my at
leading order in SU(3) xPT, we can estimate that a sim-
ilar error will propagate to the quark masses. So the indi-
vidual up and down masses look mildly affected by QED
quenching. However, one notices that ~ 3% is the level of
error in the new FLAG averages, and increasing significantly
this accuracy will require using fully unquenched calcula-
tions.

In view of the fact that a massless up-quark would solve
the strong CP-problem, many authors have considered this an
attractive possibility, but the results presented above exclude
this possibility: the value of m,, in Eq. (43) differs from zero
by 25 standard deviations. We conclude that nature solves
the strong CP-problem differently.

Finally, we conclude this section by giving the FLAG aver-
ages for € defined in Eq. (39). For Ny =2 + 1 + 1, we
average the RM123 17 [19] result with the value of (A MIZ()V
from BMW 14 [119] combined with Eq. (40), giving

€ =0.79(7). A7)

Although BMW 14 [119] focuses on hadron masses and did
not extract the light-quark masses, they are the only fully
unquenched QCD+QED calculation to date that qualifies to
enter a FLAG average. With the exception of renormalization
which is not discussed in the paper, this work has a J rat-
ing for every FLAG criterion considered for the m,, and my
quark masses. For Ny = 2 + 1 we use the results from
BMW 16 [20]

e =0.73(17). (48)

These results are entirely determined from lattice-QCD+
QED and represent an improvement of the error by a factor
of two to three on the FLAG 16 phenomenological estimate.

It is important to notice that the € uncertainties from
BMW 16 and RM123 17 are dominated by estimates of
the QED quenching effects. Indeed, in contrast with the
quark masses, € is expected to be rather sensitive to the sea
quark-QED constributions. Using the arguments presented in
Sect. 3.1.3, if one conservatively assumes that the QED sea
contributions represent O (10%) of (AM%)V, then Eq. (40)
implies that € will have a quenching error of ~ 0.15 for
(AMIZ()V ~ 2000 MeV?, representing a large ~ 20% rela-
tive error. It is interesting to observe that such a discrepancy
does not appear between BMW 15 and RM 123 17, although
the ~ 10% accuracy of both results might not be sufficient
to resolve these effects. To conclude, although the contro-
versy around the value of € has been significantly reduced by
lattice-QCD+QED determinations, computing this quantity
precisely requires fully unquenched simulations.

3.1.7 Estimates for R and Q

The quark-mass ratios

2 2

mg — Myq my —m
R=—"—""% and Q°=——4 (49)

mg — my md—mﬁ

compare SU (3) breaking with isospin breaking. Both num-
bers only depend on the ratios mg/m,q and m, /mg,

1 1+ 1
R=<ms—l) L and Q2=<ms+1)R.
2 \myq 1— =% 2 \myq

mq

The quantity Q is of particular interest because of a low-
energy theorem [192], which relates it to a ratio of meson
masses,

72 72 72
Mi M} — M2

1
A—zﬁa M; =
M2 M2, — M2,

72 72
T E(Mn++Mn())v

0y =
PN e 2

MKZE(MK++MKO). (51)

Chiral symmetry implies that the expansion of Q%w in powers

of the quark masses (i) starts with Q2 and (ii) does not receive
any contributions at NLO:
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Table 8 Our estimates for the strange-quark and the average up-down-
quark masses in the MS scheme at running scale 1 = 2 GeV. Mass
values are given in MeV. In the results presented here, the error is the one
which we obtain by applying the averaging procedure of Sect. 2.3 to the
relevant lattice results. We have added an uncertainty tothe Ny =2 + 1
results, associated with the neglect of the charm sea-quark and isospin-
breaking effects, as discussed around Eqs. (33) and (37)

Nf Muyd mg ms/myq

24+ 1+1 3.410(43) 93.44(68) 27.23(10)

2+1 3.364(41) 92.03(88) 27.42(12)
NLO

Om =0. (52)

We recall here the Ny = 2 estimates for Q and R from
FLAG 16,

R =40.7(3.7)(22), QO =243(1.4)(0.6), (53)

where the second error comes from the phenomenological
inputs that were used. For Ny = 2 + 1, we use Eqgs. (37)
and (43) and obtain

R =38.1(1.5), Q=23.3(0.5), (54)

where now only lattice results have been used. For Ny =
2 + 1 + 1 we obtain

R =40.72.7), Q =24.0(0.8), (55)
which are quite compatible with two- and three-flavour
results. It is interesting to notice that the most recent phe-
nomenological determination of R and Q from n — 3x
decay [193] gives the values R = 34.4(2.1) and QO =
22.1(7), which are marginally discrepant with the averages
presented here. For Ny = 2 + 1, the discrepancy is 1.4 stan-
dard deviations for both R and Q. For Ny =2 + 1 + litis
1.8 standard deviations. The authors of [193] point out that
this discrepancy is due to surprisingly large corrections to the
approximation (52) used in the phenomenological analysis.

Our final results for the masses m,,, mg, my,q, m and the
mass ratios m,, /mgq, mg/myq, R, Q are collected in Tables 8
and 9. We separate m,, mgy, m,/mg, R and Q from m,g4,
mg and mg/m,q, because the latter are completely domi-
nated by lattice results while the former still include some
phenomenological input.

3.2 Charm quark mass

In the following, we collect and discuss the lattice determi-
nations of the MS charm-quark mass 7z,.. Most of the results
have been obtained by analyzing the lattice-QCD simula-
tions of two-point heavy-light- or heavy—heavy-meson cor-
relation functions, using as input the experimental values of
the D, Dy, and charmonium mesons. Other groups use the
moments method. The latter is based on the lattice calculation
of the Euclidean time moments of pseudoscalar-pseudoscalar
correlators for heavy-quark currents followed by an OPE
expansion dominated by perturbative QCD effects, which
provides the determination of both the heavy-quark mass and
the strong-coupling constant o.

The heavy-quark actions adopted by various lattice collab-
orations have been discussed in previous FLAG reviews [2,
3], and their descriptions can be found in Sect. A.1.3. While
the charm mass determined with the moments method does
not need any lattice evaluation of the mass-renormalization
constant Z,,, the extraction of m, from two-point heavy-
meson correlators does require the nonperturbative calcula-
tion of Z,,. The lattice scale at which Z,, is obtained, is usu-
ally at least of the order 2-3 GeV, and therefore it is natural
in this review to provide the values of m.(u) at the renor-
malization scale & = 3 GeV. Since the choice of a renormal-
ization scale equal to 7. is still commonly adopted (as by
PDG [170]), we have collected in Table 10 the lattice results
for both m(m.) and m.(3 GeV), obtained for Ny =2 + 1
and2 + 1 + 1. This year’s review does not contain results
for Ny = 2, and interested readers are referred to previous
reviews [2,3].

When not directly available in the published work, we
apply a conversion factor equal either to 0.900 between the
scales ©# = 2 GeV and i = 3 GeV or to 0.766 between the
scales u = m, and u = 3 GeV, obtained using perturbative
QCD evolution at four loops assuming Agcp = 300 MeV
for Ny = 4.

In the next sections, we review separately the results of
m.(m.) for the various values of Ny.

3.2.1 Ny =2 + 1 results

The HPQCD 10 [13] result is computed from moments,
using a subset of Ny = 2 + 1 Asqtad-staggered-fermion
ensembles from MILC [129] and HISQ valence fermions.

Table 9 Our estimates for the masses of the two lightest quarks and related, strong isospin-breaking ratios. Again, the masses refer to the MS

scheme at running scale 1« = 2 GeV. Mass values are given in MeV

Ny my mq my/mg R o
241+ 1 2.50(17) 4.88(20) 0.513(31) 40.7(2.7) 24.0(0.8)
241 2.27(9) 4.67(9) 0.485(19) 38.1(1.2) 23.3(0.5)
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Table 10 Lattice results for the MS-charm-quark mass 7z, (772.) and
m:(3 GeV) in GeV, together with the colour coding of the calculations
used to obtain these. When not directly available in a publication, we

employ a conversion factor equal to 0.900 between the scales u = 2
GeV and i = 3 GeV (or, 0.766 between u = m, and u = 3 GeV)

S
%} el
s & S
S F 5§
S T § L
S & §F ¥ ¢
Collaboration Ref.  N¢ g ¥ & & 9 me(me) me(3 GeV)
HPQCD 18 [15] 24141 A 4 A Kk K 1.2757(84) 0.9896(61)
FNAL/MILC/
TUMQCD 18 B8 24+1+1 A & * * — 1.273(4)(1)(10) 0.9837(43)(14)(33)(5)
HPQCD 14A  [16] 2+1+1 A  # * * —  1.2715(95) 0.9851(63)
ETM 14A 21] 2+141 A O 4 O K  13478(27)(195)  1.0557(22)(153)
ETM 14 9] 24+1+1 A o) * o) * 1.348(46) 1.058(35)
Maezawa 16 [157] 241 A = K ok Kk 1.267(12)
JLQCD 16 [23] 2+1 A @) * * — 1.2871(123) 1.0033(96)
xQCD 14 [22] 2+1 A O o O 4 1.304(5)(20) 1.006(5)(22)
HPQCD 10 (13]  2+1 A o K« o — 1.273(6) 0.986(6)
HPQCD 08B [171]  2+1 A o K« O — 126809 0.986(10)
PDG [137] 1.27510-023

The charm mass is fixed from the 5. meson, M,
2.9852(34) GeV, corrected for cc annihilation and electro-
magnetic effects. HPQCD 10 supersedes the HPQCD 08B
[171] result using valence-Asqtad-staggered fermions.

xQCD 14 [22] uses a mixed-action approach based on
overlap fermions for the valence quarks and domain-wall
fermions for the sea quarks. They adopt six of the gauge
ensembles generated by the RBC/UKQCD collaboration
[160] at two values of the lattice spacing (0.087 and 0.11 fm)
with unitary pion masses in the range from 290 to 420 MeV.
For the valence quarks no light-quark masses are simulated.
At the lightest pion mass M, ~ 290 MeV, M, L = 4.1,
which satisfies the tag o for finite-volume effects. The
strange- and charm-quark masses are fixed together with the
lattice scale by using the experimental values of the Dy, D
and J /vy meson masses.

JLQCD 15B [194] determines the charm mass by using the
moments method and M6bius domain-wall fermions at three
values of the lattice spacing, ranging from 0.044 to 0.083 fm.
They employ 15 ensembles in all, including several different
pion masses and volumes. The lightest pion mass is >~ 230
MeV with M, L is >~ 4.4. The linear size of their lattices is
in the range 2.6-3.8 fm.

Since FLAG 16 there have been two new results, JLQCD
16 [23] and Maezawa 16 [157]. The former supersedes

JLQCD 15B as it is a published update of their previ-
ous preliminary result. The latter employs the moments
method using pseudoscalar correlation functions computed
with HISQ fermions on a set of 11 ensembles with lattices
spacing in the range 0.04 to 0.14 fm. Only a single pion mass
of 160 MeV is studied. The linear size of the lattices take on
values between 2.5 and 5.2 fm.

Thus, according to our rules on the publication status, the
FLAG average for the charm-quark mass at Ny =2 + 11is
obtained by combining the results HPQCD 10, x QCD 14,
and JLQCD 16,

e (e) = 1.275 (5) GeV  Refs. [13,22,23],
Np=2+1: (56)

(3 GeV) = 0.992 (6) GeV  Refs. [13,22,23],
(57)

where the error on m1.(3 GeV) includes a stretching factor
v/ x2%/dof =~ 1.18 as discussed in Sect. 2.2. This result cor-
responds to the following RGI average

MRO! = 1.529(9),,(14) 5 GeV = 1.529(17) GeV

Refs. [13,22,23]. (58)
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322 Ny =2+ 1+ 1results

In FLAG 16 three results employing four dynamical quarks
in the sea were discussed. ETM 14 [9] uses 15 twisted-mass
gauge ensembles at three lattice spacings ranging from 0.062
to 0.089 fm, in boxes of size ranging from 2.0 to 3.0 fm and
pion masses from 210 to 440 MeV (explaining the tag o
in the chiral extrapolation and the tag s for the continuum
extrapolation). The value of M, L at their smallest pion mass
is 3.2 with more than two volumes (explaining the tag o in
the finite-volume effects). They fix the strange mass with the
kaon mass and the charm one with that of the D; and D
mesons.

ETM 14A [21] uses 10 out of the 15 gauge ensembles
adopted in ETM 14 spanning the same range of values for
the pion mass and the lattice spacing, but the latter is fixed
using the nucleon mass. Two lattice volumes with size larger
than 2.0 fm are employed. The physical strange and the
charm mass are obtained using the masses of the 2~ and
A7 baryons, respectively.

HPQCD 14A [16] employs the moments method with
HISQ fermions. Their results are based on 9 out of the 21
ensembles produced by the MILC collaboration [18]. Lattice
spacings range from 0.057 to 0.153 fm, with box sizes up to
5.8 fm and taste-Goldstone-pion masses down to 130 MeV.
The RMS-pion masses go down to 173 MeV. The strange- and
charm-quark masses are fixed using M3; = 688.5(2.2) MeV,
calculated without including ss annihilation effects, and
M. = 2.9863(27) GeV, obtained from the experimental
n. mass after correcting for cc annihilation and electromag-
netic effects. All of the selection criteria of Sect. 2.1.1 are
satisfied with the tag #.'¢

Since FLAG 16 two groups, FNAL/MILC/TUMQCD and
HPQCD have produced new values for the charm-quark mass
[8,15]. The latter use nonperturbative renormalization in the
RI-SMOM scheme as described in the strange quark section

ticated, but complex, fit strategy incorporating three effec-
tive field theories: heavy quark effective theory (HQET),
heavy-meson rooted all-staggered chiral perturbation the-
ory (HMrAS xPT), and Symanzik effective theory for cutoff
effects. heavy—-light meson masses are computed from fits
to lattice-QCD correlation functions. They employ HISQ
quarks on 20 MILC 2 + 1 + 1 flavour ensembles with
six lattice spacings between 0.03 and 0.15 fm (the largest
is used only in the estimation of the systematic error in the
continuum-limit extrapolation). The pion mass is physical
on several ensembles except the finest, and M, L = 3.7-3.9
on the physical mass ensembles. The light-quark masses are
fixed from meson masses in pure QCD, which have been
shifted from their physical values using O («) electromag-
netic effects recently computed by the MILC collaboration
[145], see Sect. 3.1.6 for details. The heavy—light mesons are
shifted using a phenomenological formula. Using chiral per-
turbation theory at NLO and NNLO, the results are corrected
for exponentially small finite-volume effects. They find that
nonexponential finite-volume effects due to nonequilibra-
tion of topological charge are negligible compared to other
quoted errors. These allow for a combined continuum, chiral,
and infinite-volume limit from a global fit including 77 free
parameters to 324 data points which satisfies all of the FLAG
criteria.

All four results enter the FLAG averagefor Ny =2+ 1 +
1 quark flavours. We note however that while the determina-
tions of m, by ETM 14 and 14A agree well with each other,
they are incompatible with HPQCD 14A, HPQCD 18, and
FNAL/MILC/TUMQCD 18 by several standard deviations.
While the latter use the same configurations, the analyses are
quite different and independent. As mentioned earlier, m,4
and my are also systematically high compared to their respec-
tive averages. In addition, the other four-flavour values are
consistent with the three-flavour average. Combining all four
results yields

. (m,) = 1.280 (13) GeV  Refs. [8,9,15,16,21], (59)

Np=2+1+1:

7. (3 GeV) = 0.988 (7) GeV  Refs. [8,9,15,16,21], (60)

and the same HISQ ensembles and valence quarks as those
described in HPQCD 14A [16].

The FNAL/MILC/TUMQCD groups use a new minimal-
renormalon-subtraction scheme (MRS) [195] and a sophis-

16 Note that in Sect. 9.7.2 different quality criteria are adopted and the
HPQCD 14A paper is tagged differently for the continuum extrapola-
tion.
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where the errors include large stretching factors +/ x 2/dof ~
2.0 and 1.7, respe