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Abstract We construct analytical models to study the crit-
ical phenomena in gravitational collapse of the Husain-
Martinez-Nunez massless scalar field. We first use the cut-
and-paste technique to match the conformally flat solution
(c = 0 ) onto an outgoing Vaidya solution. To guarantee the
continuity of the metric and the extrinsic curvature, we prove
that the two solutions must be joined at a null hypersurface
and the metric function in Vaidya spacetime must satisfy cer-
tain constraints. We find that the mass of the black hole in the
resulting spacetime takes the form M ∝ (p − p∗)γ , where
the critical exponent γ is equal to 0.5. For the case c �= 0,
we show that the scalar field must be joined onto two pieces
of Vaidya spacetimes to avoid a naked singularity. We also
derive the power-law mass formula with γ = 0.5. Compared
with previous analytical models which were constructed from
a different scalar field with continuous self-similarity, we
obtain the same value of γ . However, we show that the solu-
tion with c �= 0 is not self-similar. Therefore, we provide a
rare example that a scalar field without self-similarity also
possesses the features of critical collapse.

1 Introduction

Gravitational collapse is the main reason of various galac-
tic structures and it remains one of the most interesting and
fundamental problems in general relativity. The end state of
gravitational collapse could be a black hole, naked singu-
larity or flat spacetime. Since the pioneer work by Oppen-
heimer and Snyder [1], collapsing scenarios of different mat-
ter fields have been studied. Particularly, collapse of scalar
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field has attracted great attention in the past decades [2–7]. In
a seminal work by Choptuik [8], some intriguing and univer-
sal properties concerning the formation of black holes from
massless scalar fields were found. This is called the criti-
cal phenomenon. He found that, near the threshold, the black
hole mass can always be expressed in the form of power-law:

M ∝ (p − p∗)γ , (1)

for p > p∗, where p is a parameter of the initial data to
the threshold of black hole formation. Numerical simula-
tions have shown that the critical exponent γ is equal to
0.5 for solutions with continuous self-similarity (CSS) and
γ ≈ 0.37 for solutions with discrete self-similarity (DSS).
Details about the critical phenomenon can be learned in
[9,10].

In addition to numerical calculation, analytical models
were also built to explore the critical phenomena. Patrick R.
Brady [11] studied an exact one parameter family of scalar
field solutions which exhibits critical behaviours when black
hole forms. Soda and Hirata [12] analytically studied the col-
lapse of continuous self-similar scalar field in higher dimen-
sional spacetimes and found a general formula for the critical
exponents which agrees with the exponentγ = 0.5 forn = 4.
Wang et al. [13] constructed an analytical model by pasting
the BONT model (a massless scalar field) with the Vaidya
model. They demonstrated that the black hole mass obeys
the power law with γ = 0.5. Wang et al. [14] also analyti-
cally studied the gravitational collapse of a massless scalar
field with conformal flatness. They showed that the mass
of the black hole without self-similarity turns on with finite
nonzero values. Recent developments regarding the critical
phenomenon can be found in Refs. [15–22].

Previously, the studies of critical phenomena concerns
black holes in non-dynamical backgrounds. It would be inter-
esting to investigate solutions of Einstein’s equation in a cos-
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mological background. The McVittie spacetime [23] discov-
ered in 1933 is regarded as the first analytical solution inter-
preted as describing a central object embedded in an FLRW
universe. In this paper, we investigate the critical phenom-
ena associated with an exact scalar field solution discovered
by Husain-Martinez-Nunez (HMN) [24], which represents
a black hole in an FLRW universe [25–27]. It was pointed
out that the HMN solution brings in new phenomenology(S-
curve) of apparent horizon [28]. Moreover, the conformally
transformed HMN spacetime can be an inhomogeneous vac-
uum solution in Brans-Dick theory [29–31].

Since the HMN solution is not asymptotically flat, we need
join it onto an exterior solution with asymptotic flatness. The
Vaidya spacetime is a possible candidate because it describes
a dynamic black hole and the free function m(U ) in the met-
ric can be used to guarantee the continuity of the resulting
spacetime. Following the treatment in [13], we match the
HMN solution onto an outgoing Vaidya solution along a null
hypersurface. Usually, the hypersurface connecting the two
parts of the spacetime is a thin shell, i.e., the extrinsic cur-
vature across the hypersurface is discontinuous. By applying
the Darmois-Israel formula [33], one can find the relationship
between the jump of the extrinsic curvature and the surface
stress-energy tensor of the thin shell. However, by properly
choosing the functionm(U ) in the Vaidya metric, we find that
the extrinsic metric can be continuous across the null surface.
Therefore, no thin shell forms and the resulting spacetime can
be at least C1.

After the matching, we calculate the apparent horizon and
define the black hole mass as the Komar mass at the intersec-
tion of the apparent horizon and the null hypersurface. There
are two parameters, a and c in the HMN metric, whose values
determine the staticity and homogeneity features of the solu-
tion. We first study the case c = 0 where the HMN solution
is conformally flat and has CSS. The mass of the black hole
is found in the power-law form M ∝ √−a for a < 0, which
means γ = 0.5. When a = 0, the black hole disappears and
the spacetime becomes Minkowski.

The case of c �= 0 is more complicated. This solution
has no self-similarity. We still find M ∝ √−a for a < 0.
Differing from the case of c = 0, we show that the limiting
spacetime (a = 0) possesses a naked singularity with non-
zero ADM mass. Therefore, there is a mass gap between the
black hole spacetime (a < 0) and the spacetime with naked
singularity a = 0.

The paper is organized as follows. In Sect. 2, we briefly
introduce the Husain-Martinez-Nunez (HMN) scalar field
solution. In Sect. 3, by using the cut-and-paste method,
we match the conformally flat HMN solution (c = 0 with
CSS) onto an outgoing Vaidya spacetime at a null hyper-
surface. This matching guarantees the continuity of the met-
ric and extrinsic curvature across the surface. Then, we use
this analytical model to study the critical phenomenon and

derive the mass formula. In Sect. 4, we join a general HMN
(a �= 0, c �= 0) with two outgoing Vaidya spacetimes. We
show that the mass of the black hole approaches zero for
a < 0. We also find that the critical spacetime (a = 0) pos-
sesses a naked singularity with nonzero ADM mass. Con-
cluding remarks are given in Sect. 5. In Appendix A, we
show that the HMN solution and the Vaidya solution cannot
be matched through a timelike hypersurface. In Appendix B,
we prove that the HMN solution has CSS only when a �= 0
and c = 0.

2 Husain–Martinez–Nunez (HMN) spacetime

The Husain-Martinez-Nunez spacetime [24] satisfies the
Einstein-scalar field equations

Gab = 8πTab, (2)

Tab = ∇a�∇b� − 1

2
gabg

cd∇c�∇d�. (3)

The spherically symmetric solution is given by1

ds2 = (at + 1)

[
−

(
1 − 2c

r

)α

dt2 +
(

1 − 2c

r

)−α

dr2

+r2
(

1 − 2c

r

)1−α

d�2
]
, (4)

�(r, t) = ± 1

4π
ln

[(
1 − 2c

r

) α√
3
(at + 1)

√
3

]
, (5)

where α = ±
√

3
2 . We shall focus on the case −∞ ≤ t ≤ − 1

a
and a < 0 because it corresponds to a black hole solution. In

this paper, we only study the case α = −
√

3
2 for simplicity.

The results remain true for α =
√

3
2 .

From the Ricci scalar

R = 12ca2(r − c) − 3a2r2

2r2(at + 1)3

(
1 − 2c

r

)−2−α

+2c2(1 − α2)

(at + 1)r4

(
1 − 2c

r

)−2+α

, (6)

we see that the curvature singularities are located at r = 2c
(timelike singularity) and t = −1/a(spacelike singularity).

To find the apparent horizon, we first write down the tan-
gents to the null geodesics in the the radial direction:

∂

∂λ+ = 1

(at + 1)

(
1 − 2c

r

)−α
∂

∂t
+ 1

(at + 1)

∂

∂r
, (7)

∂

∂λ− = 1

(at + 1)

(
1 − 2c

r

)−α
∂

∂t
− 1

(at + 1)

∂

∂r
, (8)

1 Without loss of generality, we have set b = 1 in the original metric
appearing in [24].
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where λ± represent affine parameters. The corresponding
expansions are given by

	+ = 1√
h

∂
√
h

∂λ+ , (9)

	− = 1√
h

∂
√
h

∂λ− , (10)

where
√
h = R2 sin θ = (at + 1)r2

(
1 − 2c

r

)1−α
sin θ . Then

straightforward calculation yields

	+ =
{
ar2

(
1 − 2c

r

)−α

+
[

2r − 2cr(α − 1)

r − 2c

]
(at + 1)

}

r−2(at + 1)−2, (11)

	− =
{
ar2

(
1 − 2c

r

)−α

−
[

2r − 2cr(α − 1)

r − 2c

]
(at + 1)

}

r−2(at + 1)−2. (12)

The apparent horizon satisfies 	+ = 0,	− < 0, which is
located at

a

atAH + 1
= − 2

r2
AH

[rAH − c(1 + α)]

(
1 − 2c

rAH

)α−1

.

(13)

The Misner-Sharp mass [34] is defined by

M = R

2

(
1 − gab∇a R∇bR

)
, (14)

where R denotes the areal radius. From [28], we know that
in spherically symmetric spacetimes, the apparent horizon
satisfies

gab∇a R∇bR = 0. (15)

Therefore, on the apparent horizon, the Misner-sharp mass
becomes

M = R

2
. (16)

3 Critical behaviour of HMN scalar field with
conformal flatness (c �= 0)

To study the critical phenomena of HMN massless scalar
field, we start with the simple case c = 0, where the space-
time is conformally flat [24]. First, we need to join the HMN
solution onto an outgoing Vaidya solution such that the result-
ing spacetime is asymptotically flat. In Appendix A, we have
shown that the two spacetimes cannot be matched at a time-
like boundary. In the following subsection, we shall replace
the timelike hypersurface with a null hypersurface.

3.1 Matching at a null hypersurface

Matching the two solutions at a null hypersurface is more
complicated than at a timelike hypersurface. We shall follow
the method in [13] and [32]. First we use the coordinate
transformation v = t + r to replace the coordinate r in Eq.
(4) and obtain the metric in the interior

ds2 = − [a (v − r) + 1] dv(dv−2dr)+R2 (
dθ2 + sin2 θdφ2) ,

(17)

where

R2 = [a(v − r) + 1] r2. (18)

Let � be the null hypersurface v = v0 (see Fig. 1). We shall
use “−” to label the inner HMN spacetime and “+” to label
the exterior Vaidya spacetime. The normal to � is

n−
a = s−1dva, (19)

where s is an arbitrary negative function such that na− is a
future directed vector. We can introduce a transverse null
vector Na by requiring

naN
a = −1, (20)

NaNa = 0. (21)

It is easy to show that

N−
a = s[a (v − r) + 1]

(
1

2
dva − dra

)
. (22)

Now we choose s = − 1

a(v − r) + 1

∂R

∂r
. Let ξ i = {R, θ, φ}

be the intrinsic coordinates on �. Then � is determined by

v = v0, r = r(R), θ = θ, φ = φ, (23)

where r(R) is given by Eq. (18) with v = v0. We define

e−μ

(a) ≡ ∂xμ
−

∂ξa
as given in the [13]. Thus

e−r
(1) = 2r R

2R2 − ar3 ,

e−θ
(2) = 1,

e−φ

(3) = 1. (24)

Similarly to Eq. (75), the transverse extrinsic curvature for
the null surface is given by [32]

ki j = −Nμ

∂2xμ

∂ξ iξ j
− Nν�

ν
μρ

∂xμ

∂ξ i

∂xρ

∂ξ j
(25)
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Fig. 1 Null hypersurface �

By straightforward calculation, we find

k−
ab = −3a2r

(3ar − 2av0 − 2)2 √
a (v0 − r) + 1

dRadRb

+r [a (r − 2v0) − 2] (3ar − 2av0 − 2)

8 [a (v0 − r) + 1]
3
2

×
(
dθadθb + sin θ2dφadφb

)
. (26)

On the other hand, we need to join the HMN solution to
the exterior Vaidya spacetime (70) at �, as shown in Fig. 1.
Assume that the null surface � can be described by U =
U0(R) from the Vaidya solution. It follows from (70) that

dU0

dR
= − 2R

R − 2m[U0(R)] . (27)

The spacetime coordinates {xμ
+} can be expressed as func-

tions of ξ i :

U = U0(R), R = R, θ = θ, φ = φ. (28)

Define e+μ

(i) ≡ ∂xμ
+

∂ξ i
and it is easy to find

e+U
(1) = − 2

f+
, e+R

(1) = e+θ
(2) = e+φ

(3) = 1. (29)

The normal to � is given by

n+
a = β−1∇a(U −U0(R)) = β−1

(
dUa + 2

f+
dRa

)
.

(30)

where β is a negative function which will be determined later.
Then the transverse null vector Na satisfying Eq. (20) is

N+
a = β f+

2
dUa, (31)

The continuity condition on � requires [32]

N+
μ e+μ

(i)

∣∣∣
v=v0

= N−
μ e−μ

(i)

∣∣∣
v=v0

. (32)

This also guarantees that the normal vectors na defined on
both sides are the the same. According to Eqs. (22), (24), (29)
and (31), we find that the nontrivial equations in Eq. (32) are

N−
μ e−μ

(1)

∣∣∣
v=v0

= N−
r e−r

(1) = 1, (33)

N+
μ e+μ

(1)

∣∣∣
v=v0

= N+
U e+U

(1) = −β. (34)

Hence, we get β = −1.
Now we can calculate the corresponding transverse extrin-

sic curvature from Eqs. (25) and obtain

k+
ab = −2m′(r)r ′(R)√

a (v0 − r) + 1r − 2m(r)
dRadRb

+
(
R

2
− m[U0(R)]

)(
dθadθb + sin2 θdφadφb

)
.

(35)

Since k+
ab = k−

ab, Eqs. (26) and (35) give rise to

k+
RR

∣∣
�

= k−
RR

∣∣
�

. (36)

By integration, we obtain m(r) as

m(r) = −8 + a3
(−27r3 + 12rv2

0 − 8v3
0

) + 12a [r − 2(v0 + 18c1)] + 24a2 [−v(v0 + 18c1) + r(v0 + 27c1)]

−216a [1 + a(v0 − r)]
3
2

, (37)

where c1 is an integral constant. Using k+
θθ

∣∣
�

= k−
θθ

∣∣
�

, we
can fix c1:

c1 = −(av0 + 1)2

54a
. (38)

Consequently,

m(r) = a2r3

8 [a (v0 − r) + 1]3/2 . (39)

Note that

m(r)
∣∣
�

= m(U (R(r))
∣∣
�

. (40)

So, Eq. (39) together with Eq. (27) specifies a unique metric
function m(U ) in the Vaidya solution. Therefore, we have
matched the conformally flat spacetime with Vaidya space-
time at the null hypersurface.
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3.2 Mass of the black hole

From Eq. (14), one can calculate the Misner-Sharp mass for
HMN spacetime described by metric (69) and obtain

M = r3a2

8 (at + 1)
3
2

. (41)

Therefore, m(r) in Eq. (39) is just the Misner-Sharp mass at
v = v0. The apparent horizon determined by Eq. (13) takes
the simple form for c = 0:

a

atAH + 1
= − 2

rAH
. (42)

Note that the null surface is determined by

v0 = t + r. (43)

Equations (42) and (43) immediately gives the coordinates
at the intersection of � and the apparent horizon:

ri = 2v0 + 2

a
, (44)

ti = −v0 − 2

a
. (45)

Since r > 0 and a < 0, from Eq. (44), we see that the
existence of the intersection requires

v0 > |a|−1 (46)

Therefore, the Misner-Sharp mass at the intersection is

Mi = √−a

(
v0 + 1

a

) 3
2

. (47)

The event horizon coincides with the apparent horizon in
the outgoing Vaidya spacetime as shown in Fig. 2. It is also
known that the mass function m in the Vaidya metric is con-
stant alone the event horizon [35]. Thus, it is natural to take
the mass in Eq. (47) to be the mass of the black hole.

To investigate the critical behavior as a → 0, we impose
the condition that ri in Eq. (45) does not change with a. This
means that v0 must take the form

v0 = V − 1

a
, (48)

where V is a positive constant independent of a. Thus, Eq.
(47) gives the mass of black hole:

Mbh = √−aV
3
2 . (49)

Equation (49) shows that the mass of black hole can be put
in the form of Eq. (1) and the scaling exponent is γ = 0.5.

Fig. 2 Penrose diagram for the HMN spacetime (a �= 0, c = 0) match-
ing with an outging Vaidya spacetime at v = v0. The singularity is
located at t = −a−1

Obviously, as a approaches zero, the mass of the black hole
vanishes and the spacetime becomes Minkowski.

4 Collapse of the general HMN scalar field

In this section, we shall investigate the gravitational collapse
associated with a general HMN scalar field (a �= 0, c �= 0).

4.1 Matching to an outgoing Vaidya solution at a null
hypersurface

Under the coordinate transformation

v = t + h(r) (50)

Equation (4) can be rewritten in the form

ds2 = − [a(v − h(r)) + 1]

(
1 − 2c

r

)α (
dv2 − 2h′(r)dvdr

)

+a [(v − h(r)) + 1]

(
1 − 2c

r

)1−α

r2d�2. (51)

Here, the function h(r) satisfies

h′(r) =
(

1 − 2c

r

)−α

. (52)

The areal radius R takes the form

R = √
a(v − h(r)) + 1

(
1 − 2c

r

) 1−α
2

r. (53)
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Fig. 3 Penrose diagram for the HMN solution(a �= 0, c �= 0, α =
−

√
3

2 ) matching to an outging Vaidya solution. There are two singu-
larities at t = | 1

a | and r = 2c, where r = 2c is a naked singularity

Similarly to Sect. 3, we match the solution onto an outgo-
ing Vaidya solution at the null hypersurface v = v0 (see
Fig. 3). Substitution of v = v0 into Eq. (53) yields the func-
tion r = r(R). By the method in Sect. 3.1, the extrinsic
curvature can be calculated as

k−
ab =

(
ah′(r)r ′(R)

1 + a(v0 − h(r))
− r ′′(R)

r ′(R)

)
dRadRb −

[
(2 + √

3)c − 2r + 4ac(1 − 2c/r)−
√

3
2 r − 2a(1 − 2c/r)−

√
3

2 r2

4 [1 + a(v0 − h(r))] r ′(R)

+ ((2 + √
3)c − 2r)ah(r) + 2arv0 + ar(2c − r)h′(r) − (2 + √

3)acv0

4 [1 + a(v0 − h(r))] r ′(R)

] (
dθadθb + sin2 θdφadφb

)
.

(54)

where

r ′(R) = − 2(1 − 2c
r )

α−1
2 (r − 2c)

√
a [v0 − h(r)](

(2 + √
3)c − 2r

)
(1 + av0) − a((2 + √

3)c − 2r)h(r) + ar(−2c + r)h′(r)
, (55)

r ′′(R) = −
[
((2 + √

3)c − 2r)(1 + av0) − a((2 + √
3)c − 2r)h(r) + ar(−2c + r)h′(r)3

]−3

+
{

2(1 − 2c/r)
√

3
2

[
a2c2h(r)2 + 2a((2 + √

3)c − 2r)(2c − r)r(1 + av0)h
′(r)

+ a2r2(−2c + r)2h′(r)2 − 2ah(r)(c2(1 + av0) + a((2 + √
3)c − 2r)(2c − r)rh′(r)

+ ar2(−2c + r)2h′′(r)) + (1 + av0)(c
2(1 + av0) + 2ar2(−2c + r)2h′′(r))

]}
. (56)

It is easy to see that k+
ab takes the same form as in Eq. (35).

Then k−
ab = k+

ab yields

m(r) = 1

2
(1 − 2c/r)(2−√

3)/4r
√
a(v0 − h(r)) + 1

+ 1

4(a(v0 − h(r)) + 1)r ′(R)

(
(2 + √

3)c − 2r

+ 4acr(1 − 2c/r)−
√

3
2 − 2a(1 − 2c/r)−

√
3

2 r2

+ ((2 + √
3)c − 2r)av0

− a((2 + √
3)c − 2r)h(r) + ar(−2c + r)h′(r)

)
.

By our construction, the metric of the resulting spacetime
is continuous and the extrinsic curvature of the null hyper-
surface is also continuous. Therefore, we have shown that
the general HMN spacetime ( a �= 0, c �= 0) and Vaidya
spacetime can be matched at a null hypersurface as showed
in Fig. 3.

4.2 Mass of the black hole

By the argument in Sect. 3.2, one can show that m(r) in Eq.
(57) is exactly the Misner-sharp mass for the metric in Eq.
(51). Therefore, from Eqs. (13), (16) and (53), we obtain the
mass on the apparent horizon:

mAH (r) = RAH (r)

2
= √−ar2[8r−8c(1+α)]− 1

2

(
1 − 2c

r

)−α+1

.

(57)
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Let v0 be a constant and

v0 = t + h(r) (58)

determines a null hypersurface which serves as the boundary
of the two spacetimes. From Eqs. (13) and (58), we can get the
coordinates (ti , ri ) at the intersection of the apparent horizon
and the null hypersurface v = v0, which satisfy

v0 + 1

a
=

(1 − 2c/ri )
√

3
2 (2c − ri )ri +

[
(−2 + √

3)c + 2ri
]
h(ri )

(−2 + √
3)c + 2ri

(59)

ati + 1 = a(1 − 2c/ri )
√

3
2 ri (2c − ri )

−2c + √
3c + 2ri

> 0. (60)

Similarly, we choose the null hypersurface which intersects
with the apparent horizon at a fixed radius ri = r0, which is
independent of a. Again, we take the Misner-Sharp mass at
the intersection as the black hole mass. Then, Eq. (57) gives
the mass of the black hole

Mbh(r0) = √−a f (r0, c), (61)

where

f (r0, c) = r2
0 [8r0 − 8c(1 + α)]− 1

2

(
1 − 2c

r0

)−α+1

. (62)

Equation (61) shows clearly that the black hole mass satisfies
the power law with γ = 0.5.

However, the spacetime possesses a naked singularity
r = 2c (see Fig. 3), in violation of the cosmic censorship
conjecture. To remove the naked singularity, we join another
outgoing Vaidya spacetime at v = v1(v1 < v0), as shown in
Fig. 4. In the new spacetime, the HMN solution is configured
in between two Vaidya solutions and no naked singularity
exists.

When we study the relation between the mass and the
parameter a, we treat c as a constant. We see that Mbh → 0
as a → 0. When a = 0, there is no black hole but a naked
singularity as discussed in Sect. 4.3.

4.3 “Critical spacetime”: a = 0 and c �= 0

Now we study the critical HMN spacetime. For a = 0, Eq.
(4) becomes

ds2 = −
(

1 − 2c

r

)α

dt2 +
(

1 − 2c

r

)−α

dr2

+ r2
(

1 − 2c

r

)1−α

d�2, (63)

To calculate the apparent horizon of the spacetime, we first
choose two families of radial null vector fields

∂

∂λ+ =
(

1 − 2c

r

)−α
∂

∂t
+ ∂

∂r
(64)

Fig. 4 Penrose diagram for the HMN scalar field (a �= 0, c �= 0)
matching with two outgoing Vaidya spacetimes. We see that the naked
singularity in Fig. 3 has been replaced by the Vaidya spacetime

∂

∂λ− =
(

1 − 2c

r

)−α
∂

∂t
− ∂

∂r
. (65)

where λ± is the affine parameter of the null geodesic.
According to Eq. (11)

	+ = −2 (c − r + cα)

r(−2c + r)
, (66)

	− = 2(c − r + cα)

r(−2c + r)
. (67)

Therefore, the spacetime has no apparent horizon when r >

2c. According to Eq. (6), the spacetime possesses a naked
singularity at r = 2c (see Fig. 5).

Since the spacetime is asymptotically flat, we calculate
the ADM mass and find

M = cα. (68)

When a �= 0, the mass of the black hole is given by Eq. (61),
which shows clearly that M → 0 as a → 0. However, when
a = 0, as we just discussed, the spacetime is not Minkowski
and its ADM mass is nonzero. Therefore, there exists a mass
gap between the black hole solution (a �= 0) and its limiting
spacetime (a = 0).

5 Conclusion

In this paper, we have used the “cut and paste” method to
construct analytical models and studied the critical phenom-
ena of the HMN scalar filed. We have shown that the HMN
solution with conformal flatness (c = 0) can be matched with
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Fig. 5 Penrose diagram for the HMN spacetime(a = 0, c �= 0). There
is a naked singularity at r = 2c

the Vaidya solution along a null hypersurface, but not a time-
like hypersurface. We have derived the differential equation
which specifies the metric function in the Vaidya solution.
For c �= 0, we have joined the scalar field onto two patches
of Vaidya spacetimes to avoid the naked singularity.

We have studied the gravitational collapse for the HMN
scalar field and shown that black hole mass satisfies the power
law with γ = 0.5. This is consistent with previous results in
the literature. When c �= 0, the HMN spacetime has no CSS
and the black hole also turns on at infinitely small mass. The
result is different from the model in [14], which shows that
the formation of black holes may turn on at finite mass when
the gravitational collapse has no self-similarity. On the other
hand, the mass gap exists between the black hole and the
naked singularity during the gravitational collapse of HMN
scalar field when c �= 0 as discussed in Sect. 4.

Previous studies on the critical phenomena are associated
black holes in static backgrounds. The HMN black hole is
embedded in a cosmological background, which is dynam-
ical. Many properties of black holes could change due to
the dynamical background. This is why the model we con-
structed is special and gives some different results. Our work
suggests that critical collapse can be studied from analyti-
cal models which are constructed by known solutions. More
models should be investigated in the future in order to test
universal features in gravitational collapse.
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A Matching the HMN and Vaidya solutions at a timelike
boundary

In this appendix, we assume that the boundary connecting
the two solutions is a timelike hypersurface. We shall use
“−” to label the inner HMN spacetime and “+” to label the
exterior Vaidya spacetime (see Fig. 6).

Setting c = 0 in Eq. (4), the interior spacetime is described
by the metric

ds2− = (1 + at)
[
−dt2 + dr2 + r2

(
dθ2 + sin θ2dφ2

)]
.

(69)

The exterior spacetime is described by the outgoing Vaidya
metric

ds2+ = − f+dU 2 − 2dUdR + R2d�2, (70)

where f+ = 1 − 2m(U )
R . We choose ξ i = {λ, θ, φ} as the

intrinsic coordinates on the hypersurface and denote xμ =
(t, r, θ, φ). Then � is determined by functions {xμ(ξ i )}, i.e.,
{t (λ), r(λ)} from the interior and {U (λ), R(λ)} from the
exterior. The induced metric on � is given by

ds2−
∣∣∣
�

= (at + 1)
[
(−ṫ2 + ṙ2)dλ2 + r2 (

dθ2 + sin θ2dφ2)] ,

(71)

ds2+
∣∣∣
�

= − (
f+U̇ + 2Ṙ

)
U̇dλ2 + R2d�2. (72)

Fig. 6 The thin shell represented by a timelike hypersurface
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Here “.” represents the derivative with respect to λ.
We use the Darmois junction conditions to match the two

solutions across �:

ds2−
∣∣∣
�

= ds2+
∣∣∣
�

, (73)

k−
ab

∣∣∣
�

= k+
ab

∣∣∣
�

, (74)

where kab is the extrinsic curvature of �. The components
of kab can be calculated from

ki j = −nμ

∂2xμ

∂ξ iξ j
− nν�

ν
μρ

∂xμ

∂ξ i

∂xρ

∂ξ j
(75)

where na is the spacelike normal to �. Computing ki j from
the interior and exterior, respectively, we obtain the nonvan-
ishing components:

k−
λλ = aṙ(ṙ2 − ṫ2) − 2(at + 1)(ṫ r̈ − ṙ ẗ)

2
√

(at + 1)(ṫ2 − ṙ2)
, (76)

k+
λλ = U̇(

f+U̇ 2 + 2ṘU̇
) 1

2

[
−U̇ 2

R

(
m f+
R

− dm

dU

)

+ Ṙ

(
Ü

U̇
− 3

U̇m

R2

)
− R̈

]
, (77)

k−
θθ = 1

sin2 θkIφφ

= ar2ṙ + 2(at + 1)ṫr

2
√

(at + 1)(ṫ2 − ṙ2)
, (78)

k+
θθ = 1

sin2 θkEφφ

= R(
f+U̇ 2 + 2ṘU̇

) 1
2

(
Ṙ + f+U̇

)
. (79)

Substituting Eqs. (71) and (72) into Eq. (73), we have

R = √
at + 1 r, (80)

(at + 1)(ṫ2 − ṙ2) = (
f+U̇ + 2Ṙ

)
U̇ . (81)

Substituting Eqs. (78) and (79) into Eq. (74), with the help
of Eq. (81), we obtain

f+U̇ + Ṙ = arṙ + 2(at + 1)ṫ

2
√
at + 1

. (82)

Equation (80) yields

Ṙ = ar ṫ

2
√

(at + 1)
+ √

at + 1ṙ . (83)

Therefore, one can solve Eqs. (81)–(83) and obtain

U̇ = 2(at + 1)
3
2
(
ṫ − ṙ

)
ar + 2(at + 1)

, (84)

f+ = 1 − m

R
= 1 − a2r2

4(at + 1)2 . (85)

Thus,

m = a2r3

8(at + 1)
3
2

. (86)

To proceed, we calculate the following derivatives:

Ü =
√
at̂

(r + 2t̂)2

[
2t̂ ṙ2 − (4t̂ + 3r)ṫ ṙ + 2t̂(2t̂ ẗ − 2t̂ r̈ + ṫ2)

+r(2t̂ ẗ − 2t̂ r̈ + 3ṫ2)
]
, (87)

R̈ =
√
at̂r̈ + 2

√
at̂ ṫ ṙ + √

a(2t̂ ṫ ṙ + 2t̂r ẗ − r ṫ2)

4t̂3/2
, (88)

dm(U )

dU
= ṁ

U̇
= 3r2(r + 2t̂)(r ṫ − 2t̂ ṙ)

32t̂4(ṙ − ṫ)
. (89)

where t̂ = t + a−1. Substitute the above results into Eq.
(77) and according to Eq. (74), let the right-hand side of
Eq. (76) be equal to the right-hand side of Eq. (77). After a
lengthy calculation, we obtain the following result, which is
surprisingly simple

(ṫ − ṙ)(ṫ + ṙ)2 = 0 (90)

Obviously, the solution is ṙ = ṫ or ṙ = −ṫ . But this means
that the hypersurface is null, inconsistent with our assump-
tion. Therefore, we conclude that the two patches of space-
time cannot be matched through a timelike hypersurface if the
continuity of the extrinsic curvature is required. This result
is expected because the HMN scalar field is massless and the
Vaidya solution describes null dust.

B Self-similarity of HMN spacetime

In this appendix, we will prove that the HMN spacetime has
CSS (continuous self similarity) only when c = 0 and a �= 0.

A spacetime has CSS if there exists a conformal Killing
vector field ξa satisfying [10]

∇(aξb) = gab. (91)

It is easy to check that Eq. (91) implies ∇cξc = 4.
Due to spherical symmetry, we can write

ξa = x

(
∂

∂t

)a

+ y

(
∂

∂r

)a

. (92)

Here, x and y are functions of r and t . Substituting this
expression into Eq. (91), we find that

yR,r + x R,t = R, (93)

yν,r + xν,t + y,r = 1, (94)

yλ,r + xλ,t + x,t = 1, (95)

my,t − nx,r = 0, (96)

where

R2 = (at + 1) r2
(

1 − 2c

r

)1−α

,
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λ = 1

2
log

[
(at + 1)

(
1 − 2c

r

)α]
,

ν = 1

2
log

[
(at + 1)

(
1 − 2c

r

)−α
]

,

m = (at + 1)

(
1 − 2c

r

)−α

,

n = (at + 1)

(
1 − 2c

r

)α

. (97)

From Eq. (93), we can get

x = − 1

ar(−2c + r)
(1+at)(4cr−2r2−2cy+√

3cy+2r y).

(98)

Substituting Eq. (98) into Eq. (94), we obtain

y = √
r
√−2c + r D(t), (99)

where D(t) is an integration function of t . Putting Eqs. (98)
and (99) into Eq. (96), we find

−c(1 − 2c
r )−

√
3((−2 + √

3)c − √
3r)

a(−2c + r)2r2 = − D′(t)
(1 + at)D(t)

≡ C0.

(100)

Obviously, C0 must be a constant independent of r and t . So
the only solution is

c = 0, (101)

and consequently

D(t) = D0. (102)

Now Eqs. (98) and (99) become

x = −2a−1(at + 1)(D0 − 1), (103)

y = D0r. (104)

Plugging Eqs. (103) and (104) into Eq. (95), we have

D0 = 2

3
. (105)

Hence,

x = 2(1 + at)

3a
, y = 2

3
r, (106)

ξa = 2(1 + at)

3a

(
∂

∂t

)a

+ 2r

3

(
∂

∂r

)a

. (107)

Thus, we have proven that the HMN spacetime has continu-
ous self-similarity only for c = 0 and a �= 0.

References

1. J.R. Oppenheimer, H. Snyder, On Continued Gravitational Con-
traction. Phys. Rev. 56, 455 (1939)

2. D. Christodoulou, The structure and uniqueness of generalized
solutions of the spherically symmetric Einstein-scalar equations.
Commun. Math. Phys. 109, 591 (1987)

3. S. Goncalves, I. Moss, Classical and Quantum Gravity, Black hole
formation from massive scalar fields. Class. Quantum Gravit. 14,
2607 (1997)

4. R.G. Cai, L.W. Ji, R.Q. Yang, Collapse of Self-Interacting Scalar
Field in Anti-de Sitter Space. Commun. Theor. Phys. 65(03), 329
(2016)

5. S. Chakrabarti, N. Banerjee, Scalar field collapse in a conformally
flat spacetime. Eur. Phys. J. C 77, 166 (2017)

6. S. Chakrabarti, Collapsing spherical star in Scalar-Einstein-Gauss-
Bonnet gravity with a quadratic coupling. Eur. Phys. J. C 78, 296
(2018)

7. N. Deppe, L.E. Kidder, M.A. Scheel, S.A. Teukolsky, Critical
behavior in 3D gravitational collapse of massless scalar fields.
Phys. Rev. D 99, 024018 (2019)

8. M. Choptuik, Universality and scaling in gravitational collapse of
a massless scalar field. Phys. Rev. Lett. 70, 9 (1993)

9. C. Gundlach, Choptuik spacetime as an eigenvalue problem. Phys.
Rev. Lett. 75, 3214 (1995)

10. C. Gundlach, J.M. Martin-Garcia, Critical phenomena in gravita-
tional collapse. Living Rev. Rel. 10, 5 (2007)

11. P.R. Brady, Analytic example of critical behaviour in scalar field
collapse. Class. Quant. Grav. 11, 1255 (1994)

12. J. Soda, K. Hirata, Higher dimensional self-similar spherical sym-
metric scalar field collapse and critical phenomena in black-hole
formation. Phys. Lett. B. 387, 271 (1996)

13. A. Wang, H.P. de Oliveira, Critical phenomena of collapsing mass-
less scalar wave packets. Phys. Rev. D 56, 753 (1997)

14. A. Wang, J.F.V. da Rocha, N.O. Santos, Gravitational collapse of
a massless scalar field and radiation fluid. Phys. Rev. D 56, 7692
(1997)

15. J. Guo, H. Zhang, Dynamics of critical collapse. Eur. Phys. J. C
79, 625 (2019)

16. J. Celestino, T.W. Baumgarte, Critical collapse of ultrarelativistic
fluids: Damping or growth of aspherical deformations. Phys. Rev.
D 98, 024053 (2018)

17. B. Kain, Stability and critical behavior of gravitational monopoles.
Phys. Rev. D 97, 024012 (2018)

18. C. Gundlach, T.W. Baumgarte, Critical gravitational collapse with
angular momentumII. Soft equations of state, Phys. Rev. D 97,
064006 (2018)

19. M. Maliborski, O. Rinne, Critical phenomena in the general spher-
ically symmetric Einstein-Yang-Mills system. Phys. Rev. D 97,
044053 (2018)

20. T. Ikeda, C.M. Yoo, V. Cardoso, Self-gravitating oscillons and new
critical behavior. Phys. Rev. D 96, 064047 (2017)

21. J. Jamuna, C. Gundlach, Critical collapse of a rotating scalar field
in 2 + 1 dimensions. Phys. Rev. D 95, 084001 (2017)

22. T. Ikeda, C.M. Yoo, Critical behavior of a spherically symmetric
domain wall collapse. Phys. Rev. D 94, 124032 (2016)

23. G.C. McVittie, The mass-particle in an expanding universe. Mon.
Not. R. Astr. Soc. 93, 325 (1933)

24. V. Husain, E.A. Martinez, D. Nunez, Exact solution for scalar field
collapse. Phys. Rev. D 50, 3783 (1994)

25. V. Faraoni, S.D. Belknap-Keet, New inhomogeneous universes in
scalar-tensor and f (R) gravity. Phys. Rev. D 96, 044040 (2017)

26. D. Kastor, J. Traschen, Building cosmological frozen stars. Class.
Quant. Grav. 34, 035012 (2017)

123



Eur. Phys. J. C (2019) 79 :823 Page 11 of 11 823

27. V. Faraoni, Embedding black holes and other inhomogeneities in
the universe in various theories of gravity: a short review. Universe
4, 109 (2018)

28. V. Faraoni, Cosmological and black hole apparent horizons. Lect.
Notes Phys. 907, 1 (2015)

29. V. Faraoni, D.K. iftci, S.D. Belknap-Keet, Symmetry of Brans-
Dicke gravity as a novel solution-generating technique. Phys. Rev.
D 97, 064004 (2018)

30. V. Faraoni, V. Vitagliano, T.P. Sotiriou, S. Liberati, Dynamical
apparent horizons in inhomogeneous Brans-Dicke universes. Phys.
Rev. D 86, 064040 (2012)

31. T. Clifton, D.F. Mota, J.D. Barrow, Inhomogeneous gravity, Mon.
Not. R. Astr. Soc. 358, 601 (2005)

32. C. Barrabes, W. Israel, Thin shells in general relativity and cosmol-
ogy: The lightlike limit. Phys. Rev. D 43, 1129 (1991)

33. W. Israel, Singular hypersurfaces and thin shells in general relativ-
ity. Nuovo Cimento B 44, 1 (1966)

34. C.W. Misner, D.H. Sharp, Relativistic equations for adiabatic,
spherically symmetric gravitational collapse. Phys. Rev. 136, B571
(1964)

35. F. Fayos, R. Torres, A class of interiors for Vaidya’s radiating met-
ric: singularity-free gravitational collapse. Class. Quantum Grav.
25, 175009 (2008)

123


	Critical phenomena in gravitational collapse of Husain–Martinez–Nunez scalar field
	Abstract 
	1  Introduction
	2  Husain–Martinez–Nunez (HMN) spacetime
	3 Critical behaviour of HMN scalar field with conformal flatness (cneq0) 
	3.1 Matching at a null hypersurface 
	3.2 Mass of the black hole 

	4  Collapse of the general HMN scalar field
	4.1 Matching to an outgoing Vaidya solution at a null hypersurface 
	4.2  Mass of the black hole
	4.3 ``Critical spacetime'': a=0 and cneq0 

	5  Conclusion
	Acknowledgements
	A Matching the HMN and Vaidya solutions at a timelike boundary
	B Self-similarity of HMN spacetime
	References




