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Abstract Inthis paper, we investigate the holographic com-
plexity of a small mass AdS black hole in Einsteinian cubic
gravity by using the “complexity equals action” (CA) and
“complexity equals volume” (CV) conjectures. In the CA
context, the late-time growth rate satisfies the Lloyd bound
forthe k = 0 and k = 1 cases but it violates it for the k = —1
case in the first-order approximation of the small mass param-
eter. However, by a full-time analysis, we find that this late-
time limit is approached from above, which implies that this
bound in all of these cases will be violated. In the CV context,
we considered both the original and the generalized CV con-
jectures. Differing from the CA conjecture, the late-time rate
here is non-vanishing in the zeroth-order approximation, and
this shows that the Lloyd bound is exactly violated even in
the late-time limit. These results show numerous differences
from the neutral case of the Einstein gravity in both the CA
and the CV holographic contexts where all of their late-time
results saturate the Lloyd bound. These differences illustrate
the influence of the higher curvature correction in Einstein
gravity.

1 Introduction

In recent years, the topic of “quantum complexity” has
attracted growing interest in holography. There has been a
growing interest in which complexity is defined as the mini-
mum number of gates required to obtain a target state starting
from areference state [1,2]. From the holographic viewpoint,
Brown et al. suggested that the quantum complexity of the
state in the boundary theory corresponds to some bulk grav-
itational quantities which are called “holographic complex-
ity”. Then the two conjectures, “complexity equals volume”
(CV) [1,3] and “complexity equals action” (CA) [4,5], were
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proposed. The CV conjecture states that the quantum com-
plexity of the boundary state is given by the maximal volume
of the bulk surface anchored by the time slices on the bound-
ary, i.e.,

max [V]
Y4

The CA conjecture states that the complexity of the boundary
state is given by

Cv (¥ (L, tR))) =

ey

Iwpw

Th '’
where Iwpw is the on-shell action in the corresponding
Wheeler—DeWitt (WDW) patch, which is enclosed by the
past and future light sheets sent into the bulk spacetime
from the time slices on the boundary. These conjectures have
attracted many researchers to investigating the properties of
both holographic complexity and circuit complexity in quan-
tum field theory, e.g., [6-51]. As argued in [4], there is a
bound on the complexity growth rate at late times,

o
=Tn
which may be thought of as the Lloyd bound of the black
hole system [52]. However, some further developments have
cast the exact prefactor of this bound into question. In [15],
the authors show that it is only applicable to quantum cir-
cuits made out of orthogonalizing gates. In the holographic
context, this bound can only hold for a small black hole near
a Hawking—Page phase transition [15]. Although it is not
a precise feature of the complexity, we can also utilize it to
illustrate characterizing the complexity in the different cases.

While the properties of the complexity in Einstein gravity
have been investigated in many situations for both CA and
CV conjectures, relatively little is known about its behav-
ior in higher curvature gravitational theories, especially its
time-dependent behaviors. The holographic principle sug-
gests that the higher-order corrections of the bulk action are

Ca(ly(r,tp) =

@)

C 3)

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7339-6&domain=pdf
mailto:jiejiang@mail.bnu.edu.cn
mailto:bldeng@aliyun.com

832 Page2of7

Eur. Phys. J. C (2019) 79:832

dual to finite N and finite coupling effects in the boundary
CFT. To study the holographic complexity for a higher cur-
vature gravity could help us to investigate the hidden struc-
tures caused by the higher-order correction. Therefore, it is
necessary for us to study the features of the holographic com-
plexity in higher curvature gravity and show the influences
of the higher curvature correction.

One of the most suitable higher curvature gravitational
theories for holographic applications is the 4-dimensional
Einsteinian cubic gravity, which provides a holographic toy
model of a non-supersymmetric CFT in three dimensions. In
[16], the authors have given a general formula for the full
action for general F (Rgpcq) gravity and applied it to the cal-
culation of the CA complexity in Einsteinian cubic gravity
for a massless black hole solution. Their result shows that the
late-time CA complexity growth rate, in this case, vanishes
because the mass of the black hole also vanishes. To gain a
better understanding of the holographic complexity in Ein-
steinian cubic gravity, in this paper, we consider a small mass
AdS black hole solution and then study the time-dependent
behaviors of the holographic complexity growth rate, and we
take the Lloyd bound as the criterion to present the influence
of the higher curvature term.

The structure of this paper is as follows. In Sect. 2, we
review the critical Einsteinian cubic gravity and its small
mass AdS solution. In Sect. 3, we apply CA conjecture to
calculate the complexity growth rate of the small mass AdS
black hole. In Sect. 3, we also study the holographic com-
plexity by using the original CV conjecture and the general-
ized CV conjecture which is modified by the Wald entropy
density. Finally, we conclude the paper in Sect. 5.

2 Critical Einsteinian cubic gravity

We start with a quick review of the 4-dimensional Einsteinian
cubic gravity and its small mass AdS solution. As shown in
[53], the corresponding bulk action of this theory is given by

1bu1k=/ d*x/—gL
M

4
= / d*x/=g (R —2A + AP),
M

where the cubic invariant polynomial term P of the Riemann
tensor is

7) — 12Racba'Rcedf Reafh + RadeRca’efRefab

(5)
—12Rpeq R R* + 8R," R, R?,

and A is a coupling constant. The equation of motion can be
written as

. 1 .
wacdeRdee - zgab»c —2V° VdWacdb =0, (6)
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where we denote

oL

1uﬁabcd = W

1
= E (8ac8bd — 8ad8be) + OX (Rua Rpe
— RacRpa + gbdRueRce - gadeeRce~

- gbcRaeRde + gacRbeRde - gbdRefRaecf
+ gbcRefRaedf + gadRef Rpecf — gacRebeedf

(7

1
_3RaedfRbecf+3Raechbedf+zRabechdef) .

The critical relation of this theory can be written as

A= 2 A= L* 8
=13 =—2 )

As mentioned in the introduction, in order to discuss the
behaviors of the CA conjecture in Einsteinian cubic gravity,
such as the Lloyd bound, here we consider a static small
mass AdS black hole solution [54], in which the mass term
can be regarded as a small perturbation of the solution. The
line element can be written

ds> = —f(r)di> + ar +r2dQs ©)
£ .
where
1 ~
f0) =75 (=) [1=mio] (10)

is the blackening factor with

r+ry
r—rny

f( ) 24+ rpr + 2r}% P — r}%
r) = -
2uri (r +rp)

i =L (u =k,

dpr} (11)

in the first leading order of the mass parameter m. Here
k = 1,0, —1 denotes the 2-dimensional spherical, planar,
and hyperbolic geometry, respectively, L is the AdS radius,
and p is a dimensionless parameter. This solution describes
an asymptotic AdS black hole with a horizon at r = ry.
According to the blackening factor, we can see that this geom-
etry has a curvature singular at the horizon under the first-
order approximation of m. However, this black hole is regular
at the zeroth-order approximation. Therefore, we hope that
the small mass correction does not affect the singularity at
the horizon. This can be understood if the blackening factor
is anonanalytic function of the mass parameter, which means
that when all corrections are concerned, this singularity will
disappear.

According to the discussion in [54], under the first-order
perturbation, the mass of this black hole can be expressed as

M = 4 m. (12)
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3 CA conjecture

In this section, we evaluate the CA complexity growth rate of
the small mass AdS black hole. As suggested by [10], the CA
complexity is equal to the full on-shell action on the WDW
patch, which includes not only the bulk action but the surface
terms, corner terms and counter term as well. According to
[16], for the Einsteinian cubic gravity, the total action is given
by

I=Ibulk+4z</
\)

+ (—1)*/6 d’x /o Un;, (13)
A

d3x‘/|h|\P“bKab>

s

— / drd*x/oOIn (14©),
N

where © = \/LEBA(‘@\/E) and © = %Bxﬁ is the expan-
sion scalar of the null generator with /., an arbitrary length
scale. The auxiliary fields can be written as

d
Wap = 1pacbdncn >

. (14)
\II = ¢ade€ab€Cd1 )

in which n® is the outward-directed normal vector of the
corresponding surface, and €, is the binormal of the joints.

Next, we evaluate the change of the action growth rate on
the WDW patch. As illustrated in the Penrose diagram of this
AdS spacetime in Fig. 1, I (¢, tg), denoting the action for
the WDW patch determined by the time slice on the left and
right AdS boundaries, is invariant under the time translation
I(ty, + 6t,tg — 8t) = I(tr, tg). Thus the action growth can

‘L v = O
T .
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Fig. 1 Wheeler-DeWitt patches of a small mass AdS black hole in
Einsteinian cubic gravity

be computed as §1 = I(ty + 6¢t,t;) — I (o, t1), where the
time on the right boundary has been fixed. To regulate the
divergence near the AdS boundary, a cut-off surface r = r is
introduced. In addition, we also introduce a spacelike surface
r = € to avoid running into the spacelike singularity inside of
the black hole. In addition, for simplicity we shall adopt the
affine parameter for the null generator of null segments such
that the surface term vanishes for all null segments. With all
this in mind, we have

81 = Ispq + I + Isc + 81, (15)

with Ispg = In, — Iam, and Iye = I¢, — Ic,. Here M is
bounded by u = 1y, u =ty + 8t, v = t9 + 6t, and r = riyin.
M3 is bounded by u = g, v = t9, v = vg + 8¢, and u = 1.
The null coordinates are defined as u = ¢ + r*(r) and v =
t — r*(r) with

[o)0]
d
r*(r) = — d .
r f()
L? r—rp mL?
>~ — 3 (16)
2rp el A (r+rpp
r—ry
2r2 2]
X |: ri, + (@ +rp)°In . :|

to the first leading order of m. Then, by using these coordi-
nates, the typical point r; can be obtained by

r*(rl)z—%. (17)

With the above preparation, we first calculate the change of
the action which is contributed by the bulk region. Through
straightforward calculation, we have

r1
Ispm = Qz,k&/ drr’L

0
2
r Q ot
~ 4 1118t _ ) Mol
’ L? )
1
4kL?ry  6r} (18)

X 4rh =+ 2}"] + Q5 T 3
Th h

2_ 2 _
+KL2 437 =3y (rh rl) ,
ry re+rn

where we used the limit process € — 0. Then we proceed
to the surface contribution from the spacelike surface r = €.
By using (13) and (9), we have

Is =4 / d*x/—hv* K,
>

~ 4m.

(19)

To evaluate the corner contributions from C; and C,, we first
choose k1, = V,u and ky, = —V,v as the null generator
of the past right and past left null boundaries separately. By

@ Springer
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using these expressions, we obtain kj - ko = —2/f and

r+ry
r—ry

i [ﬁ g 0)

2 3.2
r rhr

2

2
xGri =12+ 2kL?) = = (1 =} - 2kL2)] .
rhr

Then, by using (13) and the transformation parameter 1, =
In(k; - k2/2), one can further obtain

0
Isc = Q26r ar [®(r)In (= f(r))]
Q281 1)
T2
x [®@0r) f/(r1) + @' (r1) f(r) In (— £ (r1))]

where we have used

r=ri—rn= —%f(rl)& (22)
and we denoted

O(r) = r2W(r). (23)

Finally, we consider the counter term contributions. By
the translation symmetry, there are only two null segments
contributing to the action growth. The first one comes from
the null segment u = ¢; with r as the affine parameter, i.e.,
k{ = (%)a, which gives rise to the expansion ® = 2/r.
Then the counter term of the past right null segment can be
written

A dl
IV =—Q, / dr®'(r)In (7“) (24)
r

1

Then we have
Q5 16t dl
814 = === ) () In (7‘) . (25)

With similar calculation, we can easily find Ic(t2 ) = Ic(tl).
By summing all the previous results, one can obtain

) In <r1 + rh)
Zr}?Lzu rp —ry

dt  wh

dCy M rt
riLzu
2
@) fr) I (—‘”‘f#)} .
m r

1

(26)

At the late times, we have ri — ry. Then the complexity
growth rate becomes

. dCy k\ M
Iim —={2——) —. 27
w) mh

We can see that, for the planar case (k = 0), the late-time
CA complexity growth rate saturates the Lloyd bound, for

@ Springer
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Fig. 2 The CA complexity growth rate for the planer case, where we
setk =0,l¢=1,L=1andm = 0.01

spherical case (k = 1), it is lower than the saturated value,
while for the hyperbolic case (k = —1), the late-time result
will violate this bound. These results give different features
with the neutral case of Einstein gravity, where the late-time
limit in all of these cases saturate the Lloyd bound.

Finally, we consider the time dependence of the CA com-
plexity growth rate. From (16) and (17), one can obtain

rpt m
=rptanh (| — —
ry = rptan <2L2> + p

12 (1 i erht/L2>2 — 2pptedrit/L? (28)
L2 (1 + ernt/12)}

By using this expression, we show the time dependence
of the CA complexity growth rate in Fig. 2. In this figure, we
can see that the late-time limit is approached above, which
implies that the Lloyd bound will also be violated when we
consider the full-time evolution of the complexity. Moreover,
we can also find that the maximal value of the complexity
increase with the value of parameter u (Fig. 2).

X

4 CV conjecture

In this section, we consider the CV conjecture and apply it
into the calculation of the complexity growth rate. According
to (3), evaluation of the CV complexity boils down to finding
the maximal surface of the volume function,

V(T) = %/Zd%c A (29)

with some length scale £. However, it is also expected [35]
that in the presence of higher derivative terms one needs to
extend the notion of volume to a new quantity. The situation
is similar to thermal and entanglement entropies where the
area must be replaced by a certain functional to be evaluated
on the horizon and RT curve, respectively. Motivated by the
Wald formula, one can consider a generalized volume which
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L
TR

Fig. 3 “Complexity equals volume” (CV) duality for the eternal AdS
black hole dual to the boundary state. The blue curve denotes a spacelike
surface which has maximal volume (generalized volume)

is modified by a Wald-like form, i.e., the maximal surface is
obtained by maximizing the generalized volume function

1 ~
Ve(®) = ¢ [ deb i (30)

and then the holographic complexity is the generalized vol-
ume of its maximal surface. Next, we turn to evaluating the
holographic complexity growth rate by using these two con-
jectures. For convenience, here we denote the volume func-
tion

V(s) = f BrdIW. 31)
>

where W = 1 for the original CV conjecture and W = /¢
for the generalize CV conjecture. Then we need to obtain
the maximal surface which is bounded by the two spacelike
slices at the boundary time #;, on the left side and 7z on the
right side (Fig. 3). Following the discussion in [3], we use the
Eddington—-Finkelstein coordinates. Then the line element
becomes

ds* = — f(r)du® + 2dudr + r*dQ3 ;. (32)

By considering the symmetries of this spacetime, this codi-
mension one surface X can be thought of as the direct product
of a 2-sphere and a curve in the u—r plane, i.e.,

Y=y x %7,

(33)
y = @), r)),

where the curve y is given in parametric form. Therefore,
the generalized volume is given by

)“ .
Velyl = Qz,k/ ! dir? —f(r)L't2 + 2urW(r). (34)
Ao

The largest surface X is determined by the curve y that max-
imizes this integral, which is the same as solving for the
equation of motion with the Lagrangian

Ly =r>)—fr)i? + 20 W(r). (35)

Since Ly does not depend explicitly on u, we can find the

conserved quantity

ALy rA(fu—-HWr)
N T

Due to the reparametrization invariance of our final result, for

simplification, we choose X as the proper generalized volume
as follows:

P2 =i + 20 W (r) = 1. (37)

Using (36) and (37), we can further obtain

E=-—

(36)

E=r(fi—HWw?

(3%)
rSWt = E2 4t W2

Using the shift symmetry, we can always choose tg = —t1 =
t/2. Then this surface can be composed of two equivalent
parts. So, we can only restrict ourselves to the range ¢ > 0.
For the turning point r = ryjn, we have ¥ = 0 and tyyj, = 0,
which means

E = —r2 W tmin)V/— f (i) (39)

The maximal generalized volume can be written as
oo }’4 W2
dr ——.
Fmin VE2+V4W2f
Therefore, to obtain this holographic complexity, we first
need to obtain the relationship between the boundary time ¢

and the radius rpj, of the turning point. From (38), we can
further obtain

Vgen = 292,k (40)

! /OO d E + ! 41
— — Umin = r|\—————+—.
2 M \UVER+ AW S
By the fact tiin = 0, i.e., Umin = rr’;in, we can obtain
o
E
r=2 / ar—r 42)
Fmin f\/ E2+74W2f

which means that the time ¢ can be regarded as a function of
rmin- Together with (40) and (42), the CA complexity growth
rate can be further obtained,

dC Q
d—tv = %\/—f(rmm r2i W (Fmin).- (43)

@ Springer
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0 1 2 3 4 5 6
t

Fig. 4 The CV complexity growth rate for the planar case for both
the CV conjecture and the generalized CV conjecture, where we set
k=0,lq=1,L=1andm = 0.01

Using this relation, we can obtain the full-time dependence of
this holographic complexity. One can see that this complexity
explicitly depends on the function W.

At late times, since the turning radius rmj, decreases when
the boundary time increases, together with (38) and (39), the
minimal possible value of rpi, should be the extreme value
point 7y of the function /= f (Fimin)! rfrl];ll W (Fmin). Then we
have

lim €V _ P2k f Frin) iy W (Finin) - (44)
t—oo dt 14

With these preparations, next, we turn to considering these
two special CV conjectures: the original CV conjecture and
generalized CV conjecture which is modified by the Wald
entropy density.

For the original CV conjecture, by setting W = 1 and
using the line element (10), we can further obtain the late-
time result of the complexity growth rate

dc Q 2r3 2
lim &Y ~ 2”‘< i —0.22ﬂ>. 45)

t—o0o dt LY

By a similar calculation, the late-time limit of the gener-
alized CV complexity rate is given by

dcC 4L 2mL 2r?
lim $5Ve L EEMTRImE L, Th) (46)
t—o0o dt V4 ul L2

From these results, we can find that the late-time growth
rate in these conjectures have non-vanishing zeroth-order
contributions, which implies that the CV complexity has a
non-zero growth rate even for the massless solution, and the
Lloyd bound must be violated in these cases even though
we only consider the late-time limit, which is obviously dif-
ferent from the result of the Schwarzschild—AdS black hole
for Einstein gravity. These differences must be caused by the
higher curvature correction of the gravitational theory.

@ Springer

Finally, we show the time dependence of the holographic
complexity for these two CV conjectures in Fig. 4 for the pla-
nar case (k = 0). From this figure, we can see that both of the
CV holographic complexities increase with time and finally
saturate the late-time value, which shows similar behaviors
to the CV conjecture in the neutral case for Einstein gravity.

5 Conclusion

According to the calculation for Einsteinian cubic gravity
in [16], the authors found that the late-time CA complex-
ity growth rate of the massless black hole vanishes. Their
result is in agreement with the Lloyd bound since the mass
of this black hole also vanishes. In this paper, in order to
gain a better understanding of the holographic complexity
in Einsteinian cubic gravity, we study the holographic com-
plexity growth rate of a small mass AdS black hole with
both CA and CV conjectures. In the CA context, we find that
the late-time growth rate only contains the first-order contri-
butions of dm. Moreover, different from the neutral case of
the Einstein gravity, where the late-time growth rate of com-
plexity saturates the bound, here the late-time result shows
other features. For the planar case (k = 0), it saturates the
Lloyd bound, for the spherical case (k = 1), the late-time
value is lower than the saturated value of this bound, while
for the hyperbolic case (k = —1), it will violate the bound.
By showing the time dependence of the growth rate, we find
that the late-time value is approached, i.e., the complexity
has a non-zero growth rate even for the massless case, which
might imply that the Lloyd bound will also be violated after
the time evolution of the complexity is taken into account.
In the CV context, we considered both the original and the
generalized CV conjectures. Different from the CA results,
its late-time limit growth rate has non-vanishing zeroth-order
contributions of m, which means that the Lloyd bound will
be violated even though we only consider the late-time limit.
The above results show numerous differences from the neu-
tral case of the Einstein gravity in both the CA and CA con-
texts where all of their late-time results saturate the Lloyd
bound. These illustrate the influence of the higher curvature
correction in the Einstein gravity.
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