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Abstract A new topological invariant quantity, sensitive to
the analytic structure of both fermionic and bosonic propa-
gators, is proposed. The gauge invariance of our construct is
guaranteed for at least small gauge transformations. A gen-
eralization compatible with the presence of complex poles
is introduced and applied to the classification of propagators
typically emerging from non-perturbative considerations. We
present partial evidence that the topological number can be
used to detect chiral symmetry breaking or deconfinement.

1 Introduction

Topology has been used since a long time in the study of
condensed matter physics and, nowadays, it has become the
main theoretical tool for the description and classification of
topological insulators (see [1] for a comprehensive review).
This is because it is possible to construct topological invariant
quantities, i.e. , quantities that are invariant under “smooth
deformations” (homeomorphisms). In this manner the space
of parameter-dependent results is naturally divided into dis-
joint sectors, invariant with respect to homeomorphisms,
that are characterized by different values for the topologi-
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cal invariants. Also in a particle physics, or more general,
(quantum) field theory context, the importance of topology
cannot be underestimated; see [2] for the typical illustrative
examples.

From the physical point of view, different sectors cor-
respond to different physical phases. Similarly, momentum
space topology (MST) has been applied to the classification
of the ground state of relativistic quantum field theories (see
[3], where MST is first applied to lattice fermions) into uni-
versality classes, however, without the same resonance as in
condensed matter [4–9]. The MST framework might be a
very powerful tool and has also been applied to the investi-
gation of emergent gravity, [10,11]. Indeed relativistic quan-
tum fields share some topological properties with topologi-
cal materials [4]. The Standard Model (SM) below the elec-
troweak scale, for example, belongs to the same universality
class as of the superfluid 3He and of the three-dimensional
topological insulators obeying time-reversal symmetry [5].
However, up to now, topological invariants constructed in
MST have not been applied to bosonic systems. In a sense,
this could be interpreted as one of the major drawbacks of
MST, which only applies to “half of the world”, for reasons
that will become clear in the next sections. On the contrary,
it would be desirable to apply MST to bosonic fields, espe-
cially considering that the analytic structure in momentum
space of bosonic propagators might encode extremely valu-
able physical information.

Inspired by the power of MST in the classification of the
vacuum of quantum field theories, we propose a new topo-
logically invariant object that is not only sensitive to the
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full analytic structure of fermionic propagators, but that can
also be applied to bosonic field propagators. Particularly, we
will consider here the case of certain classes of fits to lattice
fermion propagators [12–15] and gluon propagators [16–19],
although the proposed tool can be applied to any relativistic
fermionic or bosonic propagator. Hence, the present results
give rise to a considerable enhancement of the power, as well
as applicability, of MST. The paper is organized as follows: in
Sect. 2 we recall the definition and properties of the momen-
tum space topological invariant. In Sect. 3 we extract, depart-
ing from the standard definition, a specific representation for
the MST invariant that is very useful for a generalization to
the bosonic sector. In Sect. 4, we generalize this definition to
make it compatible with the potential presence of complex
poles and we apply this latest definition to several concrete
propagators in Sect. 5. Finally, in Sect. 6, our conclusions
can be found.

2 The momentum space topological invariant

Let us start with the following topological quantity, to the
best of our knowledge first introduced by So [3]; see also
[9,20,21],

N3 = NTr
∫

�

K GdG−1 ∧ GdG−1 ∧ GdG−1, (1)

where K stands for the matrix representation of a vacuum
symmetry; G is the two-point Green function of the fermion
field; the integral is on a three/dimensional hypersurface �,
in our case defined by imposing p0 = 0. From now on, we
assume the following notation: p2 = pi pi and /p = γi pi ,
with i = 1, 2 and 3 (the spatial indices); finally, N is a
normalization factor. Notice that the foregoing implies that
[K ,G] = 0. A rather similar, albeit not exactly the same,
topological invariant was also studied in the lattice context
of [22].

At first glance, the topological invariant defined above
can be constructed only for fermion propagators, since the
γ -matrices are indispensable to get a non-trivial result. A
direct computation reveals that if one tries to make sense of
the above expression for bosonic propagators with internal
indices, the result vanishes identically while for fermions
the γ -matrices save the day by generating the completely
antisymmetric tensor.

Our main goal now for the following sections is to propose
a new, and more general, topological invariant that can also
be applied to bosonic fields.

If there would be no interactions between the fermions,
the quantity (1) becomes nothing else than the number of
massive flavors of Dirac fermions [8]. Adding interactions in
such a way that these do not spoil the condition [G, K ] = 0,

the change of Eq. (1) under a continuous deformation G →
G + δG, where δG encodes the variations of the parameters
in G, can be written as

δN3 = 3 N
∫

�

Tr
[
K δ[GdG−1] ∧ GdG−1 ∧ GdG−1

]
,

at least, if the three-form δ[GdG−1] ∧ GdG−1 ∧ GdG−1

is continuous inside �, according to the Leibniz integration
rule [23, p. 466]. Thus, to ensure δN3 = 0, it is necessary to
have

3 N
∫

∂�

Tr
[
K (GδG−1)GdG−1 ∧ GdG−1

]
= 0, (2)

where, as � ≡ S3 in momentum space, ∂� is the spherical
two-dimensional surface with radius | �p|, whilst | �p| → +∞.
Equation (2) is the most general condition that any Green
function G must fulfill so that N3 is invariant under small
(continuous) deformations of G. In Sect. 3, we shall derive a
more specific condition for a particular, but general enough,
class of fermionic propagators. These have been used to fit
lattice data for the quark propagator in QCD; see [12–15].

A priori, one might question the physical relevance of
the topological invariants discussed here as they are explic-
itly based on gauge variant input, viz. propagators that will
depend on a chosen gauge. In practice, this will boil down to
a possible dependence on a gauge parameter. Indeed, chang-
ing the gauge parameter can always be achieved via consecu-
tive application of small (infinitesimal) gauge variations (or
BRST variation, if you wish), which is just a special class
of continuous deformations leaving the topological number
untouched. We will have nothing to say about large gauge
transformations and invariance of N3 w.r.t. those.

3 Topological invariant for fermionic case: old and new
results

In this section we will apply the previous ideas to the case of
a fermion propagator in a SU (N ) gauge theory, with most
general parameterization (assuming Lorentz invariance of
course):

GAB(p) = G(p) δAB = Z(p2)

i /p + M(p2)
δAB, (3)

where AB are internal Dirac fermion indices.1 It can be
shown that the boundary condition (2) is recovered if [8]

1 Usually, fermions belong to the fundamental representation of the
internal SU (N ) group.
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lim
| �p|→+∞

δM
| �p|

(
1 + M2

p2

)2 = 0. (4)

For this kind of fermionic propagators and up to powers of
logarithms as dictated by the renormalization group equation,
the dynamical mass M(p2) tends to a constant mass μ (pos-
sibly zero) in the UV limit (p2 → ∞), while the renormal-
ization function Z(p2) goes to 1 in such a limit. Therefore,

when p2 → ∞ the standard UV fermionic propagator δAB

i/p+μ

is restored, up to logarithmic terms. On the other hand, in the
IR limit (p2 → 0) one usually assumes that M(p2) continu-
ously tends to a constant value M0. This can be appreciated
from e.g. lattice, functional or fitting approaches, [12–14,24–
29].

Assuming the above-mentioned asymptotic behavior of
Z(p2) and M(p2), one can verify directly that propagators
of the kind (3) fulfil condition (4).

Then, following [6], the matrix element K will be consid-
ered as being the one that accounts for the CT-symmetry, rep-
resentable by γ 5γ 0 (the four-dimensional Euclidean Dirac
matrices). A nice overview of CPT symmetry can be found
in [30]. Notice thatγ5γ0 does commute with the general Dirac
fermion propagator given at Eq. (3). Then, since we already
showed thatN3 is a topological invariant, we can set Z(p2) =
1, as this Z(p2) for p2 > 0 is a smooth deformation of 1. One
can again appreciate this from non-perturbative functional or
lattice computations; see e.g. [12,14,24–29]. Therefore, after
some algebraic manipulations, we can reduce

N3 = 1

24π2 εi jkTr
∫

d3 p

[
γ0γ5G

(
∂piG−1)G (

∂p jG−1)G (
∂pkG−1) ]

,

(5)

to

N3 = 4

π

∫ ∞

0
dp

p2
[M(p2) − 2p2 ∂p2M(p2)

]
[
p2 + M2(p2)

]2 (6)

by making use of the Euclidean identities

εi jkTr
[
γ 5γ 0γiγ jγk

]
= −24,

3pl pkεi jkTr
[
γ 5γ 0γlγ

iγ j
]

= −24 �p · �p.
Let us now observe that Eq. (6) still carries the “fingerprint”
of the topological invariance of the original expression (5).
Indeed, even after performing the integral over the momen-
tum in order to arrive at Eq. (6), this expression can be inter-
preted as a one-dimensional topological invariant, associ-
ated to the analytic structure of M(p2) itself. A fundamen-
tal observation is that one can also forget about how we did
arrive at Eq. (6), since such an expression is a perfectly well-
defined winding number associated to the dynamical mass
M(p2) through the curve θ(p) defined in Eq. (8) below,
providing there is no pathological behavior of the integrand.

In other words, if one is presented the expression (6) for the
first time, without any previous knowledge of Eq. (5), one
is still able to show that this quantity (6) is a well-defined
one-dimensional topological invariant. More precisely,

N3 = 1

2π

∫ 2π

0
dθ = 1, (7)

where we have defined the function θ(p) such that

θ(p) = 4

[ M(p)/p

1 + (M(p)/p)2 + Arctan(M(p)/p)

]
. (8)

The significant advantage of this observation is that Eq. (6)
can be considered as a legitimate invariant in itself for any
dynamical (fermionic or bosonic) mass functions (that satisfy
boundary conditions).

In the following we present a detailed analysis of the
topological classification of a Dirac fermionic system whose
dynamical mass reads

M(p2) = M3

p2 + m2 + μ. (9)

For the obtained values of parameters coming from a lattice
fit [12,13,15], (M3,m2, μ), (always keeping that order) all
of them are positive and, therefore, the result for the topo-
logical invariant is always N3 = 1, as one can readily verify.
However, depending on possible other configurations of these
parameters, other values of N3 can emerge. This “patho-
logical” behavior could imply phase transitions, provided
in such a case δN3 = 0 cannot be guaranteed for a small
variation of the parameters. This is translated into the fact
that there are configurations, characterized by an equation
on the space of parameters f (M3,m2, μ) = 0, which are
unstable under small variation of the parameters. These sur-
faces can be realized as phase boundaries [31]. One concrete
example of such phase boundary is shown in Fig. 1, where
the two-dimensional surface is characterized by the equation
M3 + m2μ = 0 on the three-dimensional space of parame-
ters.2 On such surface the topological invariant is N3 = 0.
Notice that this is also the topological invariant’s value in the
chirally invariant case of a simple massless Dirac quark prop-
agator. As such, the topological number N3 can discriminate
between chirally symmetric and chirally broken phases.

Away from this critical surface, the N3 jumps. To set
the mind, working in unspecified mass units, for (−1, 1, 1)

we have N3 = 0; for (−1.01, 1, 1), N3 = −1 and for
(−0.99, 1, 1), N3 = +1. For all of these parameter sets,
the propagator poles are located on the negative real axis,
whilst the mass function remains positive for p2 > 0. Stated
otherwise, all of them could in principle be used to try to

2 One can check that this condition translates into the Green function
having a zero mass pole.
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Fig. 1 A two-dimensional surface in the space of parameters where
the topological invariant is N3 = 0, but any small perturbation will
give a nonzero result. In this case, the phase boundary is characterized
by the equation M3 + m2μ = 0

fit the non-perturbative quark mass function as found on lat-
tice; see e.g. [29,32]. In future work, it would be interesting
to compute N3 directly based on lattice data, after which all
kinds of approximations to it, for instance born out of Dyson–
Schwinger/functional renormalization group equations men-
tioned already before, or approaches likes [33,34], can be
tested if they belong to the same homotopy class or not.

More general, if the parameters take (critical) values such
that the denominator of the integrand in Eq. (6) has singular
behavior for positive values of p2, there will be a transition
	N3 �= 0 of the topological invariant for a small variation
of the critical parameters. As N3 is an integer number, this
transition must come with another integer value for the topo-
logical number.

4 A generalized topological invariant

In this section, we propose to extend the momentum space
topological invariant (6) in order to make it sensitive to com-
plex poles of the mass function M, of which we always
assume to know the analytic structure.3 Such an extension is

3 Evidently, this is a big assumption. For example, a Monte Carlo-based
lattice computation will never give direct access to the full analytic
structure in the complex momentum squared plane. But using dedicated
inversion schemes can shed light on this anyhow; see e.g. [35], in some
cases also (numerical) solutions over the complex momentum squared
plane of the Dyson–Schwinger equations [35,36] can be obtained.

Fig. 2 A sketch of the procedure to obtain N
 in the complex plane.
Here we consider a propagator displaying three poles (one real and two
complex conjugates), and a possible new branch point that may appear.
We choose to close the contour in the upper half of the complex plane
in a way that every possible real pole and the branch cut is avoided.
Thus, the contour 
 is defined by the semi-circle C of radius R plus the
horizontal paths L−(z) and L+(z), which are lifted up by an imaginary
infinitesimal, iε

a topological invariant, applicable either to fermionic or to
bosonic systems.

This quantity is defined by the following integral in the
complex plane:

N
 = 1

2π i

∮



dz 4i
√
z

[M(z) − 2z ∂zM(z)
]

(
z + M2(z)

)2 , (10)

where 
 is the contour defined to enclose all the possible
complex poles of the integrand (10) lying in the upper half of
the complex plane (see Fig. 2), while avoiding every possible
real pole, branch point and branch cut. This new topological
object is a relative of the topological object NW defined in
[37], with the difference that their object is defined in terms
of the propagator itself, while our N
 depends on the mass
functionM(z), which in general can be defined by writing in
full generality a fermion propagator as in (3), or for a bosonic
propagator (stripping off all possible color/Lorentz tensorial
structures)

D(p2) = Z(p2)

p2 + M2(p2)
(11)

where the same comments as before apply to the wave-
function normalization function Z(p2) and mass function
M(p2).

Despite the similarity, it is not clear to us if both objects
encode the same physical information. Furthermore, notice
that the integrand of Eq. (10) has at least two branch points, 0
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and∞, but depending on the analytical structure ofM(z), the
number of non-removable singularities can increase. Like-
wise, it seems that also the quantity defined in [37] is sus-
ceptible to the appearance of new branch points, regarding
the analytical expression of the propagator.

Therefore, we choose the closed contour 
 as being com-
posed of three paths with the following parametrization (see
Fig. 2):

C(α) = Reiα with π − ε

R
≤ α ≤ ε

R
(12)

L−(t) = t + iε with − R ≤ t < 0 (13)

L+(t) = t + iε with 0 ≤ t ≤ R. (14)

It is important to notice that Eq. (10) can be rewritten as the
winding number of some function f (z), indeed,

N
 = 1

2π i

∮



dz
f ′(z)
f (z)

= − 1

2π

∫
θ( f (
))

dθ(z) (15)

with

f (z) = e−iθ(z),

θ(z) = 2

[ √
zM(z)

z + M2(z)
+ Arctan

(M(z)√
z

)]
. (16)

Notice that the Arctan-term gives the relevant contribu-
tion to the integral (15), in a sense that an equally well-
defined topological object (15) could be given by θ(z) =
2Arctan

(M(z)√
z

)
. From Eq. (15) one can clearly see that our

N
 is the winding number of f (z) given at Eq. (16), and
as such it represents the difference between the number of
zeros and poles of f (z) as the latter function is per assump-
tion meromorphic within the contour 
 and has no poles or
zeros on the contour 
.

4.1 Invariance of N
 under small deformations of the
parameters

Now, in order to derive the boundary condition for N
 to be
invariant under smooth variations of M (with respect to the
parameters of M), we will rely on two procedures. In this
Subsection, we use general complex analysis results, while
the second argument, c f. Appendix A, makes direct use of
expressing Eq. (10) through the function θ(z) defined in Eq.
(16).

If we consider the variation of N
 , we get4

δN
 = 2

π

∮



dz
√
z

[
δM − 2z ∂zδM

]
(
z + M2

)2

− 8

π

∮



dz
√
z

[M − 2z ∂zM
]MδM(

z + M2
)3 ,

where M is a function of z; we did not write it explicitly
to avoid notational clutter. In order to have something pro-
portional to δM, we need to integrate by parts the term with
∂zδM. This is achieved via

− 2
√
zz

(z + M2)2 ∂zδM = 3
√
zδM

(z + M2)2

−4
√
zz(1 + 2M∂zM)δM

(z + M2)3 − ∂

∂z

(
2
√
zzδM

(z + M2)2

)
.

Plugging this directly into δN
 , we obtain

δN
 = − 4

π

∮



∂

∂z

( √
zzδM

(z + M2)2

)
dz. (17)

The issue to prove that δN
 = 0 is the following: we must

ascertain that the function ∂
∂z

( √
zzδM

(z+M2)2

)
has a zero residue

inside 
, otherwise the zero value of the integral cannot be
guaranteed. Therefore we consider that M has the form of a
rational function (fermionic case), or the square root of some
rational polynomial (bosonic case); we thus ignore, with-
out any loss of generality, the logarithmic tails, as explained

before. Then
√
zzδM

(z+M2)2 is a meromorphic function times a pos-
sible square root of some rational polynomial. As the contour

 explicitly avoids the branch points and branch cuts com-

ing from such a square root, we can say that
√
zzδM

(z+M2)2 is a
meromorphic function inside the contour 
. Therefore, we
are under the hypothesis of Lemma 4.1, at least inside 
. A
direct result of the lemma, with the proof sketched below, is

that our ∂
∂z

( √
zzδM

(z+M2)2

)
indeed has a zero residue inside 
.

Lemma 4.1 Let F(z) be a complex function with a pole at
z = a with finite multiplicity m and analytic in the punctured
disc D′(a, r) = {z ∈ C, 0 < |z − a| < r}.

Then F ′(z) has a pole with multiplicity (m + 1) and zero
residue at z = a.

4 The contour 
 itself depends on the integrand, in the sense that 
 is
chosen in such way that it does not encircle or pierce any cuts or has
poles on it. As before, this means that the renormalization group related
logarithms affecting the integrand are analytic within 
 and as such can
be considered as smooth deformations. Stated otherwise, these loga-
rithmic terms can again be neglected being irrelevant for determining
the topological number N
 .
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Proof As the multiplicity of the pole is m, we may consider
the Laurent series of F(z) in D′(a, r) (see for instance [38])

F(z) =
+∞∑

N=−m

Cn(z−a)n =
m∑

n=1

C−n

(z − a)n
+

+∞∑
n=0

Cn(z−a)n .

The coefficient C−1 is the residue of F(z) at z = a. There-
fore,

F ′(z) = −
m∑

n=1

nC−n

(z − a)n+1 +
+∞∑
n=1

nCn(z − a)n−1

=
m+1∑
n=2

Bn

(z − a)n
+

+∞∑
n=0

Dn(z − a)n,

where Bn = −(n − 1)C−n+1 and Dn = (n + 1)Cn+1. Thus

F ′(z) =
+∞∑

n=−m−1

En(z − a)n, (18)

with En = B−n for n ≤ −2, En = Dn for n ≥ 0 and E−1 =
0. Equation (18) is, by construction, the Laurent series of
F ′(z) at z = a. Then, z = a is a pole of multiplicity (m+1),
as the series starts with a term proportional to (z − a)−m−1.
It also has a residue equal to zero, as E−1 = 0. 
�

5 Applications

In this Section we will apply our complex topological object
(10) on both fermionic and gluonic sectors as a matter of
exercise, but, being the form of the propagator for Dirac
fermions at finite temperature more complicated because of
the absence of Lorentz invariance, the Dirac fermions will
be treated at zero temperature while the gluonic case, only,
will be treated at finite temperature.

5.1 A Dirac quark propagator that fits lattice data

Here we assume the analytic continuation p2 → z of the
Dirac quark propagator that fits lattice data, whose M(p2)

mass function is given by Eq. (9). The boundary conditions
(A4) for δN
 = 0 are satisfied, namely,

lim|z|→∞M(z) = μ and lim|z|→∞ δM(z) = δμ. (19)

We must emphasize that, because of the shape of our contour

, every possible complex pole with positive real part lies
within the surrounded region (see Fig. 2). For the propagator
on the right hand side of Eq. (3) and with dynamical mass
given by Eq. (9), there will always be three poles, one of
these being negatively real, and two complex conjugate ones.
Notice that for the present quark propagator there will not

appear new branch points due to the specific structure of
M(z).

For general values of the parameters (M3,m2, μ), we
find N
 = −2 and N
 = +2. More precisely, N
 = −2
was associated to a negative mass at zero momentum, and
also with a massless quark at zero momentum evolving to
a strictly negative mass. It is possible to find combinations
of the parameters so that the mass function is divergent at
some point. In these cases, if the mass starts from negative
values (considering p2 from zero to positive values),N
 also
acquires the value −2. On the other hand, we verified that
N
 = +2 is associated to configurations of the parameters
such that the dynamical mass is positive at zero momentum,
and also if it is a massless quark at zero momentum with an
increasing positive mass. For example, for the specific values
of (M3,m2, μ) that makes the quark propagator fit to lattice
data, [12,13], our topological invariant acquires the positive
value +2.

5.2 A gluon propagator that fits lattice data

In order to explicitly show that our generalized topological
object (10) can in fact be applied to the topological anal-
ysis of bosonic relativistic quantum fields within the MST
framework, we perform here the topological classification of
the space defined by the two-point Green function of glu-
ons, whose analytic expression is one that has been used in
the literature to fit lattice data at zero and finite temperature,
according to [13,19,39,40]. Such an analytic expression can
be derived by means of the refined Gribov–Zwanziger frame-
work; see e.g. [41,42].

Assuming the particular notation of [39], the gluon prop-
agator reads

D(p2) = c(1 + d p2)

p4 + 2r2 p2 + r4 + b2 = cd

p2 + M2(p2)
.

(20)

Performing the analytic continuation p2 → z to the complex
plane of the mass function, M, one has

M2(z) = z(2r2d − 1) + (r4 + b2)d

1 + dz
. (21)

Notice that the boundary conditions (A4) are satisfied,

lim|z|→∞M(z) =
√

2r2d − 1

d
and

lim|z|→∞ δM(z) = 4rd
5
2 δr + d

1
2 δd

d2(2r2d − 1)
1
2

, (22)

so that N
 is indeed a topological invariant under smooth
variation of M with respect to the parameters (r, b, d, c).

As mentioned before, since our proposed N
 is con-
structed in the complex plane and explicitly depends on the
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expression of the (analytic continuation of the) mass func-
tion of the propagator M(p2), it is quite possible that non-
removable singularities appear, others than 0 and ∞, as in
the case of the present example. Given the expression of the
complex mass functionM(z), at Eq. (21), one can check that
the integrand of Eq. (10) has also the new branch points − 1

d

and −b2d−dr22

−1+2dr2 , which are real and, therefore, lie outside the
region bounded by 
.

In this example we restrict ourselves to the finite temper-
ature results of [39]. The values of (r, b, d, c) are taken
from their Table II. Namely, the authors of [39] assessed the
following values of the temperature (in unities of the critical
temperature): T/Tc = 0.65; T/Tc = 0.74; T/Tc = 0.86;
T/Tc = 0.99; T/Tc = 1.20; T/Tc = 1.48; T/Tc = 1.98;
and T/Tc = 2.97. For all the temperature values with the
exception of the highest three, they set b = 0.0. Notice that
for T/Tc = 1.20 (clearly above the critical temperature) the
parameter b is also set to zero.

For the values reported in [39], our topological invariant
acquires the following values: N
 = 0 whenever b = 0,
since the propagator then displays only a (negative) real
(double) pole. Such configuration appears for temperatures
T/Tc = 0.65; T/Tc = 0.74; T/Tc = 0.86; T/Tc = 0.99;
T/Tc = 1.20. On the other hand, we find N
 = +2 for the
three highest temperatures T/Tc = 1.48; T/Tc = 1.98; and
T/Tc = 2.97 (where b �= 0). Therefore, these results sug-
gest a phase transition at a critical temperature somewhere
between T/Tc = 1.20 and T/Tc = 1.48, different from the
deconfinement phase transition found by the authors of [39].

Interestingly, the authors of [37] found NW = 0 for gauge
propagators displaying only real poles; and NW = −2 for
gauge propagators with a set of complex conjugate poles.
Here, again, we point out that our topological invariant
assumes the same absolute values as the one of [37], despite
that they do not necessarily represent the same topolog-
ical quantity. Therefore, following a completely different
approach from the one in [37] (although both are aimed to
the momentum space topological analysis of the gauge field
two-point Green’s function), we could find a phase transi-
tion between different regimes of the gauge propagator, in
agreement with [37].

6 Conclusions

We developed a topological classification of relativistic quan-
tum systems within the momentum space topology frame-
work, starting with the usual topological invariant N3 as
applied to Dirac fermions. This topological invariant can
experience integer jumps when one crosses different open
regions, which are limited by phase boundaries. This change
can be related to the non-analyticities appearing in the inte-
grand of (6).

Afterwards, we proposed a new topological invariant,N
 ,
that is sensitive to the existence of complex poles of the prop-
agator of the relativistic quantum field, be it fermion or boson.
This topological invariant was constructed by performing the
analytic continuation p2 → z to the complex plane of the
usual N3. As a result, N
 depends on the closed contour 


and on the analytic expression of M(z). In order to ensure
the invariance of N
 with respect to smooth variations of
M(z), we found that M(z) and δM(z) must be constant in
the limit |z| → ∞. We applied this topological number N


to a model Dirac quark propagator whose analytic expression
can fit quite well corresponding lattice data. In addition, we
also applied it to a gluon propagator form that can fit zero
and finite temperature lattice data. We made use of the ratio-
nal function fits according to [39], and we could find a phase
transition at a temperature within the range T/Tc = 1.20 and
T/Tc = 1.48, which is slightly above the thermodynamic
critical (deconfinement) temperature found by the authors.

While eq. (1) has the clear physical meaning of being
related to a non-dissipative conductivity (Hall, spin Hall, etc,
c f. [43] and [44]) at this stage the physical interpretation of
our invariant is less obvious. What is clear is that it is sensitive
to the presence of complex conjugate poles thus, as shown
in refs. [37] and [45], it “measures” the possible occurrence
of a violation of the “reflection positivity condition” (the
Euclidean counterpart to the positive definiteness of the norm
in the Hilbert space of the corresponding Wightman quantum
field theory, see the Osterwalder–Schrader axioms [46,47])
in terms of the Schwinger function. Violation of the reflection
positivity condition is regarded as a signal for gluon confine-
ment (see Section VI of [37] and Section V and VI of [45],
as well as [48]).

For the particular propagator (20), depending on the value
of the parameters, we will encounter either two (possibly
degenerate) real poles or two complex conjugate ones. Only
in the latter case, we will have a contribution to the topolog-
ical invariant as defined in expression (10). Moreover, in the
presence of a set of such poles, it has been shown explicitly
in e.g [41,49,50] that the Schwinger function,

C(t) = 1

2π

∫ +∞

−∞
dpeipt D(p2) , (23)

is no longer positive definite, in accordance with lattice mea-
surement of the same quantity, see for example [51,52].

For these reasons we believe that our topological invariant
proposed in Eq. (10) may be interpreted as an indication of
whether the quantum system is in a confined or deconfined
phase. However, for the moment, this is only an intuition
without a rigorous analytic proof, which deserves further
investigation.

For future work, it would be interesting to use improved
fits to more recent finite temperature gluon data, to see if the
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phase transition coincides with the deconfinement transition.
That such is possible can be inferred from the preliminary
fitting report of [40], where in contrast to the here used num-
bers of [39], there are complex poles below (up to T = 0)
and around Tc. More takes on the analytic structure of gluon
and/or quark propagators can be found in e.g. [45,53–60].
Although these rational function fits never capture the renor-
malization group-controlled logarithmic tails, we explained
how our construct is insensitive to these structures anyhow.

In addition, it would also be rather interesting to follow
the temperature-evolution, if any, of the quark topological
number based on the rather recent lattice output of [32], to
see if one can find a topological signal of the deconfinement
and/or chiral transition in the quark sector. We hope to come
back to these issues in the foreseeable future.
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Appendix A: Alternative proof that N� is a homotopic
invariant

For a second, more explicit, demonstration of the invariance
of Eq. (10), we split our contour as 
 = C(α) + L−(t) +
L+(t) at the limit R → ∞, as depicted in Fig. 2, writing N


as

N
 = − 1

2π
lim
R→∞

[∫
C(α)

dθ(z) +
∫
L−(t)

dθ(z) +
∫
L+(t)

dθ(z)

]
.

(A1)

Given the parameterizations (12), (13) and (14), one has

N
 = − 1

2π

[ ∫ ε
R

π− ε
R

d

dα
θ(Reiα) dα

+
∫ 0

−R

d

dt
θ(t + iε) dt +

∫ R

0

d

dt
θ(t + iε) dt

]
,

(A2)

with R → ∞. Let us focus on the integral over the contour
piece C(α). As we avoid poles and branch points/cuts on 
,
such an integral reduces to

− 1

2π
lim

R→∞ θ(Reiα)

∣∣∣∣
ε
R

π− ε
R

= − 1

π
lim
R→∞

[
R

1
2 ei α

2 M(Reiα)

Reiα + M2(Reiα)

+Arctan

(M(Reiα)

R
1
2 ei α

2

)] ∣∣∣∣
ε
R

π− ε
R

= 0,

if M(z) is at most constant at |z| → ∞. This means that our
topological invariant reduces to

N
 = − 1

2π
lim
R→∞

[∫
L−(t)

dθ(z) +
∫
L+(t)

dθ(z)

]
.

The variation δMN
 , due to δM(z), on Eq. (A2), lead us to

δMN
 = − 1

2π

[ ∫ π− ε
R

ε
R

d

dα
δMθ(Reiα) dα

+
∫ 0

−R

d

dt
δMθ(t + iε) dt −

∫ R

0

d

dt
δMθ(−t + iε) dt

]
.

The variation δMθ(z) reads

δMθ(z) = 4

⎡
⎣ δM

√
z
(

1 + M2

z

)
⎤
⎦ , (A3)

just as Eq. (17). Thus, as there are no singularities along the
contour 
, in order to ensure δMN
 = 0, the analytical con-
tinuation of the mass function M(z) and its small variation
δM(z) must be constant at the boundary |z| → ∞, i.e.,

lim|z|→∞M(z) = M∞ and lim|z|→∞ δM(z) = δM∞.

(A4)
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