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Abstract Black hole radiation from an infinitesimally thin
massive collapsing shell, possessing a global monopole
charge, which in turn leads to a Schwarzschild black hole with
a global monopole charge has been shown to be processed
by a unitary evolution. The exterior metric of the collapsing
shell is described by the global monopole (GM) metric. The
analysis is performed using the Wheeler–deWitt formalism
which gave rise to a Schrödinger-like wave equation. Exis-
tence of unitarity is confirmed from two independent lines of
approach. Firstly, by showing that the trace of the square of
the density matrix, of the outgoing radiation, from a quan-
tized massless scalar field, is unity. Secondly, by proving that
the conservation of probability holds for the wave function
of the system.

1 Introduction

Recently, in an attempt to shed some light on the resolution
of the information loss paradox [1–6], it has been shown by
Das and Banerjee [7] that radiation from a collapsing charged
shell is processed with a unitary evolution. This was achieved
in a Reissner–Nordström background using the Wheeler–
deWitt formalism [8,9] and unitarity checks were carried out
using two independent lines of approach, density matrix and
conservation of probability. We extend the result as given in
[7] by performing the same kind of analysis for a not asymp-
totically flat spacetime. We adopt the formalism and method
of analysis from [7] and apply it to a global monopole back-
ground metric [10]. It was shown in [11] that a Schwarzschild
black hole with a global monopole charge Hawking radiation
is Planckian in nature. So, naturally it is a relevant theoretical
question to investigate unitarity issues in such backgrounds.
This is the primary motivation of this work.
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The present work shows that the process of black hole
radiation, in a not asymptotically flat spacetime, is unitary.
Saini and Stojkovic [12] worked with a not asymptotically flat
spacetime before, specifically with an asymptotically AdS
spacetime. However, the results obtained therein are based on
numerical estimates. For not asymptotically flat spacetimes,
our analysis and therby the results obtained from them are
more robust as they are done analytically.

We work with a metric that includes a global monopole
charge η. The Schwarzschild case as considered in [13], is
recovered trivially as a special case by setting η = 0.

In Sect. 2 we describe the global monopole metric. Sec-
tion 3 contains the description of the model. The scalar field
is discussed in Sect. 4. The unitarity is ascertained in Sect. 5.
The last section includes a discussion of the results.

2 The global monopole

The metric for a Schwarzschild black hole with a global
monopole charge η is given in natural units as [10,11,14],

ds2
GM = −

(
1−η2−2M

r

)
dt2+

(
1 − η2 − 2M

r

)−1

dr2

+ r2dΩ2
2 , (1)

where, η2 << 1 and M is the mass of the black hole. Note
that the above metric is not asymptotically flat and even with
M = 0 the spacetime is not flat, as it has some non-zero
curvature [11],

R0
0 = R1

1 = 0 = R01, (2)

and, R2
2 ∝ η2

r2 , (3)
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where the above terms are the components of the Ricci tensor.
The observational signature of a global monopole is in the
existence of a “solid angle deficit”.

The event horizon is at,

RGM = 2M

1 − η2 . (4)

Let us also give below the stress-energy tensor corresponding
to the Global monopole field [14],

T 0
0 = T 1

1 = η2

8πr2 , (5)

where we see that the total energy is divergent and so solu-
tions of such form as Eq. (1) are unrealistic and perhaps
appear in some instances of cosmic phase transition [10].

The surface gravity κ for the metric as given in Eq. (1) is
obtained by noting that the metric is of the form [15],

ds2 = − f dt2 + f −1dr2 + r2dΩ2
2 , (6)

implying, κ = f
′
(r)

2
, (7)

implying, κGM = (1 − η2)2

4M(
as, f (r) = 1 − η2 − 2M

r

)
. (8)

where κGM is the surface gravity for the global monopole
metric.

The semi-classical study of the metric as given in Eq. (1)
was done in [11] and it was show that the outgoing Hawking
radiation is thermal possessing a Planck spectrum,

N = 1

e8πMω/(1−η2)2 − 1
(9)

where N is the number density of outgoing quanta of parti-
cles. The Hawking temperature is recovered to be,

TGM = (1 − η2)2

8πM
, (10)

which can also be obtained from Eq. (8) using the Hawking
relation TH = κ

2π
(which holds here too).

3 The model

In our model we have an infinitesimally thin massive collaps-
ing spherical shell with a global monopole charge [11,14],
whose background metric is gμν . There is also a massless
scalar field Φ whose dynamics we shall study. We assume
that Φ couples to the gravitational field (which originates

from the presence of a non-trivial background metric). How-
ever, Φ does not directly couple to the shell. An asymptotic
observer, at the future null infinity, is present to detect the out-
going flux with a detector and by assumption does not interact
with the “shell-metric-scalar” system. Hence, the observer
does not significantly affect the evolution of the system and
similarly for the system vis-a-vis the observer. The action for
the whole system is then given by [16],

Stot =
∫

d4x
√−g

[
− R

16π
+ 1

2
(∂μΦ)2

]
− σ

∫
d3ξ

√−γ

+ Sobs, (11)

where the first term denotes the usual Einstein-Hilbert term
for the background metric gμν , the second term represents the
action for the massless scalar field, the third term represents
the shell’s action in terms of its world-volume coordinates
ξa(a = 0, 1, 2), σ is the tension of the shell (or, the shell’s
proper energy density per unit surface area) and γab is the
shell’s induced world-volume metric, given by,

γab = gμν∂a X
μ∂bX

ν, (12)

where Xμ(ξa) determines the location of the shell. The
Roman indices run over the internal world-volume coordi-
nates ξa(a = 0, 1, 2) while the Greek indices run over the
usual spacetime coordinates.

The last term Sobs represents the action for the observer.

3.1 Spacetime foliation-GM coordinates

The mass and the global monopole charge is confined in an
infinitesimally thin shell [14], as per our considerations. So
that for an exterior observer the distribution would be spher-
ical. However, the inside of the shell would be empty and
would be described by the Minkowski metric. The exterior
of the shell is described by a global monopole metric. Thus,
we have,

ds2
out = −

(
1 − η2 − 2M

r

)
dt2

+
(

1 − η2 − 2M

r

)−1

dr2 + r2dΩ2
2 , (13)

ds2
in = −dT 2 + dr2 + r2dΩ2

2 , (14)

ds2
on−shell = −dτ 2 + r2dΩ2

2 , (15)

for r > R(t), r < R(t) and r = R(t) respectively. Here r is
the radial coordinate. So r = R(t) describes the collapsing
shell and R := R(t) is the radius of the shell. T , τ and t are the
time coordinate inside the shell, proper time on the shell and
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time coordinate of the exterior observer respectively. dΩ2
2 is

the standard S2 metric.
An important consideration to observe here is that since

the above GM coordinates would lead to a coordinate singu-
larity, at R = RGM (the event horizon), we might face trouble
using this for our analysis. However, observe that from the
point of view of an asymptotic observer, the event horizon
is an infinitely red shifted surface. So, the observer can only
observe the collapse of the shell approaching its event hori-
zon in infinite time as per his time t . Thus, the analysis would
happen upto this limit which is relevant from an asymptotic
viewpoint and the GM coordinates are well behaved upto this
limit, that is just outside the event horizon.

Similar to [7], we consider timelike unit vectors uα :=
dxα

out
dτ

and vα := dxα
in

dτ
, for ds2

out and ds2
in respectively. From

their normalization, that is, uαuα = −1 and vαvα = −1,

one obtains, at r = R(t), tτ =
√

E+R2
τ

E , Tτ = √
1 + R2

τ and

Tt =
√
E − (1 − E)

R2
t
E . In the above expressions, a subscript

indicates a differentiation w.r.t. that particular coordinate.
xα
out and xα

in are the coordinates pertaining to ds2
out and ds2

in
respectively. Also, E := 1 − η2 − 2M

R(t) .

3.2 Mass of the shell

According to Israel’s formulation [14,17,18], the mass M of
the shell can be obtained as,

M = 4πσ R2
[√

1 + R2
τ − 2πσ R

]
− η2R

2
, (16)

We shall show below that M would turn out to be a constant
of motion. So, there would be no conflict with the fact that M
is a constant of integration in the metric and can be identified
as the mass of the shell. Similar to the results given in [19],
one can write,

Rττ

α
= η2

8πσ R2 +6πσ−2α

R
,

(
where, α :=

√
1 + R2

τ

)
.

(17)

Now, using Eqs. (16) and (17),

Mτ = Rτ

[
8πσ R(α − 2πσ R) − η2

2

]

+Rτ

[
4πσ R2

(
η2

8πσ R2 −2α

R
+6πσ−2πσ

)]
=0.

Thus, we see that M is a constant of motion.
Since, we have proven that M is a constant of motion, we

can have the following identification,

Hshell ≡ M, (18)

where Hshell is the Hamiltonian of the shell. Hshell is to be
treated classically for our analysis.

3.3 Action for the shell

The shell’s action is given as,

Sshell = −
∫

dT

[
4πσ R2

[√
1−R2

T−2πσ R

]
−η2R

2

]
.

(19)

The Lagrangian corresponding to the shell’s action yields
the conjugate momentum as,

Πshell = ∂Lshell

∂RT
= 4πσ R2

⎛
⎝ RT√

1 − R2
T

⎞
⎠ . (20)

Now the Hamiltonian is,

Hshell = Πshell RT − Lshell

= 4πσ R2
[√

1 + R2
τ − 2πσ R

]
− η2R

2
. (21)

Hshell as obtained above matches with M as expressed in Eq.
(16). Hence, the action in Eq. (19) is consistent (since, this
action gives the correctHshell as expressed in Eq. (18)). Now
let us consider Sshell in terms of time t , (using the expression
for Tt ),

Sshell = −
∫

dt

⎡
⎣4πσ R2

⎡
⎣

√
E − R2

t

E

⎤
⎦

⎤
⎦

+
∫

dt

[
4πσ R2

[
2πσ R

√
E − 1 − E

E
R2
t

]]

+
∫

dt

[
η2R

2

√
E − 1 − E

E
R2
t

]
. (22)

Let us also consider the conjugate momentum and Hamilto-
nian in terms of t ,

Πshell = ∂Lshell

∂Rt

= 4πσ R2Rt√
E

⎡
⎣ 1√

E2 − R2
t

− 2πσ R(1 − E)√
E2 − (1 − E)R2

t

⎤
⎦

− 4πσ R2Rt√
E

⎡
⎣ η2(1 − E)

8πσ R
√
E2 − (1 − E)R2

t

⎤
⎦ , (23)
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Hshell = Πshell Rt − Lshell

= 4πσ E3/2R2

⎡
⎣ 1√

E2−R2
t

− 2πσ R√
E2−(1−E)R2

t

⎤
⎦

− 4πσ E3/2R2

⎡
⎣ η2

8πσ R
√
E2 − (1 − E)R2

t

⎤
⎦ .

(24)

3.4 Incipient limit

We define the so-called incipient limit, R → RGM , as the
limit when the radius of the shell approaches the event hori-
zon. From Eqs. (23) and (24) we note that, as R → RGM ,

Πshell = 4πμR2Rt√
E

√
E2 − R2

t

, (25)

Hshell = 4πE3/2μR2√
E2 − R2

t

, (26)

where, μ := σ
(

1 − 2πσ RGM − η2

8πσ RGM

)
. Then we have,

Hshell = [(EΠshell)
2 + E(4πμR2)2]1/2 ≡ [q2 + m2]1/2,

(27)

where q2 := (EΠshell)
2 and m2 := E(4πμR2)2.

Hshell as given in Eq. (27), is the Hamiltonian of a rela-
tivistic particle with a position dependent mass. This is how
the shell behaves in the incipient limit as R → RGM . We
shall show below that in this limit also, Hshell would turn
out to be a constant of motion. Since, dHshell

dτ
= ∂Hshell

∂τ
, we

have,

d

dτ

⎛
⎝4πμ

E3/2R2√
E2 − R2

t

⎞
⎠ = 0

leading to,
E3/2R2√
E2 − R2

t

= Hshell

4πμ
=: h (a constant),

(as τ doesn′t appear explici tly in Hshell). (28)

These expressions can be arrived at independently using
an alternative approach (see Appendix).

Classically, we have from Eq. (28) and from the expression
of Tt ,

Rt = ±E

√
1 − ER4

h2 ≈ ±E

(
1 − 1

2

ER4

h2

)
≈ ±E (29)

(as R → RGM ),

Tt = E

√
1 + (1 − E)

R4

h2 , (30)

where solving Eq. (29) in terms of t will give us the classical
behaviour of the shell as R(t) → RGM .

E can be written as,

E = (1 − η2)

(
1 − RGM

R

)
= ε

(
1 − RGM

R

)
, (31)

where ε := (1 − η2).
In the incipient limit, E → 0 (as R(t) → RGM ). Then,

in this limit, Rt ≈ ±E . Now solving for R(t) we get (from
Eqs. (29) and (31)),

± 1 = 1

ε

R

R − RGM

dR

dt
≈ 1

ε

RGM

R − RGM

dR

dt

(upto leading order)

integrating, RGMln

(
R f − RGM

R0 − RGM

)
= ±εt f

(R0 := R(0) and R f := R(t f ))

thus, R f = RGM + (R0 − RGM ) e±εt f /RGM , (32)

where the lower limit of integration w.r.t. t is t = 0 and the
upper limit is t = t f .

Similar to as in [7], as R f → RGM and t f > 0 along
with ε > 0 (as, η2 << 1), we observe that, t f → ∞.
Thus, the negative sign for R(t) describes a collapsing model
in the incipient limit. Equation (32) also shows that from
the viewpoint of an asymptotic observer, the formation of
the event horizon takes infinite time implying that the event
horizon is an infinite red shifted surface, which matches with
the classical result, as stated earlier while choosing the GM
coordinates.

4 The scalar field Φ

The action for the scalar field Φ can be written as a sum of
the actions,

SΦ = SΦ)in + SΦ)out

= 2π

∫
dt

[
−(∂tΦ)2

(∫ R

0
dr r2 1

Tt

)]

+ 2π

∫
dt

[
(∂rΦ)2

(∫ R

0
dr r2 Tt

)]
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+ 2π

∫
dt

[
−(∂tΦ)2

(∫ ∞

R
dr r2 1

1 − η2 − 2M
r

)]

+ 2π

∫
dt

[
(∂rΦ)2

(∫ ∞

R
dr r2

(
1−η2−2M

r

))]
,

(33)

where the limits of the integration w.r.t. r for SΦ)in are from
0 to R and for SΦ)out are from R to ∞.

Tt → E (upto leading order) in the incipient limit (from
Eq. (30)). Thus,

lim
R→RGM

Tt

1 − η2 − 2M
r

= R − η2R − 2M

r − η2r − 2M

r

R
= 0.

Tt vanishes faster than
(
1 − η2 − 2M

r

)
in the limit R →

RGM . Thus, for the coefficients of −(∂tΦ)2, the 1
Tt

term

dominates. For the coefficients of (∂rΦ)2, the dominating
term is

(
1 − η2 − 2M

r

)
. Therefore, in the incipient limit,

SΦ → 2π

∫
dt

[
− 1

E

∫ RGM

0
dr r2(∂tΦ)2

]

+ 2π

∫
dt

[∫ ∞

RGM

dr r2
(

1 − η2 − 2M

r

)
(∂rΦ)2

]
.

(34)

4.1 Mode expansion for Φ

For Φ, one can easily check from its equation of motion, that
is ∂2Φ = 0, that for r < R(t) (from SΦ)in),

∂2Φ

∂r2 + 2

r

∂Φ

∂r
= 1

T 2
t

∂2Φ

∂t2 − Ttt
T 3
t

∂Φ

∂t
, (35)

where Tt , along with its powers and derivatives w.r.t. t , are
independent of r .

Similarly, for r > R(t), we have (from SΦ)out )),

(
1 − η2 − 2M

r

)2
∂2Φ

∂r2

+ 2(r − M)

r2

(
1 − η2 − 2M

r

)
∂Φ

∂r
= ∂2Φ

∂t2 . (36)

From Eqs. (35) and (36), we notice the following mode
expansion (due to the separability property satisfied by the
above equations),

Φ(r, t) =
∑
k

ak(t) fk(r), (37)

where ak(t) are the modes and fk(r) are some real-valued
smooth functions of r.

Now SΦ in terms of modes ak is (as R → RGM ),

SΦ =
∫

dt
∑
k,k′

[
− 1

2E

dak
dt

Akk′
dak′

dt
+ 1

2
ak Bkk′ak′

]
,

(38)

where Akk′ and Bkk′ are defined as,

Akk′ := 4π

∫ RGM

0
dr r2 fk(r) fk′ (r), (39)

Bkk′ := 4π

∫ ∞

RGM

dr r2
(

1 − η2 − 2M

r

)
f

′
k(r) f

′
k′ (r), (40)

where, f
′
k(r) := ∂ fk(r)

∂r . Observe that, both Akk′ and Bkk′ are
independent of r and t (as no R(t) appears in them).

Following [7], we define the conjugate momenta, πks (to
the modes ak) as,

πk := ∂LΦ

∂ ȧk
≡ −i

∂

∂ak
, (41)

where ȧk := dak
dt , and from Eq. (38), we have (with LΦ

defined as the Langrangian for Φ),

LΦ =
∑
k,k′

[
− 1

2E
ȧk Akk′ ȧk′dt + 1

2
ak Bkk′ak′

]
, (42)

LΦ = − 1

2E
(ȧTAȧ) + 1

2
(aTBa), (43)

where A and B are non-singular linear operators, such that,
Akk′ ∈ A and Bkk′ ∈ B in the chosen bases, say {ȧk} and
{ak} respectively. In the basis {ak}, a is a column vector, such
that, ak ∈ a. One can similarly express ȧ in the basis {ȧk}.

For the Hamiltonian of Φ, HΦ , we obtain,

HΦ =
∑
k

πk ȧk − LΦ

=
∑
k,k′

[
1

2E
ȧk Akk′ ȧk′ dt + 1

2
ak Bkk′ak′

]
(44)

= E

2
(ΠTA−1Π) + 1

2
(aTBa), (45)

where Π is a column vector, such that, πk ∈ Π , in a chosen
basis say {πk} and A−1 is the inverse of A.

Following arguments similar to [7], note that, B and A are
real and symmetric infinite dimensional matrices and hence
are self-adjoint. Therefore, by the Spectral Theorem, there
exists orthonormal bases of position space and momentum
space consisting of respective eigenvectors of B and A. Fur-
thermore, all the corresponding eigenvalues are real. Say, for
instance, the bases for position space and momentum space
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are {bk} and {ḃk} respectively (where, each bk is a linear
combination of the original basis vectors ak and each ḃk is a
linear combination of the original basis vectors ȧk).

4.2 The Schrödinger-like wave equation

If we study the equation for one eigenvector b ∈ {bk}, then
our conclusion will be the same for all other eigenvectors (see
[16]). So, we shall solve the Schrödinger-like wave equation
for a wave functional Ψ ({bk}, t), which by the above assump-
tion of equivalence is now a wave function ψ(b, t). There-
fore, ψ(b, t) ≡ Ψ ({bk}, t). Hence, using Eq. (43), we write
the Schrödinger-like wave equation (for a single eigenvector
b) as,

[
−

(
1−η2−2M

R

)
1

2α

∂2

∂b2 +1

2
βb2

]
ψ(b, t)=i

∂ψ(b, t)

∂t
,

(46)

where, α and β are the eigenvalues of A and B respectively.
We define a new time parameter,

η̃ :=
∫ t

0
dt

(
1 − η2 − 2M

R

)
(47)

leading to,
∂η̃

∂t
= E, (48)

and write Eq. (46) as

[
− 1

2α

∂2

∂b2 + β

2E
b2

]
ψ(b, η̃) = i

∂ψ(b, η̃)

∂η̃
. (49)

Equation (49) becomes,

[
− 1

2α

∂2

∂b2 + 1

2
αω2(̃η)b2

]
ψ(b, η̃) = i

∂ψ(b, η̃)

∂η̃
, (50)

where, we have chosen to set η̃(t = 0) = 0 and ω is defined
as,

ω2(̃η) :=
(

β

α

)
1

E
=: ω2

0

E
. (51)

We observe that, Eq. (50) is a time dependent Simple Har-
monic Oscillator (SHO) equation with ω(̃η) as the frequency.

In the incipient limit (using Eqs. (31) and (29)),

dE

dt
= 2M

R2

dR

dt
= ε

2M

εR2

dR

dt
≈ −εE

RGM

R2
GM

= − εE

RGM
.

(52)

Integrating Eq. (52) w.r.t. t one gets (as R → RGM ),

E = 1 − η2 − 2M

R(t)
∼ e−εt/RGM . (53)

From Eq. (53) we see that at late times, 1 − η2 − 2M
R(t) ∼

e−εt/RGM . Since we are interested in the incipient limit, that
is, in late times of the collapsing process, we can choose the
behaviour of R(t) at early times as per our convenience for
simplifying the calculations. Therefore, we choose both past
and future behaviour of R(t) to be stationary. Hence, we can
take the metric to be flat for all t ∈ (−∞, 0). Stationarity
in future can be achieved by taking a cut-off time t f for the
collapse and then allowing t f → ∞, thus going into the con-
tinual collapse case till the black hole is formed. Therefore,

E =
⎧⎨
⎩

1, f or t ∈ (−∞, 0)

e−εt/RGM , f or t ∈ (0, t f )
e−εt f /RGM , f or t ∈ (t f ,∞).

(54)

The above choice of R(t) may seem quite problematic as
dR
dt is discontinuous at 0 and t f , but references [16,20] show

that the particle production by the collapsing shell happens
in the range, 0 < t < t f and in the t f → ∞ regime, all the
solutions obtained are smooth and well-behaved. Therefore
with the above considerations, the wavefunction ψ would
capture the whole collapse scenario, and in the limit of t f →
∞ or R(t) → RGM , black hole formation sets in.

We note that, at early times, t ∈ (−∞, 0), the spacetime
is Minkowski and therefore the initial vacuum states at J −
(past null infinity) are1 just the simple harmonic oscillator
ground states (this can be seen from the form of Eq. (50),
which with η̃ = 0, is the SHO equation). Thus,

ψ0(b) := ψ(b, η̃ = 0) =
(αω0

π

)1/4
e−mω0b2/2, (55)

where ψ0(b) represents the SHO ground state and {ψn(b)}
will denote the SHO basis states at early times.

Equation (55) suggests that ω0 defined in Eq. (51) can be
identified with the ground state frequency associated with the
initial vacuum state.

With the help of Eq. (55), the exact solution to Eq. (50) is,

ψ(b, η̃) = eiχ(̃η)

[
α

πζ 2

]1/4

exp

[
i

(
ζη̃

ζ
+ i

ζ 2

)
αb2

2

]
,

(56)

where ζ is the solution of the equation,

ζη̃η̃ + ω2(̃η)ζ = 1

ζ 3 , (57)

1 One may see that the intuition behind identifying the states at J−
with the states at t ∈ (−∞, 0) actually comes from the fact that the
observer is at r → ∞. Now at an early time he is at t → −∞ which is
J− and at late times he is at t → ∞ which is J+.
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with the following initial conditions,

ζ(0) = 1√
ω0

, (58)

ζη̃(0) = 0, (59)

and, χ(̃η) is given by,

χ(̃η) := −1

2

∫ η̃

0

dη̃
′

ζ 2(̃η
′
)
. (60)

Differential equations of the form Eq. (50) have been exten-
sively studied in [21–25].

From Eqs. (51), (53) and (54), we have the following (for
t > 0),

ω(̃η(t)) = eεt/2RGMω0. (61)

Using Eqs. (48) and (61),

Ω(t) =
(

∂η̃

∂t

∣∣∣∣
t>0

)
ω(̃η) = e−εt/2RGMω0, (62)

where Ω(t) is defined to be the frequency w.r.t. time t .
We note that at early times (J −), the states are the initial

vacuum states of SHO, as described by ψ0(b). With time,
the frequency of the states Ω(t) evolve, as per Eq. (62), and
more and more states get excited. Finally, when the observer
measures them at J + (future null infinity), that is for some
t ∈ (t f ,∞), we have the following mode expansion (follow-
ing the evolution n the Schrödinger picture [26]),

ψ(b, t) =
∑
n

cn(t)φn(b), (63)

where cn(t) represent the probability amplitudes. The final
SHO states {φn(b)} are with the frequency Ω f = Ω(t f ) (a
constant), given by,

φn(b) =
(

αΩ f

π

)1/4 e−αΩ f b2/2

√
2nn! Hn(

√
αΩ f b), (64)

where Hn are the Hermite polynomials. Observe that,

Ω(t f ) = e−εt f /2RGMω0; (65)

cn can be computed from an overlap integral as (see
Appendix),

cn =
⎧⎨
⎩

(−1)n/2eiχ

(Ω f ζ
2)1/4

√
2
P

(
1 − 2

P

)n/2 (n−1)!!√
n! , f or even n

0, f or odd n,

(66)

where P := 1 − i
Ω f

(
ζη̃

ζ
+ i

ζ 2

)
.

5 Unitarity

5.1 Density matrix approach

We shall now calculate the density matrices, ρ̂i and ρ̂ f , for
the initial (J −) and the final (J +) states respectively. ρ̂i and
ρ̂ f can be written as (see [12,13]),

ρ̂i =
∑
m,n

lml
∗
n |ψm〉〈ψn|, (67)

ρ̂ f =
∑
m,n

cmc
∗
n |φm〉〈φn|, (68)

where, ln and cn are the probability amplitudes appearing in
the intial and final states respectively.

Since initially the system was in the SHO eigenstates {ψn}
and the wavefunction was normalized, we obtain,

Tr(ρ̂i ) = 1. (69)

From Eq. (66), with λ := ∣∣1 − 2
P

∣∣, we have,

Tr(ρ̂ f ) =
∑

even n

|cn|2

= 2√
Ω f ζ 2|P|

∑
even n

(n − 1)!!
n! λn

= 2√
Ω f ζ 2|P|

1√
1 − λ2

= 2√
Ω f ζ 2|P|

1√
1 − ∣∣1 − 2

P

∣∣2
. (70)

P has been computed explicitly and used in Eq. (70) to obtain
(see Appendix),

Tr(ρ̂ f ) = 1. (71)

Equation (71) shows that the necessary condition for the uni-
tary evolution of states holds. For the sufficient condition, we
compute Tr(ρ̂2

f ). From Eq. (68),
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ρ̂ f =
∑
m,n

cmc
∗
n |φm〉〈φn|

leading to, ρ̂2
f =

(∑
m,n

cmc
∗
n |φm〉〈φn|

) ⎛
⎝∑

i, j

ci c
∗
j |φi 〉〈φ j |

⎞
⎠

=
∑

m,n,i, j

cmci c
∗
nc

∗
j |φm〉〈φn|φi 〉〈φ j |

=
∑
m,n, j

cmc
∗
j |cn|2|φm〉〈φ j |

=
∑
m, j

cmc
∗
j |φm〉〈φ j |

(∑
n

|cn|2
)

=
∑
m, j

cmc
∗
j |φm〉〈φ j |

(
as,

(∑
n

|cn|2
)

= 1 by eqn(71)

)

= ρ̂ f . (72)

Therefore, by Eq. (72) we get,

Tr(ρ̂2
f ) = Tr(ρ̂ f ) = 1. (73)

Analytically, we have shown that the idempotency of the final
density matrix holds indicating a pure quantum state to pure
quantum state transition.

5.2 Conservation of probability approach

The probability current 4-vector Jμ can be defined as,

J 0 = |ψ |2, (74)

J = 1

2αi
[ψ∗∇ψ − ψ∇ψ∗]. (75)

As b is an eigenfunction of B, it is independent of the spatial
coordinates xi . Thus, we conclude that J = 0. This further
suggests,

∇μ J
μ = ∂|ψ |2

∂tobs
. (76)

Writing tobs = t (for the observer’s time coordinate), we
have (from Eq. (48)),

∇μ J
μ = ∂|ψ |2

∂t
= ∂|ψ |2

∂η̃

∂η̃

∂t
= E

∂|ψ |2
∂η̃

For, R → RGM , ∇μ J
μ = 0 (as, E → 0) (77)

Again analytically, we have shown from (Eq. (77)), that prob-
ability is conserved in the system, in the incipient limit of
black hole formation.

6 Conclusion

We showed analytically and comprehensively that the black
hole radiation, for a spacetime which is not asymptotically
flat, is processed with a unitary evolution. This is confirmed
from the density matrix consideration as well as from the
conservation of probability consideration.

The Schrödinger-like wave equations that we used bear
resemblance to a minisuperspace version of Wheeler–deWitt
equations [8]. Interestingly, such equations have a present
resurgence, in the context of issues concerned with unitarity
[27–29].

Saini and Stojkovic [13] had showed that black hole radia-
tion is processed with a unitary evolution, for a Schwarzchild
black hole, from the density matrix consideration. However,
they had achieved their conclusion through numerical esti-
mates. We worked with a more general, metric, the global
monopole metric, and results for the Schwarzchild case is
recovered from this by putting η = 0.

The computations on unitarity are all in the incipient limit,
the limit of black hole formation. Hence, it does not really
take care of the complete black hole evaporation process.
However, if unitarity is preserved in this limit, it should be
valid at every instant of time.

In saying this, we further emphasize that, what we have
shown in this paper is that black hole radiation is unitary in a
not asymptotically flat background spacetime. The present
result of unitarity in spacetime that is not asymptotically
flat, together with the results obtained in [7] that the uni-
tarity is preserved for a Reissner–Nordstrom metric which
is not globally hyperbolic, settles the issue of conservation
of unitarity in spherically symmetric, static (1 + 3) dimen-
sional spacetimes of the form as given in Eq. (6). It also
deserves mention that similar results for a Schwarzschild
backround obtained in [13] numerically, can be arrived at
as a special case from both of these more involved examples.
So the results are quite consistent, and should have signifi-
cant implications towards the resolution of the information
loss paradox.
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Appendix

Alternate motivation for Sshell

In this section, we present a different action than Sshell . We
shall call it Snew. We shall further show that in the incipient
limit it will give rise to Hshell and Πshell . Since we know
that the shell behaves like a relativistic particle, we define
the new action to be,

Snew = −
∫

dτ M = −
∫

dT
M

Tτ

,

= −4πσ

∫
dT R2

[
1 − 2πσ R

√
1 − R2

T

]

+
∫

dT
η2R

2

√
1 − R2

T ,

= −4πσ

∫
dt R2

×
⎡
⎣

√
E − 1 − E

E
R2
t − 2πσ R

√
E − R2

t

E

⎤
⎦

+
∫

dt
η2R

2

√
E − R2

t

E
. (78)

Then,

Lnew = −4πσ R2

⎡
⎣

√
E − 1 − E

E
R2
t − 2πσ R

√
E − R2

t

E

⎤
⎦

+ η2R

2

√
E − R2

t

E
, (79)

Πnew = ∂Lnew

∂Rt

= 4πσ R2Rt√
E

⎡
⎣ 1 − E√

E2 − (1 − E)R2
t

− 2πσ R√
E2 − R2

t

⎤
⎦

− η2R

2

Rt√
E

√
E2 − R2

t

, (80)

Hnew = ΠnewRt − Lnew

= 4πσ E3/2R2

⎡
⎣ 1√

E2 − (1 − E)R2
t

− 2πσ R√
E2 − R2

t

⎤
⎦

− η2R

2

E3/2√
E2 − R2

t

. (81)

In the incipient limit we have,

Hnew = 4πE3/2μR2√
E2 − R2

t

, (82)

Πnew = 4πμR2Rt√
E

√
E2 − R2

t

, (83)

where, μ := σ
(

1 − 2πσ RGM − η2

8πσ RGM

)
. Observe that

these are the exact same equations we had obtained before
in this incipient limit.

Computation of cn

Now let us compute the cn’s explicitly. We know that,

ψ(b, t) =
∑
n

cn(t)φn(b), (84)

From the overlap integral we have,

cn =
∫

db φ∗
nψ =

(
α2Ω f

π2ζ 2

)1/4
eiχ(̃η)

√
2nn!

×
∫

db exp

[
−αΩ f b2

2
+ i

(
ζη̃

ζ
+ i

ζ 2

)
αb2

2

]
Hn

× (√
αΩ f b

)
, (85)

=
(

1

Ω f π2ζ 2

)1/4 eiχ(̃η)

√
2nn!

×
∫

dx exp

[
− x2

2
+ x2

2

i

Ω f

(
ζη̃

ζ
+ i

ζ 2

)]
Hn(x)

(wi th, x := √
αΩ f b),

=
(

1

Ω f π2ζ 2

)1/4 eiχ(̃η)

√
2nn!

∫
dx e−Px2/2Hn(x)

(
wi th, P := 1 − i

Ω f

(
ζη̃

ζ
+ i

ζ 2

))
(86)

=
(

1

Ω f π2ζ 2

)1/4 eiχ(̃η)

√
2nn! In(

wi th, In :=
∫

dx e−Px2/2Hn(x)

)
. (87)

To compute In , let us consider the following generating func-
tion for the Hn(x),

J (z) =
∫

dx e−Px2/2e−z2+2zx =
√

2π

P
e−z2(1−2/P),

since, e−z2+2zx =
∞∑
n=0

zn

n! Hn(x),
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∫
dx e−Px2/2Hn(x) = dn

dzn
J (z)

∣∣∣∣
z=0

,

thus, In =
√

2π

P

(
1 − 2

P

)n/2

Hn(0),

as, Hn(0) =
{

(−1)n/2
√

2nn! (n−1)!!√
n! , f or even n

0, f or odd n.

Thus we have,

cn =
{

(−1)n/2eiχ

(Ω f ζ
2)1/4

√
2
P

(
1 − 2

P

)n/2 (n−1)!!√
n! , f or even n

0, f or odd n.
(88)

Explicit computation of Tr(ρ̂ f )

We know that,

Tr(ρ̂ f ) = 2√
Ω f ζ 2|P|

1√
1 − ∣∣1 − 2

P

∣∣2
. (89)

To calculate P explicitly, let us give the solution of,

ζη̃η̃ + ω2(̃η)ζ = 1

ζ 3 , (90)

as,

ζ = 1√
ω0

√
ε̃2 + ε2, (91)

ζη̃ = 1

ω0ζ
(̃εε̃η̃ + εεη̃), (92)

where in terms of Bessel’s functions, we have,

ε̃ = πu0

2
[Y0(2ω0)J1(u0) − J0(2ω0)Y1(u0)], (93)

ε = πu0

2
[Y1(2ω0)J1(u0) − J1(2ω0)Y1(u0)], (94)

ε̃η̃ = −πω2
0[Y0(2ω0)J0(u0) − J0(2ω0)Y0(u0)], (95)

εη̃ = −πω2
0[Y1(2ω0)J0(u0) − J1(2ω0)Y0(u0)], (96)

where u0 := 2ω0
√

1 − η̃.
Now substituting the definition of P (Eq. (86)) in Eq. (89),

we have (using Mathematica),

Tr(ρ̂ f ) = |ζ 2Ω f |√
ζ 2Ω f

√
−�[ζ 2Ω f ]�[ζ ζη̃] + (1 + �[ζ ζη̃])�[ζ 2Ω f ]

.

(97)

Now as Ω f , ζ and ζη̃ are real (as is evident from Eqs.
(91–96)) , we get from Eq. (97),

Tr(ρ̂ f ) = 1. (98)
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