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Abstract In the literature, it was proposed that the growth
index γ is useful to distinguish the scenarios of dark energy
and modified gravity. In the present work, we consider the
constraints on the growth index γ by using the latest observa-
tional data. To be model-independent, we use cosmography
to describe the cosmic expansion history, and also expand
the general γ (z) as a Taylor series with respect to redshift
z or y-shift, y = z/(1 + z). We find that the present value
γ0 = γ (z = 0) � 0.42 (for most of viable f (R) theo-
ries) is inconsistent with the latest observational data at high
confidence level (C.L.). On the other hand, γ0 � 0.55 (for
dark energy models in GR) can be consistent with the latest
observational data at 1σ C.L. in five of the nine cases under
consideration, but is inconsistent beyond 2σ C.L. in the other
four cases (while it is still consistent within the 3σ region).
Thus, we can say nothing firmly about γ0 � 0.55. We also
find that a varying γ (z) is favored.

1 Introduction

It is a great mystery since the current accelerated expansion
of our universe was discovered in 1998 [1,2]. More than
20 years passed, and we still do not know the very nature
of the cosmic acceleration by now. Usually, an unknown
energy component with negative pressure (dark energy) is
introduced to interpret this mysterious phenomenon in gen-
eral relativity (GR). Alternatively, one can make a modifi-
cation to GR (modified gravity). In fact, modified gravity
can also successfully explain the cosmic acceleration with-
out invoking dark energy. So far, these two scenarios are both
competent [3–6].

In order to understand the nature of the cosmic acceler-
ated expansion, one of the most important tasks is to dis-
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tinguish between the scenarios of dark energy and modified
gravity. If the observational data could help us to confirm
or exclude one of these two scenarios as the real cause of
this mysterious phenomenon, it will be a great step forward.
However, many cosmological observations merely probe the
cosmic expansion history. Unfortunately, as is well known
(see e.g. [7]), one can always build models sharing a same
cosmic expansion history, and hence these models cannot be
distinguished by using the observational data of the expan-
sion history only. So, some independent and complementary
probes are required. Later, it is proposed that if the cosmo-
logical models share a same cosmic expansion history, they
might have different growth histories, which are character-
ized by the matter density contrast δ(z) ≡ δρm/ρm as a func-
tion of redshift z. Therefore, they might be distinguished
from each other by combining the observations of both the
expansion and growth histories (see e.g. [8–18,113–116] and
references therein).

It is convenient to introduce the growth rate f ≡
d ln δ/d ln a, where a = (1 + z)−1 is the scale factor. As
is well known, a good parameterization for the growth rate
is given by [19–23]

f ≡ d ln δ

d ln a
= �

γ
m, (1)

where γ is the growth index, and �m is the fractional energy
density of matter. Beginning in e.g. [8,9], it was advocated
that the growth index γ is useful to distinguish the scenarios
of dark energy and modified gravity. For example, it is found
that γ = 6/11 � 0.545 for �CDM model [8,9], and γ �
0.55 for most of dark energy models in GR [8]. In fact, they
are clearly distinct from the ones of modified gravity theories.
For instance, it is found that γ � 0.68 for Dvali–Gabadadze–
Porrati (DGP) braneworld model [9,15], and γ � 0.42 for
most of viable f (R) theories [24–27]. In general, the growth
index γ is a function of redshift z. It is argued that γ (z)
lies in a relatively narrow range around the above values
respectively, and hence one might distinguish between them.
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In the literature, most of the relevant works assumed a
particular cosmological model to obtain the growth index
γ . Thus, the corresponding results are model-dependent in
fact. However, robust results should be model-independent.
So, it is of interest to obtain the growth index γ from the
observational data by using a model-independent approach.
In fact, recently we have made an effort in [18] to obtain
a non-parametric reconstruction of the growth index γ via
Gaussian processes by using the latest observational data.
Although the approach of Gaussian processes is clearly
model-independent, its reliability at high redshift might be
questionable. So, it is of interest to test the growth index γ by
using a different method, and cross-check the corresponding
results with the ones from Gaussian processes.

As is well known, one of the powerful model-independent
approaches is cosmography [28–49,118]. In fact, the only
necessary assumption of cosmography is the cosmological
principle. With cosmography, one can analyze the evolution
of the universe without assuming any particular cosmological
model. Essentially, cosmography is the Taylor series expan-
sion of the quantities related to the cosmic expansion his-
tory (especially the luminosity distance dL ), and hence it is
model-independent indeed. In the present work, we will con-
strain the growth index γ by using the latest observational
data via the cosmographic approach. However, there are sev-
eral shortcomings in the usual cosmography (see e.g. [48]).
For instance, it is plagued with the problem of divergence or
an unacceptably large error, and it fails to predict the future
evolution of the universe. Thus, some generalizations of cos-
mography inspired by the Padé approximant were proposed
in [48] (see also e.g. [50–56,117,119,120]), which can avoid
or at least alleviate the problems of ordinary cosmography.
So, we also consider the Padé cosmography in this work.

The rest of this paper is organized as follows. In Sect. 2, we
describe the methodology to constrain the growth index γ by
using the latest observational data. In Sects. 3 and 4, we obtain
the corresponding constraints on γ with the z-cosmography,
the y-cosmography, and the Padé cosmography, respectively.
In Sect. 5, conclusion and discussion are given.

2 Methodology

In the literature, there are many approaches to deal with the
growth history. For example, one can consider a Lagrangian
derived from an effective field theory (EFT) expansion [57,
58] (see also e.g. [59]), and implement the full background
and perturbation equations for this action in the Boltz-
mann code EFTCAMB/EFTCosmoMC [60–62]. The sec-
ond approach is more phenomenological [63–69] (see also
e.g. [59,70]), by directly parameterizing the functions of the
gravitational potentials � and 	, such as μ = Geff/G,
η = �/	, and/or �, Q, in the modified relativistic Pois-

son equations. It can be implemented by using the code
MGCAMB [63,69] integrated in CosmoMC [71]. The third
approach is the simplest one, by directly parameterizing the
growth rate f as in Eq. (1), with no need for numerically solv-
ing the perturbation equations. For simplicity, we choose this
approach in the present work.

By definition f ≡ d ln δ/d ln a, it is easy to get (see
e.g. [18,72,73])

δ

δ0
= exp

(∫ a

1

f dã

ã

)
= exp

(
−

∫ z

0

f d z̃

1 + z̃

)
, (2)

where the subscript “0” indicates the present value of the
corresponding quantity, namely δ0 = δ(z = 0). On the other
hand, the cosmic expansion history can be characterized by
the luminosity distance dL = (c/H0) DL , where c is the
speed of light, H0 is the Hubble constant, and (see e.g. the
textbooks [28,29])

DL ≡ (1 + z)
∫ z

0

dz̃

E(z̃)
, (3)

in which E ≡ H/H0, and the Hubble parameter H ≡ ȧ/a
(where a dot denotes the derivative with respect to cosmic
time t). Note that we consider a flat Friedmann–Robertson–
Walker (FRW) universe in this work. As is well known, E(z)
is free of H0 actually. Differentiating Eq. (3), we get [49]

1 + z

E(z)
= dDL

dz
− DL

1 + z
. (4)

If the luminosity distance dL (or equivalently DL ) is known
(in fact it will be given by the cosmography as below), we can
obtain the dimensionless Hubble parameter E(z) by using
Eq. (4). Then, the fractional energy density of matter is given
by

�m(z) ≡ 8πGρm

3H2 = �m0(1 + z)3

E2(z)
. (5)

So, the growth rate f = �
γ
m is on hand, and hence δ/δ0 in

Eq. (2) is ready.
The data of the growth rate f can be obtained from red-

shift space distortion (RSD) measurements. In fact, the obser-
vational fobs data have been used in some relevant works
(e.g. [15,74,75]). However, it is sensitive to the bias parame-
ter b which can vary in the range b ∈ [1, 3]. This makes the
observational fobs data unreliable [76]. Instead, the combi-
nation f σ8(z) ≡ f (z) σ8(z) is independent of the bias, and
hence is more reliable, where σ8(z) = σ8(z = 0) δ(z)/δ0 =
σ8, 0 δ(z)/δ0 is the redshift-dependent rms fluctuations of the
linear density field within spheres of radius 8h−1Mpc [76].
In fact, the observational f σ8, obs data can be obtained from
weak lensing or RSD measurements [76,77]. In the present
work, we use the sample consisting of 63 observational
f σ8, obs data published in [77], which is the largest f σ8 com-
pilation in the literature by now. As mentioned above, once
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Table 1 The observational data of S8 ≡ σ8, 0(�m0/0.3)0.5. See the Refs. for details

Survey S8 Ref. Survey S8 Refs.

HSC 0.780+0.030
−0.033 [85] DES (c.s.) 0.782+0.027

−0.027 [86]

DES (g.c.+ w.l.) 0.773+0.026
−0.020 [87] CFHTLenS 0.732+0.029

−0.031 [85,88]

KiDS-450 (c.f.) 0.745 ± 0.039 [89] KiDS-450 (p.s.) 0.651 ± 0.058 [90]

DLS 0.818+0.034
−0.026 [91] KiDS-450 + GAMA 0.800+0.029

−0.027 [92]

KiDS-450 + 2dFLenS 0.742 ± 0.035 [93] Planck 2018 CMB lensing 0.832 ± 0.013 [94]

DL is given, we can get the theoretical f σ8 by using Eqs. (4),
(5), and (1), (2). Thus, the χ2 from the f σ8 data is given by

χ2
f σ8

=
∑
i

[
f σ8, obs(zi ) − f σ8, mod(zi )

]2

σ 2
f σ8

(zi )
. (6)

It is easy to see that only using the observational f σ8 data
is not enough to constrain the model parameter �m0, and the
cosmographic parameters q0, j0 . . . in DL . Since they mainly
affect the cosmic expansion history, we also use such kinds of
observations. Obviously, the type Ia supernovae (SNIa) data
is useful. Here, we consider the Pantheon sample [78–80]
consisting of 1048 SNIa, which is the largest spectroscopi-
cally confirmed SNIa sample by now. The corresponding χ2

is given by

χ2
Pan = �m T · C−1 · �m, (7)

where for the i th SNIa, �mi = mi − mmod, i , and C is the
total covariance matrix,

mmod = 5 log10 DL + M, (8)

in which M is a nuisance parameter corresponding to some
combination of the absolute magnitude M and H0. We refer
to [78–80] for technical details (see also e.g. [81]). Since
H0 is absorbed into M in the analytic marginalization, the
Pantheon SNIa sample is free of the Hubble constant H0.

We further consider the observational data from the
baryon acoustic oscillation (BAO). Note that there exist
many kinds of BAO data in the literature, such as DV (z),
dz ≡ rs(zd)/DV (z), DA(z)/rd , DM (z)/rd , H(z) rs(zd) and
A. However, in the former ones, they will introduce one or
more extra model parameters, for instance H0, and/or �bh2.
Since the f σ8 data, the SNIa data, the cosmography for DL ,
and other data are all free of H0 and �bh2, we choose to avoid
introducing extra model parameters here. Thus, in this work,
we use the BAO data only in the form of (see e.g. [82,83])

A ≡ �
1/2
m0 H0DV /(cz) = �

1/2
m0

z

[
D2

L

(1 + z)2 · z

E(z)

]1/3

, (9)

which does not introduce extra model parameters since the
factor c/H0 in DV is canceled. We consider the six data

of the acoustic parameter A(z) compiled in the last col-
umn of Table 3 of [83]. The first data point from 6dFGS
is uncorrelated with other five ones, and hence its χ2

6dFGS =
(Aobs − Amod)

2/σ 2 directly. The 2nd and 3rd data points
from SDSS are correlated with coefficient 0.337, and hence
the inverse covariance matrix of these two data points is given
by

C−1
SDSS =

(
4406.72 −1485.06

−1485.06 4406.72

)
. (10)

The inverse covariance matrix of the last three data points
from WiggleZ is given in Table 2 of [83],

C−1
WiggleZ =

⎛
⎝ 1040.3 −807.5 336.8

−807.5 3720.3 −1551.9
336.8 −1551.9 2914.9

⎞
⎠ . (11)

The χ2 from the data of SDSS and WiggleZ are both given
in the form of χ2 = �A T · C−1 · �A. Thus, the total χ2

from the BAO data is χ2
BAO = χ2

6dFGS + χ2
SDSS + χ2

WiggleZ.
On the other hand, the free parameter σ8, 0 cannot be

well constrained by using the f σ8 data and the observa-
tions of the expansion history. Fortunately, in the litera-
ture there are many observational data of the combination
S8 ≡ σ8, 0(�m0/0.3)0.5 from the cosmic shear observa-
tions [84], which can be used to constrain both the free param-
eters σ8, 0 and �m0. Here, we consider the ten data points
given in Table 1. The corresponding χ2

S8
= ∑

i (S8, obs, i −
S8, mod, i )

2/σ 2
S8, i

. Note that if the upper and the lower uncer-
tainties of the data are not equal, we choose the bigger one
as σS8, i conservatively.

In fact, there are other kinds of observational data in the
literature. However, we do not use them here, to avoid intro-
ducing extra model parameters, as mentioned above. For
instance, if we want to use the 51 observation H(z) data com-
piled in [95] (the largest sample by now to our best knowl-
edge), an extra free parameter H0 is necessary. So, we give
up. On the other hand, since the usual cosmography can-
not work well at very high redshift, we also do not consider
the observational data from cosmic microwave background
(CMB) at redshift z ∼ 1090. Otherwise, the cosmographic
parameters should be fine-tuned. However, the Padé cosmog-
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Table 2 The mean with 1σ , 2σ , 3σ marginalized uncertainties of the model parameters for the cases with the z-cosmography and γ = γ0 (labeled
as “ z-0 ”), γ = γ0 + γ1 z (labeled as “ z-1 ”), γ = γ0 + γ1 z + γ2 z2 (labeled as “ z-2 ”). See the text for details

Parameters Case z-0 Case z-1 Case z-2

�m0 0.2858+0.0121
−0.0122

+0.0244
−0.0236

+0.0325
−0.0310 0.2983+0.0136

−0.0136
+0.0268
−0.0274

+0.0358
−0.0364 0.2887+0.0126

−0.0126
+0.0254
−0.0248

+0.0340
−0.0324

q0 −0.5441+0.0287
−0.0287

+0.0570
−0.0558

+0.0751
−0.0730 −0.4803+0.0475

−0.0378
+0.0872
−0.0932

+0.1063
−0.1368 −0.5260+0.0386

−0.0387
+0.0772
−0.0747

+0.1039
−0.0971

j0 0.6339+0.0668
−0.0667

+0.1315
−0.1323

+0.1725
−0.1735 0.6079+0.0600

−0.0603
+0.1234
−0.1187

+0.1695
−0.1556 0.6435+0.0662

−0.0660
+0.1328
−0.1293

+0.1768
−0.1692

σ8, 0 0.8109+0.0189
−0.0189

+0.0385
−0.0363

+0.0516
−0.0474 0.7924+0.0181

−0.0215
+0.0418
−0.0370

+0.0573
−0.0475 0.8099+0.0189

−0.0206
+0.0403
−0.0377

+0.0539
−0.0493

γ0 0.6281+0.0387
−0.0389

+0.0786
−0.0752

+0.1044
−0.0983 0.6679+0.0462

−0.0459
+0.0921
−0.0915

+0.1223
−0.1227 0.5925+0.0494

−0.0495
+0.1006
−0.0948

+0.1349
−0.1227

γ1 N/A −0.2676+0.0364
−0.1302

+0.2803
−0.1843

+0.5265
−0.2130 0.2786+0.2222

−0.2464
+0.4765
−0.4439

+0.6400
−0.5792

γ2 N/A N/A −0.3003+0.1300
−0.1120

+0.2268
−0.2533

+0.2962
−0.3448

raphy works well at very high redshift, and hence we can use
the CMB data in this case (see Sect. 4).

All the model parameters can be constrained by using the
observational data to perform a χ2 statistics. Here, the total
χ2

tot = χ2
f σ8

+χ2
Pan+χ2

BAO+χ2
S8

. In the following, we use the
Markov Chain Monte Carlo (MCMC) code CosmoMC [71]
to this end.

3 Observational constraints with the ordinary
cosmography

3.1 The case of z-cosmography

At first, we consider the case of z-cosmography. Introducing
the so-called cosmographic parameters, namely the Hubble
constant H0, the deceleration q0, the jerk j0, the snap s0 . . .,

H0 ≡ 1

a

da

dt

∣∣∣∣
t=t0

, q0 ≡ − 1

aH2

d2a

dt2

∣∣∣∣
t=t0

,

j0 ≡ 1

aH3

d3a

dt3

∣∣∣∣
t=t0

, s0 ≡ 1

aH4

d4a

dt4

∣∣∣∣
t=t0

, . . . (12)

one can express the quantities related to the cosmic expan-
sion history, e.g. the scale factor a(t), the Hubble parameter
H(z), and the luminosity distance dL(z), as a Taylor series
expansion (see e.g. [28–49] and references therein). The most
important one is the luminosity distance dL(z), and its Taylor
series expansion with respect to redshift z reads (see e.g. [28–
32,48,49] for details)

dL(z) = cz

H0

[
1 + 1

2
(1 − q0) z − 1

6

(
1 − q0 − 3q2

0 + j0
)
z2

+ 1

24

(
2 − 2q0 − 15q2

0 − 15q3
0

+ 5 j0 + 10q0 j0 + s0

)
z3 + O

(
z4

) ]
. (13)

Since the constraints become loose if the number of free
parameters increases, we only consider the cosmography up

to third order. Thus, the dimensionless luminosity distance
DL = H0dL/c is given by

DL(z) = z + 1

2
(1 − q0) z

2 − 1

6

(
1 − q0 − 3q2

0 + j0
)
z3

+O(z4), (14)

in which only two free cosmographic parameters q0 and j0
are involved. Note that the Hubble constant H0 does not
appear, since the factor c/H0 in dL is canceled.

In the literature, the growth index γ is often assumed to be
constant (see e.g. [19,20,70,96,97]). However, in general it is
varying as a function of redshift z. To be model-independent,
we can also expand γ (z) as a Taylor series with respect to
redshift z, namely γ (z) = γ0 + γ1 z + γ2 z2 + · · · , where
the coefficients γ0, γ1, γ2 . . . are constants. Here, we con-
sider three cases, labeled as “ z-0 ”, “ z-1 ”, “ z-2 ”, in which
γ (z) is Taylor expanded up to zeroth, first, second orders,
respectively.

Substituting Eq. (14) into Eq. (4), we can get the dimen-
sionless Hubble parameter E(z). Using Eqs. (5), (1), (2), and
γ , we obtain f = �

γ
m and then f σ8. Substituting DL(z) and

E(z) into Eqs. (8) and (9), we find mmod and Amod. Finally,
the total χ2

tot is ready.
By using the latest observational data, we obtain the con-

straints on all the model parameters involved, and present
them in Table 2, for the z-0, z-1, z-2 cases. Since we mainly
concern the parameters related to the growth index γ , namely
γ0, γ1 and γ2, we also present their 1D marginalized proba-
bility distributions in Fig. 1. Obviously, in all cases, q0 < 0
and j0 > 0 far beyond 3σ confidence level (C.L.), and these
mean that today the universe is accelerating, while the accel-
eration is still increasing. From Tabel 2 and Fig. 1, it is easy to
see that for all cases, γ0 � 0.42 is inconsistent with the latest
observational data far beyond 3σ C.L. Note that γ0 � 0.55
is consistent with the latest observational data within the 1σ

region for the z-2 case, but is inconsistent beyond 2σ C.L. for
both the z-0 and z-1 cases (while it is still consistent within
the 3σ region). On the other hand, a varying γ with non-zero
γ1 and/or γ2 is favored. In the linear case with γ = γ0 + γ1 z
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(namely the z-1 case), γ1 < 0 in the 1σ region, and hence
the growth index γ decreases as redshift z increases. In the
quadratic case with γ = γ0 + γ1 z + γ2 z2 (namely the z-
2 case), γ2 < 0 beyond 3σ C.L., and hence the function
γ (z) is a parabola opening down, namely γ increases and
then decreases as redshift z increases. There exists an arched
structure in the moderate redshift range. This result is quite
similar to the one of [18].

3.2 The case of y-cosmography

Let us turn to the case of y-cosmography. As is well known,
a Taylor series with respect to redshift z converges only at
low redshift z around 0, and it might diverge at high redshift
z > 1. In the literature (see e.g. [33–37,39,48,49]), a popular
alternative to the z-cosmography is replacing z with the so-
called y-shift, y = 1 − a = z/(1 + z). Obviously, y < 1
holds in the whole cosmic past 0 ≤ z < ∞, and hence the
Taylor series with respect to y-shift converges. In this case,
we can expand the dimensionless luminosity distance DL =
H0dL/c as a Taylor series with respect to y (see e.g. [32,34,
48,49] for details),

DL(y) = y + 1

2
(3 − q0) y

2 + 1

6
(11 − 5q0 + 3q2

0 − j0)y
3

+O(y4), (15)

in which only two free cosmographic parameters q0 and j0
are involved, since we only consider the cosmography up to
third order in this work as mentioned above. Accordingly,
here we also expand the growth index γ as a Taylor series
with respect to y, namely γ (y) = γ0 + γ1 y + γ2 y2 + · · · .
Similarly, we consider three cases, labeled as “ y-0 ”, “ y-
1 ”, “ y-2 ”, in which γ (y) is Taylor expanded up to zeroth,
first, second orders, respectively. Noting y = z/(1 + z) and
dF/dz = (1+z)−2dF/dy for any function F , the formalism
in Sect. 2 is still valid in the case of y-cosmography.

By using the latest observational data, we obtain the con-
straints on all the model parameters involved, and present
them in Table 3, for the y-0, y-1, y-2 cases. In Fig. 2, we
also present the 1D marginalized probability distributions of
the parameters related to the growth index γ , namely γ0,
γ1 and γ2. Obviously, the y-0 case is fairly different from
the y-1, y-2 cases. In fact, γ0 ∼< 0.34 beyond 3σ C.L., and
q0 > 0 also beyond 3σ C.L. in the y-0 case. The unusual
result that the universe is decelerating (q0 > 0) suggests
that the y-0 case with a constant γ = γ0 is not compe-
tent to describe the real universe, and consequently γ should
be varying instead. This conclusion is also supported by the
abnormal χ2

min = 1281.5972 of the y-0 case, which is signif-
icantly larger than the ones of the y-1, y-2 cases (see Tabel 5).
In both the y-1, y-2 cases, q0 < 0 beyond 3σ C.L., and this
means that the universe is undergoing an acceleration. On the
other hand, γ0 � 0.42 is inconsistent with the latest obser-

vational data far beyond 3σ C.L. in both the y-1, y-2 cases.
γ0 � 0.55 is well consistent with the latest observational
data within 1σ region in the y-1 case, but it is inconsistent
with the latest observational data beyond 3σ C.L. in the y-2
case. A varying γ with non-zero γ1 and/or γ2 is favored. It is
easy to see that γ1 < 0 far beyond 3σ C.L. in both the y-1,
y-2 cases, and γ2 > 0 far beyond 3σ C.L. in the y-2 case.
However, γ = γ (y) = γ (z/(1 + z)), and hence one should
be careful to treat γ as a function of redshift z.

4 Observational constraints with the Padé cosmography

In the previous section, two types of ordinary cosmogra-
phy are considered. As mentioned above, the z-cosmography
might diverge at high redshift z. So, the y-cosmography
was proposed as an alternative in the literature, which con-
verges in the whole cosmic past 0 ≤ z < ∞. However,
there still exist several problems in the y-cosmography. In
practice, the Taylor series should be truncated by throw-
ing away the higher order terms, since it is difficult to deal
with infinite series. So, the error of a Taylor approximation
with lower order terms will become unacceptably large when
y = z/(1 + z) is close to 1 (say, when z > 9). On the
other hand, the y-cosmography cannot work well in the cos-
mic future −1 < z < 0. The Taylor series with respect to
y = z/(1 + z) does not converge when y < −1 (namely
z < −1/2), and it drastically diverges when z → −1 (it is
easy to see that y → −∞ in this case). Therefore, in [48], we
proposed some generalizations of cosmography inspired by
the Padé approximant, which can avoid or at least alleviate
the problems of ordinary cosmography.

The so-called Padé approximant can be regarded as a gen-
eralization of the Taylor series. For any function F(x), its
Padé approximant of order (m, n) is given by the rational
function [98–102] (see also e.g. [50–56])

F(x) = α0 + α1x + · · · + αmxm

1 + β1x + · · · + βnxn
, (16)

where m and n are both non-negative integers, and αi , βi are
all constants. Obviously, it reduces to the Taylor series when
all βi = 0. Actually in mathematics, a Padé approximant is
the best approximation of a function by a rational function
of given order [101]. In fact, the Padé approximant often
gives a better approximation of the function than truncating
its Taylor series, and it may still work where the Taylor series
does not converge [101].

One can directly parameterize the dimensionless luminos-
ity distance based on the Padé approximant with respect to
redshift z [48],

DL = H0dL
c

= α0 + α1z + · · · + αmzm

1 + β1z + · · · + βnzn
. (17)
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Fig. 1 The 1D marginalized
probability distributions of the
parameters related to γ . The 1σ ,
2σ , 3σ uncertainties are shown
by the green, blue, red regions,
respectively. The top, middle,
bottom panels correspond to the
z-0, z-1, z-2 cases, respectively.
See the text and Table 2 for
details 0.50 0.59 0.68 0.77

z
-0

0.54 0.63 0.72 0.81

z
-1

−0.5 −0.2 0.1 0.4

0.45 0.55 0.65 0.75
γ0

z
-2

−0.5 0.1 0.7 1.3
γ1

−0.8 −0.5 −0.2 0.1
γ2

Table 3 The mean with 1σ , 2σ , 3σ marginalized uncertainties of the model parameters for the cases with the y-cosmography and γ = γ0 (labeled
as “ y-0 ”), γ = γ0 + γ1 y (labeled as “ y-1 ”), γ = γ0 + γ1 y + γ2 y2 (labeled as “ y-2 ”). See the text for details

Parameters Case y-0 Case y-1 Case y-2

�m0 0.3713+0.0165
−0.0165

+0.0333
−0.0316

+0.0443
−0.0411 0.3482+0.0148

−0.0164
+0.0299
−0.0286

+0.0396
−0.0370 0.3624+0.0140

−0.0174
+0.0323
−0.0302

+0.0428
−0.0327

q0 0.4819+0.1733
−0.1728

+0.3422
−0.3394

+0.4482
−0.4527 −0.5427+0.1773

−0.1968
+0.3558
−0.3189

+0.4642
−0.4759 −0.6581+0.1771

−0.1858
+0.3486
−0.3646

+0.4694
−0.4431

j0 −9.0694+0.8780
−1.1371

+2.0481
−1.9338

+3.0330
−2.2762 0.3346+1.9287

−1.9620
+4.0175
−4.0999

+5.7050
−5.1470 1.8465+2.2358

−2.6193
+4.6914
−4.3478

+5.8584
−5.5699

σ8, 0 0.7134+0.0178
−0.0178

+0.0357
−0.0345

+0.0474
−0.0450 0.7397+0.0162

−0.0164
+0.0332
−0.0329

+0.0473
−0.0422 0.7224+0.0157

−0.0158
+0.0293
−0.0307

+0.0397
−0.0390

γ0 0.2443+0.0386
−0.0345

+0.0693
−0.0753

+0.0900
−0.1020 0.5694+0.0406

−0.0405
+0.0820
−0.0830

+0.1069
−0.1052 0.7444+0.0645

−0.0689
+0.1605
−0.1430

+0.1935
−0.1713

γ1 N/A −1.0105+0.0749
−0.0758

+0.1502
−0.1437

+0.1920
−0.1873 −2.2070+0.4130

−0.3524
+0.6597
−0.7170

+0.8570
−1.0784

γ2 N/A N/A 1.5351+0.4414
−0.4941

+0.8089
−0.8149

+1.4499
−1.1093

Following [48], we consider a moderate order (2, 2) in this
work, and then

DL ≡ H0dL
c

= α0 + α1z + α2z2

1 + β1z + β2z2 . (18)

Obviously, it can work well in the whole redshift range −1 <

z < ∞, including not only the past but also the future of the
universe. In particular, it is still finite even when z 	 1. In
fact, this DL was confronted with Union2.1 SNIa data and
Planck 2015 CMB data in [48], and the parameters α0 and
β2 were found to be very close to 0 even in the 3σ region.

So, in the present work, it is safe to directly set

α0 = β2 = 0, (19)

and then the free parameters are now α1, α2 and β1. Note that
in fact α0 = 0 is required by dL(z = 0) = 0 theoretically.
On the other hand, we can also expand γ (z) as a Taylor series
with respect to redshift z, namely γ (z) = γ0 +γ1 z+γ2 z2 +
.... Again, we consider three cases, labeled as “ P-0 ”, “ P-1 ”,
“ P-2 ”, in which γ (z) is Taylor expanded up to zeroth, first,
second orders, respectively.
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Fig. 2 The same as in Fig. 1,
except for the y-0, y-1, y-2
cases. See the text and Table 3
for details

0.12 0.20 0.28 0.36

y
-0

0.42 0.52 0.62 0.72

y
-1

−1.28 −1.10 −0.92 −0.74

0.52 0.67 0.82 0.97
γ0

y
-2

−3.50 −2.65 −1.80 −0.95
γ1

0.4 1.3 2.2 3.1
γ2

Table 4 The mean with 1σ , 2σ , 3σ marginalized uncertainties of the model parameters for the cases with the Padé cosmography and γ = γ0
(labeled as “ P-0 ”), γ = γ0 + γ1 z (labeled as “ P-1 ”), γ = γ0 + γ1 z + γ2 z2 (labeled as “ P-2 ”). See the text for details

Parameters Case P-0 Case P-1 Case P-2

�m0 0.3277+0.0210
−0.0210

+0.0428
−0.0403

+0.0570
−0.0523 0.3366+0.0275

−0.0344
+0.0637
−0.0604

+0.0929
−0.0727 0.3407+0.0291

−0.0351
+0.0647
−0.0623

+0.0911
−0.0750

α1 0.9471+0.0328
−0.0329

+0.0670
−0.0631

+0.0899
−0.0820 0.9362+0.0458

−0.0458
+0.0904
−0.0909

+0.1197
−0.1194 0.9307+0.0458

−0.0458
+0.0916
−0.0883

+0.1219
−0.1141

α2 1.0216+0.0442
−0.0442

+0.0880
−0.0863

+0.1163
−0.1129 1.0083+0.0600

−0.0598
+0.1146
−0.1212

+0.1480
−0.1605 1.0012+0.0581

−0.0581
+0.1154
−0.1147

+0.1517
−0.1493

β1 0.3329+0.0153
−0.0153

+0.0309
−0.0293

+0.0412
−0.0381 0.3324+0.0148

−0.0161
+0.0313
−0.0295

+0.0415
−0.0384 0.3321+0.0154

−0.0154
+0.0312
−0.0297

+0.0418
−0.0385

σ8, 0 0.7615+0.0220
−0.0245

+0.0478
−0.0440

+0.0644
−0.0566 0.7526+0.0338

−0.0337
+0.0684
−0.0662

+0.0921
−0.0864 0.7480+0.0329

−0.0362
+0.0702
−0.0658

+0.0937
−0.0840

γ0 0.5462+0.0538
−0.0539

+0.1089
−0.1038

+0.1454
−0.1343 0.5447+0.0543

−0.0544
+0.1097
−0.1051

+0.1470
−0.1374 0.5562+0.0590

−0.0590
+0.1187
−0.1151

+0.1583
−0.1511

γ1 N/A −0.0667+0.2110
−0.1908

+0.3801
−0.4122

+0.4923
−0.5546 −0.2488+0.3858

−0.3854
+0.7622
−0.7665

+1.0016
−1.0127

γ2 N/A N/A 0.2378+0.4531
−0.4540

+0.8788
−0.9190

+1.1400
−1.2341

Since the Padé cosmography still works well at very
high redshift z 	 1 in contrast to the ordinary cos-
mography as mentioned above, in this section, we fur-
ther use the latest CMB data in addition to the observa-
tional data mentioned in Sect. 2. However, using the full
data of CMB to perform a global fitting consumes a large
amount of computation time and power. As a good alterna-
tive, one can instead use the shift parameter R [103,104]
from CMB, which has been used extensively in the liter-
ature (including the works of the Planck and the WMAP

Collaborations themselves). It is argued in e.g. [105–107]
that the shift parameter R is model-independent and con-
tains the main information of the observation of CMB. As
is well known, the shift parameter R is defined by [103–
107]

R ≡
√

�m0H2
0 (1 + z∗) dA(z∗)/c =

√
�m0 DL(z∗)

1 + z∗
, (20)

where the redshift of the recombination z∗ = 1089.92 from
the Planck 2018 data [94], and the angular diameter dis-
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Fig. 3 The same as in Fig. 1,
except for the P-0, P-1, P-2
cases. See the text and Table 4
for details

0.38 0.50 0.62 0.74

P
-0

0.37 0.49 0.61 0.73

P
-1

−0.7 −0.3 0.1 0.5

0.37 0.50 0.63 0.76
γ0

P
-2

−1.5 −0.7 0.1 0.9
γ1

−1.1 −0.2 0.7 1.6
γ2

tance dA is related to the luminosity distance dL through
dA = dL(1 + z)−2 (see e.g. the textbooks [28,29]). Here
we adopt the value Robs = 1.7502 ± 0.0046 [108] derived
from the Planck 2018 data. Thus, the corresponding χ2 from
the latest CMB data is given by χ2

R = (Rmod − Robs)
2/σ 2

R .
Although the number of data points N and the number of
free parameters κ both increase by 1, the degree of freedom
dof = N − κ is unchanged in this case. It is worth not-
ing that the acoustic scale lA, and �bh2, the scalar spectral
index ns are commonly used with the shift parameter R in
the literature, but they will introduce extra model parameters
as mentioned above, and hence we do not use them here.

By using the latest observational data, we obtain the con-
straints on all the model parameters involved, and present
them in Table 4, for the P-0, P-1, P-2 cases. In Fig. 3, we
also present the 1D marginalized probability distributions of
the parameters related to the growth index γ , namely γ0, γ1

and γ2. In all cases, γ0 � 0.42 is inconsistent with the latest
observational data beyond 2σ C.L. (but it could be consistent
in the 3σ region). On the other hand, in all cases, γ0 � 0.55
is well consistent with the latest observational data within
the 1σ region. Note that in all cases, a constant γ = γ0

(namely γ1 = 0 and γ2 = 0) is well consistent with the latest
observational data within the 1σ region (but see below).

5 Conclusion and discussion

In this work, we consider the constraints on the growth
index γ by using the latest observational data. To be model-
independent, we use cosmography to describe the cosmic
expansion history, and also expand the general γ (z) as a Tay-
lor series with respect to redshift z or y-shift, y = 1 − a =
z/(1 + z). We find that the present value γ0 = γ (z = 0) �
0.42 (for most of viable f (R) theories) is inconsistent with
the latest observational data beyond 3σ C.L. in the six cases
with the usual cosmography, or beyond 2σ C.L. in the three
cases with the Padé cosmography. This result supports our
previous work [18]. On the other hand, γ0 � 0.55 (for dark
energy models in GR) is consistent with the latest observa-
tional data at 1σ C.L. in five of the nine cases under con-
sideration, but is inconsistent beyond 2σ C.L. in the other
four cases (while it is still consistent within the 3σ region).
Therefore, we can say nothing firmly about γ0 � 0.55. This
result is still consistent with the reconstructed γ (z) at z = 0
obtained in our previous work [18]. A varying γ with non-
zero γ1 and/or γ2 is favored in the cases with the usual cos-
mography, while in the cases with the Padé cosmography, a
constant γ = γ0 (namely γ1 = 0 and γ2 = 0) can still be
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consistent with the latest observational data (but this might
be artificial, see below).

It is of interest to compare the 9 cases considered here. We
adopt several goodness-of-fit criteria used extensively in the
literature to this end, such as χ2

min/dof , P(χ2 > χ2
min) (see

e.g. [109,110]), Bayesian Information Criterion (BIC) [111]
and Akaike Information Criterion (AIC) [112], where the
degree of freedom dof = N − κ , while N and κ are the
number of data points and the number of free model param-
eters, respectively. The BIC is defined by [111]

BIC = −2 lnLmax + κ lnN , (21)

and the AIC is defined by [112]

AIC = −2 lnLmax + 2κ, (22)

where Lmax is the maximum likelihood. In the Gaussian
cases, χ2

min = −2 lnLmax . The difference in BIC or AIC
between two models makes sense. We choose the P-0 case to
be the fiducial model when we calculate �BIC and �AIC.
In Table 5, we present χ2

min/dof , P(χ2 > χ2
min), �BIC and

�AIC for the nine cases considered in this work. Clearly, the
cases with y-cosmography are the worst, while the cases P-0
and z-2 are the best. In fact, the goodness-of-fit criteria for the
cases P-0 and z-2 are fairly close. A caution should be men-
tioned here. All the criteria given in Table 5 are based on χ2

min ,
which are read from the output .likestats files of the Cos-
moMC program GetDist. However, as the CosmoMC [71]
readme file puts it, “ file−root.likestats gives the best fit sam-
ple model, its likelihood, and. . . Note that MCMC does not
generally provide accurate values for the best-fit.” Keeping
this in mind, we could say that the cases P-0 and z-2 are
equally good, since their not so accurate χ2

min are very close
actually. In the P-0 case, the growth index γ = γ0 is constant.
However, in the z-2 case, γ2 < 0 beyond 3σ C.L. (see Table 2
and Fig. 1), and hence the function γ (z) is a parabola open-
ing down, namely γ increases and then decreases as redshift
z increases. There exists an arched structure in the moderate
redshift range. This result is quite similar to the one of [18].
In Fig. 4, we show a demonstration of γ = γ0 + γ1 z + γ2 z2

with γ0 = 0.6, γ1 = 0.45, γ2 = −0.24, which are all well
within the 1σ regions of their observational constraints for
the z-2 case (see Tabel 2 and Fig. 1).

It is worth noting that throughout this work, we always
consider the growth index γ as a Taylor series with respect
to z or y, namely γ (z) = γ0 + γ1 z + γ2 z2 + · · · , or γ (y) =
γ0 +γ1 y+γ2 y2 +· · · . However, in Sect. 4, we parameterize
the dimensionless luminosity distance DL by using the Padé
approximant, and hence it can still work well at very high
redshift z ∼ 1090. Obviously, it is better to also parameterize
the growth index γ (z) by using the Padé approximant (we
thank the referee for pointing out this issue). But the cost is
expensive to do this. If we want to catch the arched structure
in γ (z), at least a Padé approximant of order (2, 2) is needed, Ta
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0.0 0.5 1.0 1.5 2.0 2.5
z

0.3

0.4

0.5

0.6

0.7

0.8
γ

Fig. 4 A demonstration of γ = γ0 + γ1 z + γ2 z2 with γ0 = 0.6,
γ1 = 0.45, γ2 = −0.24, which are all well within the 1σ regions of
their observational constraints for the z-2 case (see Tabel 2 and Fig. 1)

which has 5 free parameters (n.b. Eq. (16)), and almost double
the number of free parameters in a 2nd order Taylor series.
So, in the P-2 case, the total number of free model parameters
will be ten. It will consume significantly more computation
power and time, but the corresponding constraints will be
very loose. Therefore, we choose not to do this at a great
cost. But one should be aware of the possible artificial results
from this choice. For example, γ (z) = γ0 +γ1 z+γ2 z2 will
diverge at z ∼ 1090, and hence the values of γ1 and γ2 tend
to be zero to fit the high-z CMB data in the P-1, P-2 cases
(we thank the referee for pointing out this issue).

Some remarks are in order. First, the growth rate f and
then the growth index γ for modified gravity scenarios (espe-
cially f (R) theories) in principle are not only time-dependent
but also scale-dependent (see e.g. [24,25]). However, as is
shown in e.g. [24,25], the behavior of γ is nearly scale-
independent at low redshift z ∼< 1, and γ0 = γ (z = 0) is also
nearly independent of scale. So, this issue does not change
the main conclusions of the present work, although it may be
studied carefully in the future work. Second, as is mentioned
in the beginning of Sect. 2, there exist other two approaches
dealing with the growth history, which numerically solve the
perturbation equations by using the code CAMB integrated
in CosmoMC. We will also consider these approaches in the
future work. Third, in the present work, we do not use some
types of observational data (for example, the observational
H(z) data, and other kinds of BAO data) to avoid introduc-
ing extra model parameters. However, in principle, it is not
terrible to do so, although the constraints might be loose and
the calculations might be complicated. Finally, in this work,

we only consider the Taylor series expansion of the growth
index γ up to 2nd order, and the usual cosmography up to
3rd order. In fact, one can also further consider higher orders
in these cases. We anticipate that our main conclusions will
not change significantly.
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