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Abstract We investigate the connection between the
bubble-resummation and critical-point methods for comput-
ing the B-functions in the limit of large number of flavours, N,
and show that these can provide complementary information.
While the methods are equivalent for single-coupling theo-
ries, for multi-coupling case the standard critical exponents
are only sensitive to a combination of the independent pieces
entering the S-functions, so that additional input or direct
computation are needed to decipher this missing informa-
tion. In particular, we evaluate the B-function for the quartic
coupling in the Gross—Neveu—Yukawa model, thereby com-
pleting the full system at O(1/N). The corresponding critical
exponents would imply a shrinking radius of convergence
when O(1/N?) terms are included, but our present result
shows that the new singularity is actually present already at
O(1/N), when the full system of B-functions is known.

1 Introduction

The computation of the RG functions in the limit of large
number of flavours, N, has been traditionally divided into
two schools: (i) the direct computation of the B-functions in
a fixed space-time dimension resumming specific classes of
diagrams in the perturbative expansion around the Gaufian
fixed point [1-6], and (ii) evaluation of the critical exponents
at the Wilson—Fisher fixed point in d dimensions of theories
in the same universality class, see e.g. Refs. [7-27] for a
recent review.

In particular for one-coupling systems, the critical-point
formalism is very powerful since in this case the S-function
can be computed once its slope at criticality is known; these
results were recently also used to assess the apparent singu-
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larity structure of gauge B-functions [28]. Furthermore, the
method is technically more convenient beyond the leading
order in 1/N, even though attempts to reconstruct the lead-
ing singularity through high-order analysis are ongoing [29].

Conversely, the bubble-resummation method is more ver-
satile: As we will show, for multi-coupling systems, the
knowledge of the critical exponents is not enough to recon-
struct the full system of B-functions, and one needs to either
input additional information or rely on a direct computation.
Furthermore, the bubble-resummation method has recently
been used to compute other quantities beyond the various
RG functions, like conformal anomaly coefficients at large-
N [30].

The purpose of this paper is to compare these two methods
and to show that they can provide complementary informa-
tion. We will first consider a generic one-coupling system,
and provide a dictionary between these two methods; see e.g.
Ref. [31] for a similar attempt in the context of Wess—Zumino
model, Ref. [32] for 2D non-linear sigma models in a string
theory context and Ref. [27] for the general O(1/N) result.
As aprime example, we will consider the Gross—Neveu (GN)
model, whose critical exponents have been extensively stud-
ied; see e.g. Refs. [16,19,20,23,24]. In particular, the slope
of the B-function is known at O(1/N?). We will extract the
explicit B-function up to this order and comment on the pos-
sibility of an IR fixed point for two-dimensional GN model
[33,34], which turns out to be disfavoured.

Secondly, we will explicitly show the complementarity of
the two methods in the context of a two-coupling system,
namely the Gross—Neveu—Yukawa (GNY) model, where we
were able to compute the full coupled system of B-functions
at O(1/N) completing the results of Ref. [5]. For the GNY
model, the critical exponents are also known up to O(1/N?)
[25,26]. We will use these as an input to derive consistency
conditions for the B-functions and gain information regard-
ing the location of the poles at different orders in the expan-
sion. Although the O(1/N?) result implies an appearance
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of a new singularity with respect to the O(1/N) critical
exponents, we will show that this apparent new singularity
is actually already present at O(1/N) once the full system
B-functions is known, and the disappearance in the critical
exponent is due to a subtle cancellation of different contri-
butions.

The paper is organised as follows: In Sect. 2 we review the
connection of the two methods in the one-coupling system
and study the GN model in two dimensions as a concrete
example. In Sect. 3 we compute the full coupled system of 8-
functions for GNY model up to O(1/N) and relate our result
to the known critical exponents. In addition, we provide the
O(1/N) contributions to the perturbative S-functions up to
six-loop order. In Sect. 4 we provide our conclusions. Finally,
in Appendix A we give the corresponding relation between
the S-functions and the critical exponents in the GNY model
at O(1/N?).

2 One-coupling model

In this section, we discuss the general ansatz for the 8-
function in the large-N expansion for any system with one
coupling, g. Our goal is to derive a general form for the 8-
function once the critical exponent w = B'(g.), where g is
the coupling at the Wilson—Fisher fixed point, is known. We
define!

00 . (d
B(g0 = wid) = Y2 220

n=0

; ey

while the ansatz for the g-function is:

>\ F,(gN
ﬁ(g)z(d—dc)g+g2<bN+c+Z N(f_1)>, @)

n=1

where d is the dimension of the space-time, d, the critical
dimension of the coupling g, b and ¢ are model-dependent
one-loop coefficients, and F;, are resummed functions satis-
fying F,(0) = 0.

Requiring B(g.) = 0, we find an implicit expression for
the critical coupling:

d—d.

3
N +c+ Y52, fulge)”

8c = —

The slope of the S-function at criticality can then be expanded
in 1/N to yield

b d —de)* < Fj,(geN)
B(ge) =—(d—do) + — mz::l o

! 1n the literature, there is often an extra factor of —2 on the left-hand
side of the definition, Eq. (1). We omit that here for the sake of simplicity.
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Using Egs. (1) and (4), we can relate the functions F;, to
w,. To obtain the result in a closed form, it is necessary
to compute g, order by order in 1/N according to Eq. (3).
This, in turn, enters the argument of the functions F,,, which
then need to be Taylor-expanded to include all the relevant
contributions. In the following, we will give explicitly the
first two orders. At O(1/N), we obtain

d —d.)? d.—d
w1(d) = Bi(gc) = —5—Fj | = , ©)
b b
which, defining ¢ = (d. — d) /b, results in
K d, — bt
Fi(K) = f ar =00, ©)
0

At O(1/N?), the expansion of Eq. (4) gives
K
+ F t " /
Fh(K) = / dr (Cb—l()(tF1 (t) +2F (1))
0
d. — bt
+w2( )) .

12

(N

Note that the critical exponent w; contributes to the S-
function also beyond O(1/N) through F) and its deriva-
tives, as can be seen explicitly in Eq. (7). The same struc-
ture is found at higher orders: F}, receives contributions from
Wn—1, ..., — or, equivalently, from F,_1, ..., F1 —and
their derivatives, together with a pure w,-term as in the last
line of Eq. (7). Therefore, if F; has a singularity say at
K = K, it will propagate to F,, with a stronger degree
of divergence up to the n-th derivative of F;. This confirms
the expectation that the singular structure of the higher-order
F,, functions contain all the singularities of the lower ones,
together with new possible singularities brought in by the
pure w,-contribution. On the other hand, the fact that the
illustrative singularity at K = K would appear at any order
in the 1/N-expansion suggests that a resummation could
exist such that the S-function is regular at Kj.

2.1 Gross—Neveu modelind =2 + ¢

The possibility of an IR fixed point in the GN model in 2 + ¢
dimensions was recently studied [34] using the perturbative
four-loop result [35] with Padé approximants. On the other
hand, the presence of an IR fixed point in the large-N limit
has already been excluded taking the O(1/N) contributions
into account [33]. In this section, we extend the analysis to
O(1/N?) by using the results of the previous section and the
known results for the critical exponent, A(d),

An
A<2+e>_Z (E)—ﬂ(a ®)

n=0
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which is currently known up to O(1/N?) [23]. The O(1/N)
coefficient is explicitly given by

(1 +2)sin(re/2)
Tt +2)0(t/2+ )2’

while the expression for A, (¢) is relatively lengthy and can
be explicitly found in Ref. [23].

Referring to Eq. (2), the GN model is characterized by
d. =2,b = —1 and ¢ = 2. However, we modify the ansatz
of Eq. (2) to implement the fact that for N = 2 the GN model
is equivalent to the abelian Thirring model [36], and thus the
B-function identically vanishes [37,38]:

ri(t) = ©)

B(g) =(d—2)g
oo L FieN)  BGN)
+(N 2)g<1+ et )
(10)
where
K
Fl(K):—Z/ Mgt)dt (11)
0 t
and
= Ko ()41 (1) +421 (1) Fy (1)
R A e
— 12+ FOIF (1) |dr. (12)

The functions 17“1,2 are related to Fjo of the standard
ansatz (2) as

Fil=F, F=F+2F, (13)

so that the two ansitze coincide at O(1/N 2y,
On the other hand, the S-function for the GN model is
known perturbatively up to four-loop level [35]:

Bar(g) =(d —2)g — (N —2)g* + (N —2)g°

1
+ Z(N —2)(N = g*

1 (14)
- 5N =2) [N2 + (66¢3 + 19)N

—204¢5 — 48] & .

We find that the improved ansatz, Eq. (10), additionally repro-
duces the first subleading 1/N3 terms, in particular providing
the correct three-loop coefficient. Explicitly,

B(g) — Bar(g) = —g (N —2)(4 +17¢(3)) + O(g%). (15)

2 Notice that while the leading N coefficient is scheme independent
[39], the subleading ones are not. The result obtained with the critical
exponent method should be compared with perturbation theory where
MS dimensional regularisation is employed.

Fig. 1 The B-function of Eq. (10) truncated to O(1/N), B1/n, and to
O(l/N 2), By /N2 along with the four-loop perturbative result, B4, as a
function of the rescaled coupling K = gN for N = 10, 15

Furthermore, the prediction for the leading orders in N based
on Egs. (11) and (12) for the five-loop B-function is

1
) (o) — _ _ 3
B (g) = % (N —-2) [(3 603)N

+(297¢4 + 12083 + DYN? + - -~]g6. (16)

We show the B-function of Eq. (10) truncated to O(1/N),
Bi/n, and to (’)(l/Nz), ,31/1\12’ along with the four-loop per-
turbative result in Fig. 1 as a function of the rescaled coupling
K = gN for N = 10, 15. We conclude that there is no clear
hint for the IR fixed point in the region where the perturbative
series is under control.

To conclude the section, let us comment on the radius
of convergence of the GN B-function at large N. The -
function does not have any singularities for positive cou-
plings, although the resummed functions get contributions
from graphs that grow polynomially with the loop order.
Therefore, one expects to find a finite radius of convergence,
similarly as in e.g., QED [2]. In the present case, the singu-
larities do appear, but at negative coupling values so that the
radius of convergence in the complex plane is indeed finite;
this is related to the fact that the Wilson—Fisher fixed point
exists above the critical dimension. For positive coupling
values this translates to a regular, though wildly oscillatory,
behaviour.

@ Springer
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3 Two-coupling case: Gross—Neveu—Yukawa model
3.1 Setup

The GNY model is the bosonised GN model with the scalar
promoted to dynamical degree of freedom. It describes N
massless fermion flavours, ¥, coupling to a massless real
scalar, ¢, via Yukawa interaction

_ 1 _
Lony = Yty — S0,00"¢ + 2169 + 9", (17)

The critical dimension of the Yukawa interaction is d,. = 4,
and we will work in d = 4 — € dimensions and MS renor-
malisation scheme. We follow the notations of Refs. [40,41]
in order to provide for a straight-forward comparison with
the perturbative result and define rescaled couplings®

giue
872’

K = 2yN,

y (18)

3.2 The B-functions from the critical exponents

The critical exponents, w+, for the GNY model were recently
computed up to 1/N? [25,26], and on the other hand,
they are known perturbatively up to four-loop level [40,41].
The computation for the Yukawa S-function using bubble-
resummation method was carried out up to O(1/N) in Ref.
[5].

The Yukawa B-function at O(1/N) depends only on the
Yukawa coupling, y

By = (d —d.)y + y*2N + 3 + Fi(yN)). (19)

Conversely, the B-function for the quartic coupling, A, at

O(1/N) is

B = (d — de)h 4 y* (=N + F2(yN))
+22(36 + F3(yN)) + yA(4N + F4(yN)). (20)

According to Eqgs. (19) and (20), the coupled system of
B-functions at O(1/N) contains four unknown functions,
namely Fj, F», F3 and Fy4. Note that F1_4 are functions of
the rescaled Yukawa coupling only due to the 1/N counting.
Diagrammatically this corresponds to chain of fermion bub-
bles. Similar diagrams of scalar bubbles lack the N enhance-
ment, and these chains are subleading.

We can constrain Fj_4 exploiting the knowledge of the
critical exponents, w+, by first determining the critical cou-
plings such that 8, ; = 0. From the first equation, using
d —d. = —e¢, we find

€

¢ — , 21
Y 2N + 3+ F1(y°N) b

3 We add an extra factor of 2 in the definition of K to agree with Ref.
[5].
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and from the second

€ — Y (4N + F4(y°N)) + V A¢
2(36 + F3(y°N))

where we have taken the positive solution for A and defined

AC = (22)

A° =[—€+ Y @4N + Fa(y°N)]’

i ) (23)
— 436+ F('N) () (=N + B2 (5 N)).
Up to leading order in 1/N, we have
€

c= S L OU/NY), A =-— +O(1/N?). 24
y 2N+(/) 4N+(/) (24)
Since aﬂ/\y = 0, the eigenvalues of the Jacobian, w—, directly
correspond to —= ﬁ 2 and aﬁ % at criticality, respectively. Explic-
itly,

9By 1 1
8iy> = e+ R/ + ol - o, (25)
and

B,B)L €
T3 = €+ 5y (30— 2Fi(e/2) + F3(e/2) + Fale/2))

—et— ~“)(e) (26)

For simplicity, we denote (1)(6) = a)(l)(4 — €) in the fol-
lowing. Equation (25) yields

“@@
Fi(t) =/ —5—de, (27)
0 €
whereas Eq. (26) gives
(€]
30 — 2F1(e/2) + F3(€/2) + Fu(e/2) = 2 (E) (28)

As we can see from Eq.(28), §, cannot be computed with
the knowledge of w4, since only the combination F3 4+ Fy
can be accessed. In particular, F> is fully unconstrained.
This shows that the critical exponents encoding the slope
of the B-function can fully determine the B-function only for
single-coupling theory, while for multi-coupling theory they
are sensitive only to certain combinations. Therefore, either
more information is input or one needs to rely on a direct
computation to get 8, in a closed form.

Nevertheless, the knowledge of w4 can be used to obtain
independent cross-checks and gain information regarding the
radius of convergence of the 1/N expansion. The explicit
formulae for a)“) are [25,26]

(%)
in{ — ),
? 29)

tl'(4—1)
We show the critical exponents wi)(t) along with the

~(1)

1) =—
e ATR-HTE-D)
O(1/N?) results [26], i)(t) in Fig. 2. The O(1/N?) results

—10

o (1) = =——al ).
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— @@ /10

Fig. 2 The first two coefficients of the 1/N expansion of the criti-
cal exponents @+ = Y .o, J)S_f ) /N". The explicit formulae for the
o /NZ) coeffiecients can be found in Ref. [26]

indicate that there is a new singularity not present at O(1/N)
occurring at + = 3. Correspondingly, this would suggest a
shrinking in the radius of convergence for the S-functions
when higher orders are included. However, as we will show
in the next sections, this singularity is actually already present
at O(1/N), namely in the functions F;, F3, Fy, butis exactly
cancelled in c?)iL]), Eq. (28).

The connection between 8y ; and w+ at O(1/N 2)isensta-
blished in Appendix A. This allows us to derive conditions
analogous to Eq. (28) for the new unknowns parametrizing
the B-functions at O(1/N?).

3.3 Bubble resummation

The knowledge of the critical exponent w_ at O(1/N) is
enough to obtain the explicit form of By in Eq. (19) at the
same order in 1/N. This is not the case for 8, in Eq. (20), as
the information contained in w4 can only constrain a com-
binations of Fy, F3 and Fy, see Eq. (28). In order to obtain
B, at the order 1/N, we have thus to rely on explicit bubble
resummation.

The B-function for A is obtained by acting with deriva-
tives on the 1PI vertex counterterm, Z,, and on the scalar
self-energy counterterm, Zg. The bare coupling, Ao, and the
renormalized coupling, X, are related via

Ao = ZiZg h, (30)

and the B-function is

9 9 ,
2 24k (z2 . 31
P (ax+ 3K>n(ks)l/e D

The self-energy renormalisation constant, Zg, has been com-
puted in Ref. [5] up to O(1/N), and reads:

kK 1 [k
Zg=1——— —/ (o(t) —50(0) + &, DK) dr,
€ eN Jo

(32)
where
__ (-0ré-n (m
00 = F(2—§)F(3—§)msm<2)’ 53
and
1
£, 1) = :50(& (34)

The coupling-constant renormalisation constant, Z; , is given
by

Z, = 1 —div{Z; Ag(Ro, Ko, p*, €)}, (35)

where K| is the rescaled Yukawa coupling, and A( contains
the 1PI contributions to the four-point function.
At the order O(1/N), we have

oo
1
Ao =20y KgA V(% e) + AO_NK(%A%)(”Z’ €)
n=0

1 > )
+—A0N2K3§ KEAYT (p2€)
n=0

1 2 — 2 2
+ K Z;)K(';L(”* )(p2, €)
n=

1 > 3
+WKSZK(’}A/K("+ (2, e). (36)
n=0

The first term corresponds to a basic candy diagram where the
Yukawa couplings only enter through the chain of fermion
bubbles. The second term is the basic one-loop box diagram.
The third term is a box diagram with an additional internal
scalar propagator. The fourth term is a candy with two differ-
ent vertices, namely one A and one effective quartic made of
a fermion loop. The last term is a three-loop candy diagram
with two fermion loops as effective quartics. The different
topologies are shown in Figs. 3, 4, 5 and 6.

The p? in the arguments refers generically to the IR reg-
ulator. We use two IR regulation strategies depending on the
subclass of diagrams: For fermion-box type diagrams, we use
a convenient choice of non-zero external momenta, and for
the scalar-candy-type diagrams we give a non-zero regulating
mass for the propagating scalars. The sum of the contribu-
tions in each of these subclasses is IR finite, justifying the
different regularisations.

@ Springer
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Fig. 3 Diagram for F3(yN). The gray blob represents a chain of
fermion bubbles

®=0 ©=X

Fig. 4 Diagram for F4(yN). The gray blob represents a chain of
fermion bubbles. The labels N and T correspond to non-twisted and
twisted fermion bubbles, respectively, and are pictorially represented
below the Fy diagram

After trading the bare couplings with the renormalized
couplings,

ho=Z2Z5%, Ko=Z5'(ZvZ;")K, (37)
where Zy r = 1+O(1/N) are the renormalisation constants
for the 1PI Yukawa vertex and fermion self-energy, resp., and

keeping only term that contribute up to O(1/N),* we find
for Z,:

oo
Z,=1— diV{AZS_Z Y (zg' Ky At
n=0
1 o0
+NKZZ§2 Y (z5'ky (L<"+2> _ 2DA§”+“)
n=0
1 _ 1
+mK2(ZvZF1)4A5<)

L s il (142)
+3 K Zs >z k) Ay,
n=0
1 o0
+AN2 K4Z§2 Z(ZEIK)n (Dzmmﬂ)
n=0

—pL*D 4 A/K("“)) } (38)
4 We assume here A ~ 1/N.

@ Springer

where we have iterated Eq. (35) to include all the contribu-
tions up to O(1/N), and we have defined D as

D = div{a}. (39)

Notice that, despite the explicit 1 /N2 dependence, the 1 /A N>
contributions are actually O(1/N) when interpreted in terms
of the rescaled quartic, AN.

After taking derivatives according to Eq. (31), the first line
in Eq. (38) will give the A?-contribution in Eq. (20), namely
the function F3, and the second line will contribute to Fy.
The last four lines behave like 1/A and correspond to the
pure Yukawa contribution, F5.

3.4 F3, F4 and cross-check

We compute here F3 and Fy by explicit resummation and
cross-check our result with Eq. (28). Diagrammatically, F3
corresponds to Fig. 3, where the internal scalar lines are
dressed with fermion bubbles. To obtain its expression, we
refer to the first line of Eq. (38) and compute:

o0
T = —div {,\zs—z Z(ZS_IK)”AE\"H)} (40)
n=0
o0 n 7
L n n+1\ D" i
_ dWHA;—OK > ("] ) 2 agren.

The function A(Am) is found to be
1 - ,
A = lem =— Y me)1(e). 1)
Jj=0

After resummation, and keeping only the 1 /€ pole of 73, we
find

1
T3=—g?»lo(K) +- (42)

where
92471 (5 — §)sin (%)

= e g

(43)
By adopting the same convention of Eq. (20), the function
Fsis

F3(1) = lo(2t) + 2tly(21) — 36, (44)

where —36 removes the one-loop contribution.
To compute Fy, we start from the second line of Eq. (38),
which diagrammatically corresponds to Fig. 4:

I GO e T (n+1)
1= —pdivizg? Yo (zg k)" (L — 204
n=0

K2 &, 1\ (=D} .
:—Ndlv{X_(:)K %(nj >(€i)r(n+2_”6)] 45)
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\
1

\O + ’O

DL :

DQ/L\ . :@

N
1

Fig. 6 Candy diagrams for F,(yN). The basic diagram is the three-
loop diagram A’,. The fermion loops A, B are either of the form N
(non-twisted) or T' (twisted), cf. Fig. 4. The diagrams DL and D2 A,
come from A’K when A or B are shrunk to a counterterm vertex D,
which is the same for N and T

where we have introduced

- 1
F(me)=L™ —2DA™D = ——(=1)"y(e,m), (46)
me

with
y(e.m) = (me)lyj(e). (47)
j=0

After resummation, and keeping only the 1/€ pole of Ty, we
find

K
T4=L(KV(K, 1)—_/ Vo(t)dt>+~-~, (48)
eN 0

where
3.7 -Hr(3-5) . (mt
WO =ty " <7> ’ @
and
@, 1) = T t/3)/o(l‘)- (50)

Besides T4, the function F4 gets contribution from Zg in
Eq. (32). Altogether, in the convention of Eq. (20), it is given
by

Fa(t) =2y (21, 1) — 2y0(21) + 4ty (21, 1) (51)
2t
+460(21) + 81EQ1, 1) +64+4 | &(x, )dx.
0

With the results of Eqs. (44) and (51) together with
Eq. (27), one can check that Eq. (28) is fulfilled. This provides
a powerful cross-check for our computation.

3.5 The function F>

The function F; can be computed evaluating the 1/A terms in
the last four lines of Eq. (38), corresponding to the one-loop
box diagram, the box diagrams with additional internal scalar
propagator in Fig. 5 and to the candy diagrams in Fig. 6.

Let us start with the box contribution. The counterterms
Zy and ZF have been computed up to O(1/N) in Ref. [5]
and read:

1 < K" vyle)
Zy=1+—Y —
vEIt oy e T,
n=1
1 & K" og(e)
4N le” n

(52)

The third line in Eq. (38) gives a divergent part

4K2[D . [ - -
Ty = — [Z + div {(ZF —Zn AP p?, e)}] . (53)

@ Springer
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where Z F.v = Zr,v — 1, and we have defined the finite part
of the one-loop box diagram as

1 1
AV =P —p. (54)

The first term in Eq. (53) gives the basic one-loop contribu-
tion of the box diagram and will be omitted in the following.
Using Eq. (52) and keeping only the 1/¢ pole of T}, , we have:

LS LTI
T = 5o /0 AD 2, 0 (G0(1) + 2000t + -
(535
As for the fourth line in Eq. (38), we have
K s (n) L iy, o
TbZEmZK leZ{(i)ZAK (p,e)}.
n=0 i=0
(56)
The quantity Az") allows for the following expansion:
1
(m) 2 2
A ) = — s & ) 57
x (P, €) TP (p*,€,m) (57)

where A( p2, €, m) is regular for € — 0 and can be written as

A(m, €) = Z(me)ij(pz, e). (58)

j=0

Plugging Eqgs. (57) and (58) in Eq. (56) and using the usual
summation formulas, we find for the 1/€ pole:

K
/0 <?»0(t) —20(0)

Mp2, e, 1) — Aot
K (p t) O()>dt+--~

T =52

+

(59)

When the 1/€ poles of T, and T}, are put together, the
p? dependence of A(p?, 1, 1) cancels. We find the 1/€ pole
of Z'joX to be

Z0% = —(Tp, + Thy)

K K
- K /O <A0(t)—)»o(0) (60)
K >t Ao(2) ) dt
K sl )> ’

where the function Ao(?) is given by

I'(4 —t)sin (%t)

ro(t) =@ —1) (61)
wil (2—4)
In the convention of Eq. (20),
2 x-—5
FPo% (¢ :/ ——Ao(x)dx
2 (1) Y _sx1a 0(x) )
Ao(0) — ————=Ao(21).
R0 = T a0

@ Springer

Let us now compute the contribution of the candy dia-
grams in Fig. 6, Ziandy, arising from the last two lines of
Eq. (38). It can be rewritten as

K* > 41\ 1

_ : n (n+1-i)

TL.=—AN2d1v!§OK §0< ; )Zic } (63)
n= 1=l

where
C(nJrl*i) = D2A)L(l‘l+17i) _ DL(l’l+27i) +A/K(n+3_i)' (64)

The structure of C™ is:
1 1

cm —
emt2 (m 4+ 1)(m + 2)

c(p? e, m), (65)

where the function ¢( pz, €, m) is regular for ¢ — 0 and can
be expanded as

o]

c(p e,m) = (me)e;(p* ). (66)
j=0

The IR regulator, p2, stands here for a soft mass for the scalar
field. Plugging Eqgs. (65) and (66) in Eq. (63) yields

K4 00 n n+2 )
To= div i ) S Y et osm . (6D)
n=0 Jj=0
where
n =1
) n+1 (n+2-1)/
S, j) = . - 68
(. J) 12(;( i )( ) n+3—i (©8)
We find
(—l)n 2?,;:_13) ] =0,
S(n. j) = { (=" B jodd, 69
8+n(n+5) i
(_1)"2(”4:’2—)”@% j even.

Eq. (69) tells that three functions are relevant: co(€), c.(€),
and ¢, (€),

c(p?, e, 1) +c(p?, e, —1)
2

0 .
ce(€) = Z elej(e) =

Jjeven

o0 2 _ 2 _
e = 3 elej(e) = ORI, (70)
Jj odd

—co(€),

where the summation over j has been extended to co without
affecting the result (namely, finite terms in the € — 0 limit),
and all the resulting functions are found to be independent
of the IR regulator. They read

24—t (% — ) sin (”7[)

t
2
co(t) = -3 Sy (2 — %) y

(71)
2

—6(3 = co(t), (72)

Ce(t) =
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t(6—1)
o) = g0 (73)
After performing the sum over n using Eqgs. (69)—(73), and
retaining only the 1/€ pole, we arrive at

1 (1, 3
== (EK (co(K) + co(0)) + c—5=co(K)
K
+%K/ (t—3—K)co(t)dt> Foee (T4
0

In the convention of Eq. (20),

2
candy, 9 — 241 + 8t 3
F2 ([) = wco(zt) + mCO(QJ)

2t
— l (300(0) — 2[ co(x)dx> . (75)
6 0

Combining Egs. (62) and (75), the function F> () is then
Fa(t) = FY () + Fs"Y (1), (76)

We show the functions Fj, F», F3 and Fy4 in Fig. 7. In
particular, we notice that functions F,_4 feature the first sin-
gularity at + = 3/2, which is not present in the O(1/N)
critical exponents but shows up at the O(1/N?) level. This
singularity gets exactly cancelled in the combination of F3
and F4 entering cbﬁrl), Eq. (28), while F; does not contribute

to a)g).

3.6 Perturbative results

We provide here the expansion of the functions F_4 in order
to check against the known perturbative results and predict
the O(1/N) terms that would appear up to six-loop order.

In the following, we give the explicit term-by-term expan-
sions of the B-functions, given in Egs. (19) and (20). First,
for the Yukawa S-function we have

150

100
50 -
— R x10
— F(t)
— F(t)
— Fa(t)

y

-50

-100

150 I I I . I
0.0 0.5 1.0 1.5 2.0 25

Fig. 7 The functions Fy, F>, F3 and Fy given in Egs. (25),
(76), (44), (44), resp. Fy has the first (logarithmic) singularity att = 5/2,
whereas F>_4 show a second-order pole at r = 3/2

7 11
VRON) == 6N + 2y'N? 4 = y°N?

9 6 74
+ <E 34“3) y'N (77)

7 14 18 7.5 g
Lo — N .
+<8+5§3 5§4>y + O0GB°)

As for the quartic-coupling S-function, Eq. (20), one can
predict the coefficients based on F3, F3 and Fy4. Their con-
tribution to the S-function is:

157 193
Y R (yN) = 493N — ?yZ‘N2 + <42§3 - ?) ¥’ N3

2623 157 6t
=== 024 ) yON
+< o 4c3+9§4>}

< 3233 - %;“3 - ?54 +234;“5) Y N3

+006%, (78)
22 F3(yN) = —72y22N — 108y222N?

+ 144203 — A2y N3

— 180(1 + 2¢3 — 3c)A2y N4

—216(1 + 2¢3 + 324 — 625)A2y° N

+002y0), (79)

28y 217, 300
yAF4(yN) =7 y“N + Tky N

+ 7—228{3 )\.y N

699
+ <T + 24873 — 450;4) Ay N
3359 2123 2409 65
6 + ?{3 + ?4'4 — 1116¢5 | Ay° N

+ 007, (80)

We have checked that the expansions up to O(N?) agree
with the known leading- N four-loop perturbative result [41].
The O(N*) and O(N?) terms are the leading-N prediction
for the five- and six-loop terms, respectively.

4 Conclusions

Our goal in this paper was to compare the critical-point and
bubble-resummation methods for computing the S-functions
in the large-N limit. While for the single-coupling theo-
ries, the methods are equivalent, we have shown that in the
multi-coupling case the critical exponents are only sensitive
to specific combinations of the different functions entering
the B-functions, and direct computations by means of bub-
ble resummations or additional information are needed to
decipher this missing information. On the other hand, the
critical-point method is more powerful for obtaining results

@ Springer
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beyond the leading 1/N order, and thereby the two methods
can provide complementary information.

However, we envisage that it might be possible to recon-
struct the full system of RG functions in a multiple-coupling
theory within the critical-point formalism through extrac-
tion of the operator-product-expansion (OPE) coefficients. A
detailed study of the three-point function Schwinger—Dyson
equation would be necessary, from which one could extract
the OPE consistently at every order in 1/N in a similar fash-
ion as for the critical exponents. This is in line with the recent
analyses carried out in the functional-RG framework [42—
45].

Concretely, we have presently computed the B-function
for the quartic coupling in the GNY model, thereby complet-
ing the computation of the full system at O(1/N) level. While
the critical exponents . computed recently up to O(1/N?)
imply that the radius of convergence of the critical expo-
nents shrinks from O(1/N) to O(1/N?), our present result
shows that this new pole only appearing in wf ) is actually
already present at the O(1/N) level, when the full system
of B-functions is known. We showed that the disappearance
of the pole is due to a subtle cancellation between the var-
ious resummed function in the computation of the critical
exponents.

For the one-coupling case we have briefly revisited the
question about the possible IR fixed point of the two-
dimensional GN model by studying the ©(1/N?) B-function.
This complements the previous studies using the four-loop
perturbative results with the help of Padé approximants. We
restate that there is no indication of an IR fixed point.
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Appendix A: Gross—Neveu—Yukawa g-functions at 1/ N>

The O(1/N) ansatz for the GNY B-functions in Egs. (19)
and (20) is extended to O(1/N?) as

By = —€y + y?[2N + 3 + Fi(yN) — y(9/8 + F5(yN))]
—y2A(24 + Fs(yN)) + yA2(24 + F;(yN)),  (A.D)

@ Springer

B = —€r+ y* [=N + F2(yN) + yFs(yN) + AFo(yN)]
+42[36 4 F3(yN) — A(816 + Fi1(yN))]

+YA[AN + F4(yN) + AF10(yN)], (A2)

where we have introduced seven new unknown functions,
Fs5_11, such that F5_11(0) = 0. We then compute the Jaco-
bian for (B8y, B;) and we evaluate it at the Wilson—Fisher
fixed point. The eigenvalues are then matched with the critical
exponents w. At O(1/N?), we find the following relations:

— 57 —4[3+ Fi ()] [2F] () + € F{ (e)]
— 8Fs (€) — 2F7 (¢) — 8¢ F5 (¢)

®? (2¢)
e

(A.3)
—4€F{ (€) +2eF, () =8

and

— 2520 — 4782¢ + 8¢ Fio(€) — 6€ F11(€) — 288 F»(€)
— 144 F3(¢) — 8F>(e)F3(e) — 2F3(e)2 — 156 F4(¢)
— 4F;3(e)F4(€) + 16€ F5(€) + 8€ Fg(€) — 4e F7(€)
+ 8eFy(e) — 12 Fj(€) — 12e F4(e) + 48F1(e)  (A4)
+24€ F{(€) + 8F1(€)* — 4F\(€) Fu(€) + Be F1(€) F{ ()

&P (2€)
— 4eFy(e)Fj(e) — 4eFy(e)Fy(e) = 8*7.

Clearly, one needs more input than a)gFZ ) to obtain Fs5_11.On
the other hand, direct computation at O(1/N?) is technically
challenging and beyond the scope of this paper.
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