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Abstract In this paper, we present the charged dilaton
solutions and black hole formation in three dimensions.
Firstly we revisit the famous Chan–Mann charged dilaton
black hole, describing one parameter family of static charged
black hole solution in three dimensional Einstein–Maxwell–
Dilaton gravity. This solution with a special parameter choice
b = 4a can lead to the three dimensional string solution.
Then we give another class of charged dilaton black hole
solution with b �= 4a. We discuss their geometrical prop-
erties, the horizon structure and the causal structure. The
time-dependent solution is also presented, which can charac-
terize the three dimensional charged black hole formation in
Einstein–Dilaton gravity. Especially, there is no exact time-
dependent solution describing the gravitational collapse to
the Chan–Mann charged dilaton black hole. Finally, we dis-
cuss the gravitational collapse of a dilaton field in the context
of the Cosmic Censorship Conjecture.

1 Introduction

Einstein–Dilaton gravity has attracted considerable attention
since it arises in low energy string theory. It is well known that
the presence of the dilaton field has important consequences
on constructing exact black hole solutions, the asymptotic
behavior and the causal structure of the spacetime, and the
thermodynamic properties of black holes [1–4]. For exam-
ple, the dilaton black holes are always neither asymptotically
flat nor (A)dS (see [5–9] and references therein), due to its
non-vanishing asymptotic behavior at infinity r → ∞. The
discussion were also generalized into the gravity with multi-
dilaton fields [10–13] and the coupling of dilaton field with
other gauge fields [2,5–7,9,12,13], which both have a pro-
found effects on the resulting solutions and other physical
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properties. Thus much interest has been focused on the study
of the dilaton black holes in recent years.

On the other side, gravity in three dimensional spacetime
has been a fascinating area of theoretical investigations, even
it is locally trivial in the absence of matter source because of
the lack of propagating degrees of freedom. The main rea-
sons include the discovery of the famous BTZ black hole
solutions [14] and the study of AdS/CFT duality [15,17,18],
which always shed some light on the understanding of more
complicated cases of four and higher dimensional gravity.
Therefore it is worthwhile to see how the presence of the
dilaton field would modify the spacetime in three dimen-
sions. Actually, a lots of literatures focus on this subject,
including the study on (2+1) dimensional dilaton black hole
solutions [19–26], black hole thermodynamics [27–30] and
other interesting physical properties (see the books [31,32]
and references therein).

Motivated by the above, we consider three dimensional
static charged dilaton black hole solutions and their forma-
tion in this paper. For the study of the formation of black
holes due to gravitational collapse [33–35], it is the fun-
damental and important topic in general relativity, which
always sheds light on the understanding of spacetime singu-
larities, cosmic censorship, critical phenomenon and gravita-
tional waves [36–39]. Hence one always pays much attention
for this subject. Especially for the formation of scalar black
holes due to the gravitational collapse of scalar field, there are
only several literatures, including the time-dependent solu-
tions describing the gravitational collapse to the static (un-
)charged/accelerating scalar black holes in four [40–42] and
higher dimensions [43–45] and a three dimensional static
scalar black hole [46,47].

In this paper, we present the static charged dilaton solu-
tions and black hole formation in three dimensions. Firstly
we will revisit the famous static charged black hole solu-
tion obtained by Chan and Mann [19] in three dimen-
sional Einstein–Maxwell–Dilaton gravity. This solution with
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b = 4a will lead to the three dimensional string solution.
Then we give another class of charged dilaton black hole
solution with b �= 4a. We discuss their geometrical proper-
ties, the horizon structure and the causal structure. It is shown
that there exist (non-)extremal black holes and black holes
with negative mass for Chan–Mann solution, while there
exist only black holes with a single event horizon for another
dilaton solution. Besides, the (un)charged black holes of this
two families should both have a negative cosmological con-
stant, which is consistent with the No–Go theorem in three
dimensions [48]. The time-dependent solution is also pre-
sented, which can characterize the three dimensional charged
black hole formation in Einstein–Dilaton gravity. We also
have studied the global properties and the gravitational col-
lapse of a dilaton field in the context of the Cosmic Censor-
ship Conjecture. Especially, there is no exact time-dependent
solution describing the gravitational collapse to the Chan–
Mann charged dilaton black hole, which is a submanifold
of 3 + 1 dimensional Einstein spacetime based on the view-
point of the Kaluza–Klein theory [49,50], therefore no extra
matter source can drive an evolution of the spacetime. As
a consequence, we believe that these static/time-dependent
black hole solutions are of some interest.

The paper is organized as follows. We introduce three
dimensional Einstein–Maxwell–Dilaton gravity in next sec-
tion. In Sect. 3, we revisit the Chan–Mann charged dilaton
black hole and discuss its physical properties. In Sect. 4, we
obtain another charged dilaton black hole, and study its geo-
metrical properties, the horizon structure and the causal struc-
ture in detailed. In Sect. 5, we present the time-dependent
charged dilaton solution and the properties. Finally, some
concluding remarks are given in Sect. 6.

2 Three dimensional Einstein–Maxwell–Dilaton gravity

In this section, we introduce three dimensional Einstein–
Maxwell–Dilaton gravity with the action [19]

I =
∫

dx3√−g
[
R − γ

2
gμν∇μφ∇νφ

−e−4aφFμνF
μν − 2ebφ�

]
, (1)

where φ is the dilaton field, V (φ) = ebφ� is the dilaton
potential and γ, a, b are constant. Though the spacetime does
not behave as (A)dS spacetime as the presence of a non-
trivial dilaton, we still refer V (0) = � as the cosmological
constant. When setting γ = 8, a = 1, b = 4 and taking the
conformal transformation gSμν = e4φgμν , one can turn to the
string theory with the action [51]

I S =
∫

dx3
√

−gSe−2φ

[
R[gS] + 4gEμν∇μφ∇νφ

− FμνF
μν − 2�

]
.

The equations of motion for gravity, Maxwell field and
dilaton field read as

Eμν ≡ Gμν − T A
μν − T φ

μν + ebφ� gμν = 0, (2)

∂μ

(√−ge−4aφFμν

)
= 0, (3)

γ

2
∇ρ∇ρφ + 2ae−4aφFμνF

μν − ∂φV (φ) = 0, (4)

respectively. Here the energy momentum for Maxwell field
and dilaton field are

T A
μν = e−4aφ

(
2FμρFν

ρ − 1

2
gμνFλσ F

λσ

)
,

T φ
μν = γ

2

(
∇μφ∇νφ − 1

2
gμν∇ρφ∇ρφ

)
.

Follow [19], we introduce the Schwarzschild-like metric
ansatz

ds2 = − f (r)dt2 + 1

f (r)
dr2 + λ2r Ndψ2,

where N is arbitrary constant and λ is an integration constant

with dimension [L] 2−N
2 . In 2 + 1 dimensions, one can never

have gtt = − 1
grr

and gψψ = r2 simultaneously when one
considers a non-trivial solution with dilaton. Actually, when
choosing N = 2, one can only get the BTZ black hole solu-
tion [14] with vanishing γ, a, b in the action. As we consider
the solutions with dilaton, the case with N = 2 will be out
of our discussion.

The dilaton field in three dimensions is chosen as [19]

φ(r) = k ln

(
r

β

)
, (5)

where k and β are constants. We assume that the Maxwell
field depends only on the radial coordinate r , i.e.

Aμdxμ = q A(r)dt. (6)

Then the Maxwell equation gives

A(r) = 2r4 a k+1− N
2

λ (8 a k − N + 2) β4 a k ,

(
4 a k + 1 − N

2
�= 0

)
,

(7)

When 4 a k+1− N
2 = 0, the above one is singular. Actually,

for this case the Maxwell field must be changed into

A(r) = β1− N
2

λ
ln(r),

(
4 a k + 1 − N

2
= 0

)
. (8)
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which is the usual form in three dimensions. Inserting the
dilaton field and Maxwell field, one can find that the compo-
nent of Einstein equations Et

r = 0 leads to

2γ k2 + N 2 − 2N = 0, (9)

or equivalently γ = N (2−N )

2 k2 . In this paper, we will only
consider the system with γ > 0, which means physically
the kinetic energy of the dilaton is positive. From the above
equation, we can find 0 < N < 2.

Then another component of Einstein equations Er
r

becomes

N (N − 2)

8r2 f (r) + N

4r

(
d

dr
f (r)

)
+

(
r

β

)bk

�

+
(
r

β

)4 a k q2

λ2r N
= 0,

which gives

f (r) = 8q2 r−N+2

λ2 (N − 8 a k − 2) N

(
r

β

)4 a k

− 8 �r2

(N + 2 bk + 2) N

(
r

β

)bk

+ Br1− N
2 . (10)

where B is integration constant related to the mass of black
holes. The other non-vanishing components of Einstein equa-
tions can be simplified as

λ2�

βbk (N − bk − 2)

+ q2

β4ak (N − 4 a k − 2) r (4 a−b)k−N = 0. (11)

From this equation, one can find two families of static charged
dilaton black hole solutions:

• Chan–Mann charged dilaton black hole [19], i.e. b =
4a = N−2

k , one can find that the constant term and

r (4 a−b)k−N term in Eq. (11) both vanish. This is the
famous one parameter family of static charged dilaton
black hole obtained by Chan and Mann in [19].

• Another charged dilaton black hole, i.e. 4a − b = N
k ,

one can find (4 a − b) k − N = 0. Then only constant
term exists in Eq. (11), which is vanishing and will fix all
constants of this solution.

We will first revisit the Chan–Mann charged dilaton black
hole in next section and present another charged dilaton black
hole in Sect. 4. Their geometrical property and the horizon
structure are also studied respectively.

3 Chan–Mann charged dilaton black hole

In this section, we firstly revisit the Chan–Mann charged
dilaton black hole and then discuss its horizon structure. Note
that the horizon structure of black hole with 2

3 < N < 2 was
analyzed in detailed in [19]. Hence we will give a general
discussion about the case 0 < N < 2.

3.1 The solution and quasilocal charges

Consider Eq. (11), one can easily find one family of its solu-
tions

4ak = bk = N − 2, (12)

for which both the constant term and r (4 a−b)k−N term are
vanishing. Then one can find that the following solutions for
the Maxwell field, dilaton field and metric:

• When N �= 2 and N �= 2
3 ,

Aμdxμ = 2qr
N
2 −1β2−N

λ (N − 2)
dt, φ(r) = k ln

(
r

β

)
,

f (r) = −8β2−N

N

(
q2

λ2 (N − 2)
+ �r N

(3N−2)

)
+Br1− N

2 ,

(13)

where Eqs. (9) and (12) give the constants

N �= 2

3
, k = − 4a

γ + 8a2 , N = 2γ

γ+8a2 , b = 4a,

(14)

and β is arbitrary, B and q are related to the mass and
charge respectively. This is the famous one parameter
family of static charged dilaton black hole solution in
three dimensions, which is obtained by Chan and Mann
in [19]. When N = 1, the above solution reduces to
the (2 + 1) dimensional MSW charged black hole [52,
53]. As mentioned previously, the system is related to the
string theory by a conformal transformation and choosing
parameters γ = 8, b = 4a = 4 which forces N = 1.

• Note that the metric function of the above solution with
N = 2

3 is singular. For this case, one can find the dilaton
solution taking the following form

Aμdxμ = − 3qβ
4
3

2λr
2
3

dt, φ(r) = k ln

(
r

β

)
,

f (r) = 3β
4
3

(
3q2

λ2 − 2�r
2
3 ln (r)

)
+ Br

2
3 , (15)
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where the constants become

N = 2

3
, k = − 1

3a
, γ = 4a2, b = 4a. (16)

On the other hand, one can find that this dilaton solution
fails to fulfill the falloff conditions for asymptotically AdS
spacetime [54]. Meanwhile, as the parameter k characterizes
the strength of dilaton field, one may expect that the solutions
with constant dilaton field (i.e. vanishing k) reduce to the BTZ
black hole solution with ln(r) Maxwell field and modified
cosmological constants (by the dilaton potential). However,
this does not work as there is no dilaton solution with ln(r)
Maxwell field which corresponds to a = b = γ = k =
0, N = 2 and is actually the BTZ black hole. Hence this kind
of black hole solutions does not belong to the family of BTZ
black holes, which can be continuously connected to BTZ
black hole. For the same reason, there exists no limit of the
charged scalar black hole solutions (i.e. a = 0 which gives
b = γ = 0, N = 2 as well) for this family of black holes.
For q = 0, the solution reduces to the uncharged scalar black
hole in Einstein–Scalar gravity with the Liouville potential.

Taking the coordinate transformation dt = du − dr
f (r) ,

we can obtain the solution in Eddington–Finekelstein-like
coordinates, i.e.

ds2 = − f (r)du2 + 2dudr + λ2r Ndψ2, (17)

which will be useful to construct its time-dependent solution.
Then performing the coordinate transformation λ2r N → r2,
one can turn to the system with the usual radial co-ordinate
r . Then the dilaton solution behaves as

ds2 = − f (r)du2 + 4r
2
N −1

Nλ
2
N

dudr + r2dψ2 (18)

with the horizon function

f (r) = 8Q2

(2 − N )N
− 8� r2

(3N − 2)N

− 2M

N
r

2
N −1, N �= 2

3
and N �= 2; (19)

f (r) = 9Q2 − 18� ln (r) r2 − 3Mr2, N = 2

3
,

(20)

where one has absorbed λ1− 2
N into the constant B and chosen

β2−N = λ2. Here the mass and electric charge of this black
hole are [19]

M = −N B

2
, Q = q (21)

by using the quasilocal charges method [55–57]. Note the

constant λ
2
N was absorbed into M for convenience (i.e. M

has dimension [L] N−2
N ).

3.2 The horizon structure

We firstly consider the geometric quantities of this solution,
for example, the the Ricci scalar R and other higher order
curvature invariants (RμνRμν and Rμνρσ Rμνρσ ). One can
easily find an essential singularity at r = 0 if either M �= 0 or
Q �= 0. In order to avoid the naked singularity, the solution
must contain an event horizon r+ and the static region of
spacetime (i.e. f (r) > 0) must stay at r > r+.

When 2
3 < N < 2, the horizon structure was analyzed in

detailed in [19]. Here we give a general discussion about the
case 0 < N < 2. We first consider the case 0 < N < 2, N �=
2
3 . Note we always focus on the black hole with positive mass,
i.e. M > 0. There are three extra parameters in the solutions
Q,�, N , which are closely related to the horizon structure.
Hence the discussion of black hole solution could be divided
into the following cases:

• When Q = 0, i.e. the uncharged solutions: the hori-

zon function reduces to f (r) = 2Mr2

N (r
2
N −3
+ − r

2
N −3),

where the zero is r+ = ( 4�
M(2−3N )

)
N

2−3N . The existence
of horizons leads to (2 − 3N )� > 0. Besides, con-
sider the static region f (r) > 0 (which must stay at
r > r+), one can get that N < 0 for the case with
power 2

N − 3 > 0, while N > 0 for the case with
power 2

N − 3 < 0. Hence when Q = 0, only the
case with � < 0 and 2

3 < N < 2 corresponds to
the AdS uncharged dilaton black hole with single hori-
zon.

• When Q �= 0,� = 0, i.e. the charged flat solution: we get

f (r) = 2M
N (r

2
N −1
+ − r

2
N −1), where r+ = (

4Q2

M(2−N )
)

N
2−N .

As 2
N − 1 > 0, we can similarly get N < 0 in order

to observe the black hole horizon, namely equivalent
γ < 0. The negative kinetic energy in the action indi-
cates that the dilaton acts as a phantom field. Hence in
flat spacetime, only when Q �= 0, N < 0, one can find
the charged flat phantom black hole, other than the dila-
ton black hole.

• When Q �= 0, M = 0, i.e. the “massless” charged
solution: the horizon function takes the simplified form

as f (r) = 8(2−N )

NQ2 (1 − r2

r2+
), where r+ =

√
(3N−2)
(2−N )�

Q.

Black hole solution is the one with conditions (3N −
2)(2 − N )� > 0 and (2 − N )N < 0 holding, which
give � < 0, N > 2 or N < 0 (i.e. γ < 0). This
is actually the AdS “massless” charged phantom black
hole.
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• When Q �= 0,� �= 0, M �= 0, i.e. the general charged
non-flat “massive” solution: the discussion is compli-
cated. We introduce the first order derivative f ′(r) =

16� r
(3N−2)N (( r

rex
)

2
N −3 − 1), with its single zero

rex =
(

8� N

(N − 2)(3N − 2)M

) 2
2−3N

. (22)

Hence f (0), f (+∞) and the extremum f (rex ) deter-
mine the curve of f (r). Consider the leading terms of
f (r) at r = 0 and r = +∞, they are both dependent of
N . Then we can find two subcases:

1. For 0 < N < 2
3 : we know 2

N −1 > 2. This case gives

that f (0) = 8Q2

(2−N )N > 0, f (+∞) = − 2M
N ×∞ < 0

and the maximum of f (r) is f (rex ) > 0. These indi-
cate that the curve of f (r) across zero only once at
r = r+, and the static region is r < r+, hence this
corresponds to the naked singularity which is physi-
cally unacceptable.

2. For 2
3 < N < 2: we find 0 < 2

N − 1 < 2. From the

the leading terms, it is shown that f (0) = 8Q2

(2−N )N >

0, f (+∞) = − 8�
(3N−2)N × ∞ = −� × ∞. When

� > 0, there is no real rex and f (r) monotonically
decrease from positive value to −∞. There is a hori-
zon r = r+ and the static region is r < r+ in the
spacetime, which corresponds to the naked singu-
larity. When � < 0, it is shown that f (0) > 0,
f (+∞) = +∞ and the minimum is f (rex ). When
f (rex ) = 0, it corresponds to the extremal black hole
with the mass

Mex =
(

8N

(3N − 2)(2 − N )

)
Q

3N−2
N (−�)

2−N
2N .

(23)

If f (rex ) < 0, one can find the non-extremal black
hole with two horizons. Note condition f (rex ) < 0
leads to the mass bound M > Mex .

When N = 2
3 , the horizon structure is more simpler. One

can find that f (0) = 9Q2 > 0 and f (+∞) = −18� × ∞.
Then consider the first order derivative f ′(r) = −2r(9 � +
18 � ln (r) + 3 M). For dS spacetime, we get f ′(r) < 0
which shows that f (r) monotonically decrease from positive
value to −∞. Though there is a horizon, the solution can
not avoid the naked singularity because the static region is
r < r+. For the same reason, the special cases with vanishing
M or � in (A)dS spacetime are also the naked singularity
even they have a horizon. When � < 0, it is easy to find the
extremal black hole with the mass

Mex = −3� − 6� ln

(
Q√−�

)
= −3� ln

(
eQ2

−�

)
, (24)

and the horizon

rex = Q√−�
. (25)

The non-extremal black hole corresponds to the solution
with M > Mex . Note when � ≤ −eQ2, one can find that
Mex ≤ 0 and there exist charged dilaton black hole solutions
with negative mass. Especially for the case with Q = 0, i.e.
Mex = −∞, we conclude that AdS uncharged solutions with
arbitrary mass correspond to the black holes. One can look at
Fig. 1, where we have plotted the horizon function f (r) with
� = −1, N = 2

3 and different values of parameters M, Q.
Putting all cases together, we see that the physically

acceptable bounds for parameters are 2
3 ≤ N < 2, � <

0 and M ≥ Mex , which correspond to the AdS dila-
ton (charged/uncharged) black holes. Especially for charged
solution, the one with M = Mex is also physically acceptable
and is the extremal black hole, while the one with M > Mex

corresponds to the non-extremal black hole and the one with
� ≤ −eQ2 corresponds to charged dilaton black hole solu-
tions with negative mass. For uncharged solution, we con-
clude that the AdS solutions with 2

3 < N < 2, M > 0
or N = 2

3 always are the black hole with single horizon.
Besides, the (un)charged black holes all have a negative cos-
mological constant, which is consisten with the No-Go the-
orem in three dimensions [48].

3.3 The causal structure

To end this section, we revisit the causal structure of Chan–
Mann black hole, which is studied in [19]. We take the
uncharged case Q = 0 as an example to introduce the method
of obtaining the Penrose diagrams. Then in the metric Eq.
(18), the horizon function of uncharged black hole reduces
to

f (r) =
(

− 8� r3− 2
N

(3N − 2)N
− 2M

N

)
r

2
N −1,

× 2

3
< N < 2, M > 0, � < 0. (26)

One can find the tortoise coordinate r∗

r∗ ≡
∫ √

−grr
gtt

dr = (3N − 2)N

−8�

∫
dr

(r3− 2
N − r

3− 2
N+ )

.

(27)

It is clear that the tortoise coordinate depends on parameter
N , which may lead to different causal structures.
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Fig. 1 Horizon structure of Chan–Mann dilaton solution with � =
−1, N = 2

3 . In the left plot, � ≤ −eQ2 indicates that there exist
charged dilaton black hole solutions with negative mass. In the right

one, uncharged solutions with arbitrary mass correspond the black holes
with single horizon

We show the subcase with N = 6
5 firstly. The tortoise

coordinate could be simplified as

r∗ = (3N − 2)N

−8�

∫
dr

(r4/3 − r4/3
+ )

= 3

−10� r1/3
+ λ5/3

[
ln

(
r1/3 − r1/3

+
r1/3 + r1/3

+

)

+2 arctan

(
r1/3

r1/3
+

)]
. (28)

After defining the advanced and retarded null coordinates

u = t − r∗, v = t + r∗ (29)

and the Kruskal coordinates

U = 3

5� r1/3
+ λ5/3

e
5� r

1/3
+ λ5/3

3 u,

V = 3

−5� r1/3
+ λ5/3

e
−5� r

1/3
+ λ5/3

3 v, (30)

the metric can be re-written as

ds2 = −
(

5Mr2

3

) (
1

r4/3
+

− 1

r4/3

)

(
r1/3 + r1/3

+
r1/3 − r1/3

+

)
e
−2 arctan

(
r1/3

r
1/3
+

)

dUdV, (31)

and a useful relationship is given

UV = −
(

3

5� r1/3
+ λ5/3

)2 (
r1/3 − r1/3

+
r1/3 + r1/3

+

)
e

2 arctan

(
r1/3

r
1/3
+

)

.

(32)

As r → +∞, UV → −( 3
5� r1/3

+ λ5/3
)2eπ , which is timelike

and corresponds to a vertical line in the Penrose diagram.
The horizon is located at r = r+, which indicates UV =
0. For r = 0, since the metric Eq. (31) changes sign and
one should take the transformation U → −U , then one can

obtainUV = −
(

3
5� r1/3

+ λ5/3

)2

, implying that the singularity

is timelike as well. These correspond to the various causal
boundaries in the Penrose diagrams, which is depicted as
in Fig. 2a. When the charge Q is added, there could exist
two horizons: the event horizon r+ and the Cauchy horizon
r−; hence the discussion becomes more complicated, and we
only present the Penrose diagrams here. For the non-extremal
black hole, the Penrose diagrams is given in Fig. 3a; for the
extremal cases, it becomes Fig. 3b.
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Fig. 2 Penrose diagrams for
uncharged Chan–Mann black
hole: a, b respectively
correspond to N = 6

5 and
N = 6

7 . The double line
indicates the curvature
singularity r = 0

r = r+

r = r+

r = r+

r = r+

r = r+

r = r+

r
=

0

r
=

+
∞

r = r+

r = r+

r = r+

r
=

0

r = +∞

r = +∞

r = +∞

r = +∞

(a) (b)

We next consider the subcase with N = 6
7 . The tortoise

coordinate is given as

r∗ ∝
∫

dr

(r2/3 − r2/3
+ )

= 3r1/3
+
2

[
ln

(
r1/3 − r1/3

+
r1/3 + r1/3

+

)
+ 2

(
r1/3

r1/3
+

)]
. (33)

Following the similar coordinate transformations (the
advanced and retarded null coordinates and the Kruskal coor-
dinates) outlined above, we can obtain the relationship

UV ∝ −
(
r1/3 − r1/3

+
r1/3 + r1/3

+

)
e

2

(
r1/3

r
1/3
+

)

. (34)

Then the causal boundaries in the Penrose diagrams are

lim
r→0

UV ∝ −1, lim
r→ r+

UV = 0, lim
r→+∞UV = −∞.

(35)

The corresponding Penrose diagrams is depicted in Fig. 2b.
This is different from the subcase with N = 6

5 , and it is sim-
ilar to the one for an extremal Reissner–Nordstrom black
hole in four dimensions. The causal structure of charged
black hole with N = 6

7 could be obtained from the one
for Reissner–Nordstrom black hole by a π

2 rotation. Espe-
cially for the extremal charged black hole with N = 6

7 , the
corresponding Penrose diagrams could be simply obtained
through a π

2 rotation of Fig. 2b.
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Fig. 3 Penrose diagrams for
charged Chan–Mann black hole
with N = 6

5 : a, b respectively
correspond to the non-extremal
and extremal cases. The double
line indicates the curvature
singularity r = 0

r = rex r = rex r = rex r = r+

r = 0

r = +∞

r = 0 r = 0

r = 0 r = 0

r = +∞ r = +∞

r = +∞ r = +∞

r = r+

r = r+

r = r+

r = r+

r = r−

r = r−

r = r−

r = r−

(a)

(b)

4 Another charged dilaton black hole

4.1 The solution and its properties

Back to Eq. (11), one can find another solution

(4a − b)k − N = 0, (36)

λ2�(N − bk − 2) + q2

βN (N − 4 a k − 2) = 0, (37)

where only constant term exists and vanishes in Eq. (11), and
will fix all constants of this solution. Inserting these condi-
tions, the solutions are divided into three cases as follows

• When N + 2 bk + 2 �= 0 and bk + 2 �= 0, the solution is
simplified as

Aμdxμ

= 2qrb k+1+ N
2

λ (N + 2b k + 2) βb k+N
dt, φ(r) = k ln

(
r

β

)
,

f (r) = − 8rbk+2�β−bk

(N + 2 bk + 2) (bk + 2)
+ Br− N

2 +1, (38)

with the constants

βN = q2 (bk + 2)

�λ2 (N − bk − 2)
, k = − 2(b − 4 a)

2 γ + (b − 4 a)2 ,

N = 2 (b − 4 a)2

2 γ + (b − 4 a)2 . (39)

• When N + 2 bk + 2 = 0, we get the following dilaton
solutions with ln(r) Maxwell field

Aμdxμ = qβ1− N
2

λ
ln (r) dt, φ(r) = k ln

(
r

β

)
,

f (r) = r1− N
2

(
8β1+ N

2 �

N − 2
ln (r) + B

)
, (40)

where the constants are

βN =
(
1 − N

2

)
q2

�λ2
( 3N

2 − 1
) , k = − 8a

γ + 32 a2 ,

N = 2γ

γ + 32 a2 , b = γ + 16 a2

4a
. (41)

• When bk + 2 = 0, the solution becomes

Aμdxμ = 2qβ2−Nr
N
2 −1

(N − 2) λ
dt, φ(r) = k ln

(
r

β

)
,

f (r) = − 8β2−Nq2

(N − 2) Nλ2 + Br1− N
2 , (42)

with the following constants

� = 0, N = 2(b − 4 a)

b
, k = − 2

b
,

γ = 2 (b − 4 a) a. (43)

One can find that only when N = 0 (i.e. b = 4a),
this solution can be seen as a reduced string solution of the
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Chan–Mann charged dilaton solution. Note in the former two
cases, β is not arbitrary and is fixed by the strength constants
γ, a, b,� in the action and the electric charge parameter q,
while β is arbitrary for the third case which could only exist in
the flat spacetime. For the charged scalar solution, i.e. a = 0,
the first case reduces to

Aμdxμ = 2qr1− N
2

λ (2 − N )
dt, φ(r) = k ln

(
r

β

)
,

f (r) = r1− N
2

(
B − 8�βN

(2 − N )2 r
1− N

2

)
,

βN = q2 (2 − N )

2�λ2 (N − 1)
, k = − 2b

2 γ + b2 , N = 2b2

2 γ + b2 ,

(44)

while the latter two become the BTZ solution. Namely, there
is no charged scalar black hole with ln(r) Maxwell field.

To get the uncharged solution, one can directly choose the
q = 0 limit of the above solutions. One should be careful of
the choice of the parameters. When q = 0, Eq. (36) results
in � = 0 or N = bk+2, and the Maxwell field is vanishing.
If � = 0, the horizon function of this uncharged solutions

reduces to the vacuum solution f (r) = Br− N
2 +1. Hence for

the uncharged dilaton solution, we get the same form of the
solution and additionally choose N = bk+2 while parameter
β is free.

4.2 The horizon structure

Firstly, we perform the coordinate transformation λ2r N →
r2, in order to focus on the dilaton solution in the metric Eq.
(18) with the usual radial co-ordinate r . We get

f (r) = r
2− N
N

( −8�r
N+2bk+2

N β−bk

(N + 2 bk + 2) (bk + 2)
− 2M

N

)
,

N + 2 bk + 2 �= 0 and bk + 2 �= 0; (45)

f (r) = r
2−N
N

N

( −16�β1+ N
2

(2 − N )
ln (r) − 2M

)
,

N + 2 bk + 2 = 0; (46)

f (r) = 1

N

(
8Q2

(2 − N )
− 2Mr

2−N
N

)
, bk + 2 = 0, (47)

where we still choose M = − N B
2 and Q = q as the quasilo-

cal charges of the solution. We have also chosen λ = 1 in the
former two and β2−N = λ2 for the third one, for simplicity.

To consider the horizon structure, we begin with the geo-
metrical properties. We focus on the dilaton solutions with
positive kinetic energy, i.e. 0 < N < 2. Calculate the Ricci
scalar for each case, we find

R = 4
(
4 + 6 bk + 2 b2k2 + 2 N + 2 Nbk + N 2

)
(N − bk − 2) (N + 2 bk + 2) βbk+N

Q2

r− bk
N

+ M (N − 2)

2 r
N+2
N

, N + 2 bk + 2 �= 0 and bk + 2 �= 0;
(48)

R =
2 β1− N

2

(
2 (N − 2) ln

(
r

βN/2

)
+ 4

)
Q2

(3 N − 2)
(
r

N+2
N

)

+ M (N − 2)

2 r
N+2
N

, N + 2 bk + 2 = 0; (49)

R = 4Q2

r
2
N

+ M (N − 2)

2 r
N+2
N

, bk + 2 = 0, (50)

which always indicates an essential singularity at r = 0 if
either M �= 0 or (Q �= 0, bk < 0). Hence the solution must
contain an event horizon r+ and the static region r > r+ to
avoid the naked singularity. Especially for the first branch, the
charged solution with bk ≥ 0 has two essential singularities
located in r = 0 and r = +∞. This is also discussed in
detailed in what follows. Besides, whenever M �= 0 or Q �=
0, one can easily find some non-vanishing components of
the Cotton tensor which indicate that the solutions are non-
conformally flat [58].

Then consider the charged black hole solutions. Note
0 < N < 2 and β is always positive. We can find the corre-
sponding branches:

• When bk + 2 = 0, the discussion is the simplest. The

horizon function can be rewritten as f (r) = 2M
N (r+

2−N
N −

r
2−N
N ) with the real zero r+ = (

8Q2

2M(2−N )
)

N
2−N . However,

one can find f (r) > 0 leads to the static region r < r+
which does not correspond to the black hole solution. If
we relax the positive mass and positive kinetic energy, one
can find that the phantom solutions with N > 2, M < 0
or N < 0, M > 0 also have the physically unacceptable
static region r < r+. Thus this case is always the naked
singularity.

• When N+2 bk+2 = 0, we get f (r) = −16�
(2−N )N β1+ N

2 r
2−N
N

(ln(r) − ln(r+)). Thus the static region r > r+ indi-
cates that � < 0, where the single root is r+ =
exp(

2M(2−N )

−16�β
1+ N

2
) (r+ > 1). Besides, βN should be pos-

itive and results in 0 < N < 2
3 , which gives an addi-

tional constraint − 4
3 < bk < −1. Only in this condi-

tion, we can find the charged dilaton AdS black hole.
Note when � > 0, N > 2 or N < 0, it corresponds to
the charged phantom dS black hole. When Q is vanish-
ing, one can find that we must choose bk = − 4

3 (i.e.
N = bk + 2 = 2

3 ). The event horizon r+ takes the
same form with the charged one and can be simplified
as r+ = exp( M

−6�β4/3 ), while the parameter β is free.
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The charged black hole reduces to the uncharged dilaton
AdS and phantom dS black hole, respectively.

• When N + 2 bk + 2 �= 0 and bk + 2 �= 0, we

rewrite the horizon function as f (r) = 2M
N r

2− N
N

(( r
r+ )

N+2bk+2
N − 1), together with the single zero r+

= (
M(N+2 bk+2)(bk+2)βbk

−4N�
)

N
N+2bk+2 . Then we can find

three conditions for the black hole solution with bk < 0:
the parameter β is positive, thus the form of βN > 0
results in �(bk + 2)(N − (bk + 2)) > 0; the solu-
tion has an event horizon indicating −�(N + 2 bk + 2)

(bk + 2) > 0; the single singularity is located in r = 0,
hence the static region r > r+ leads to N +2bk+2 > 0.
Based on the above three constraints on the parameters
and 0 < N < 2, we can finally obtain the physically
acceptable solution: For � < 0,−2 < bk < 0 and
max{0,−2(bk + 1)} < N < bk + 2, this solution corre-
sponds to the charged dilaton AdS black hole. For solu-
tions with bk ≥ 0, there are two singularities located in
r = 0 and r = +∞, which always make the solutions
physically unacceptable. When Q = 0, we must choose
N = bk + 2, while parameter β is free. There is always
a singularity located in r = 0. Hence we only care about
two constraints: the event horizon r+ is simplified as

r+ = (
M(3 bk+4)βbk

−4�
)

bk+2
3bk+4 , indicating −�(3 bk+4) > 0;

the static region r > r+ leads to 3bk + 4 > 0. These
together give � < 0, bk > − 4

3 (i.e. N > 2
3 ) correspond-

ing to the uncharged dialton AdS black hole solutions.

Totally, one can obtain that this family of solutions only
have black hole with negative cosmological constant, which
is the same with that the Chan–Mann dilaton black hole and is
also consistent with the No–Go theorem in three dimensions
[48]. Besides,

• In Einstein–Maxwell–Dilaton gravity, only solutions
with either N + 2 bk + 2 = 0, 0 < N < 2

3 (i.e.
− 4

3 < bk < −1), or max{0,−2(bk + 1)} < N <

bk + 2, −2 < bk < 0 corresponds to the charged dila-
ton AdS black hole with fixed parameter β.

• For uncharged dilaton AdS black hole, it has N = bk +
2, 2

3 ≤ N < 2 (i.e. − 4
3 ≤ bk < 0) and free parameter

β, which is consistent with the uncharged limit of the
Chan–Mann dilaton black hole.

These black holes always have a single horizon (i.e. the event
horizon) and do not contain an additional mass bound (but
the usual M > 0). Hence there is no physically acceptable
(non-)extremal dilaton black hole for this family of dilaton
solutions. For the charged phantom black hole, we have given
some results in the above paragraphs and one can follow the
same procedure to give a whole discussion of the horizon
structure.

4.3 The causal structure

Since there always exists a single horizon for this family
of charged dilaton black hole, the causal structure becomes
simple and is similar to the uncharged case of the Chan–
Mann dilaton black hole. Following the same procedure, we
firstly introduce the tortoise coordinate r∗

r∗ = 1

Mλ5/3

∫
dr( (

r
r+

) (N+2bk+2)
N −1

) , N+2 bk+2 �= 0,

(51)

which is actually similar to the one of the uncharged case of
the Chan–Mann dilaton black hole.

Then we take some examples to explore the causal struc-
ture of this family of charged dilaton black hole. When
N = 1, bk = − 5

6 , the above tortoise coordinate could be
simplified as

r∗ ∝
∫

dr( (
r
r+

)4/3 − 1

) ,

=
[

ln

(
r1/3 − r1/3

+
r1/3 + r1/3

+

)
+ 2 arctan

(
r1/3

r1/3
+

)]
. (52)

After takeing the similar the advanced and retarded null coor-
dinates, and the Kruskal coordinates, we get the relationship

UV ∝ −
(
r1/3 − r1/3

+
r1/3 + r1/3

+

)
e

2 arctan

(
r1/3

r
1/3
+

)

. (53)

and the following causal boundaries

lim
r→0

UV ∝ −1, lim
r→ r+

UV = 0, lim
r→+∞UV = −1.

(54)

This indicates that the corresponding Penrose diagram is the
same with Fig. 2a. Here we show other similar subcases with
N = 6

5 , bk = − 2
5 or N = 6

7 , bk = − 4
7 . The tortoise coordi-

nate becomes

r∗ ∝
∫

dr( (
r
r+

)2 − 1

) = r+
2

ln

(
r − r+
r + r+

)
. (55)

After takeing the similar coordinates transformations, we get
the relationship

UV ∝ −
(
r − r+
r + r+

)
, (56)
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which leads to the same causal boundaries Eq. (54), hence
the the same Penrose diagram with Fig. 2a.

Considering the subcase with N = 3
4 , bk = − 9

8 , the tor-
toise coordinate r∗ reduces to

r∗ ∝
∫

dr( (
r
r+

)2/3 − 1

) ,

=
[

ln

(
r1/3 − r1/3

+
r1/3 + r1/3

+

)
+ 2

(
r1/3

r1/3
+

)]
. (57)

Following the standard coordinates transformations, one will
get

UV ∝ −
(
r1/3 − r1/3

+
r1/3 + r1/3

+

)
e

2

(
r1/3

r
1/3
+

)

. (58)

and the following causal boundaries

lim
r→0

UV ∝ −1, lim
r→ r+

UV = 0, lim
r→+∞UV = −∞,

(59)

for which, the Penrose diagram should be exactly the same
with Fig. 2b.

Finally, we turn to the Penrose diagram of the special case
with N + 2bk + 2 = 0, for which the tortoise coordinate is

r∗ ∝
∫

dr(
ln(r) − ln(r+)

) , 0 < N <
2

3

= −r+Ei

(
1,− ln(r) + ln(r+)

)
, (60)

where the function Ei is the exponential integrals. Following
the same procedure, we can get a useful relationship of the
Kruskal coordinates,

UV ∝ −e
−Ei

(
1,− ln(r)+ln(r+)

)
. (61)

The corresponding causal boundaries take the form

lim
r→0

UV ∝ −e
−Ei

(
1,+∞

)
= −1, (62)

lim
r→ r+

UV ∝ −e
−Ei

(
1,0

)
= 0, (63)

lim
r→+∞UV ∝ −e

−Ei

(
1,−∞

)
= −∞. (64)

Thus the corresponding Penrose diagrams should be also the
same with Fig. 2b.

5 The time-dependent system

In this section, we present the general time-dependent black
hole solution and its properties in three dimensional Einstein–
Maxwell–Dilaton gravity.

5.1 The dynamical solution

To find the exact time-dependent solution, we follow the
static metric Eq. (18) and introduce the similar metric ansatz
in Eddington–Finekelstein-like coordinates

ds2 = − f (u, R)du2 + 4g(u)RdudR + R2dψ2. (65)

As introduced in the static metric Eq. (18), one can find

 = 2

N
− 1. (66)

Then the equation of motion for the Maxwell field

Aμdxμ = QA(u, R)du (67)

leads to

∂

∂R
A(u, R) = e4 a φ(u,R)R−1g(u). (68)

To get the static limit, we consider the following evolution
of scalar field

φ(u, R) = ln

(
φ1(u)φ2(R)

)
(69)

with

φ1(u) = u p, φ2(R) = Rk . (70)

Thus the scalar field could be simplified as

φ(u, R) = k ln(R) + p ln(u). (71)

Then the component of Einstein equations Eu
R = 0 is

reduced into

γ − 2

k2 = 0. (72)

Taking the combination of the component of Einstein
equations Eu

u = 0 and the equation of scalar field, one
can obtain a equation of function g(u),
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(
4(γ k + b)� Rγ k2+bk+2φ1(u)b+1

+ (γ k + 4a)Q2Rγ k2+4akφ1(u)4a+1
)
g(u)

= γ R
γ k2

2 +1∂uφ1(u), (73)

where the function f (u, R) is disappeared. For time-
dependent solution, the variable R in above Eq. (73) requires
the following relations

γ k2 + bk + 2 = γ k2 + 4ak = γ k2

2
+ 1. (74)

After considering the relation Eq. (72), we can obtain the
constants in action

a = − ( − 1)

4k
, b = 4a − 2

k
= − ( + 1)

k
, γ = 2

k2 .

(75)

One can also choose the parameters in the form of a and b as

 = b + 4a

b − 4a
, k = 2

4a − b
, γ = b2 − 16a2

2
. (76)

or equivalently

N = b − 4a

b
, k = 2

4a − b
, γ = b2 − 16a2

2
. (77)

For there parameters in action and metric, as a > 0, b >

0, γ > 0, one can find some additional constraints on the
parameters

b > 4a,  > 1, k < 0. (78)

Then Eq. (73) could be simplified as

(
4(γ k + b)�φ1(u)b+1

+ (γ k + 4a)Q2φ1(u)4a+1
)
g(u) = γ ∂uφ1(u), (79)

which leads to

g(u) = 2 u−1+ p
k (+1) p

k

(
u

2p
k Q2 ( + 1) + 4 � ( − 1)

) . (80)

Finally, considering the other components of component
of Einstein equations, one can easily obtain the horizon func-
tion

f (u, R) =

(
− 8

(
u

2p
k Q2+4 �

)
p22Ru

p
k (−1) − M( + 1)

)
Ru

2p
k −2

k2

(
u

2p
k Q2 ( + 1) + 4 � ( − 1)

)2 ,

(81)

where M is the mass of static black hole. The Maxwell field
is

A(u, R) = 2p Ru
2p
k −1

k

(
u

2p
k Q2( + 1) + 4�( − 1)

) . (82)

There is still an arbitrary parameter p, which characterizes
the evolution of dilaton field. For every time u = u0, the
time-dependent solution with fixed p is actually reduced to
the static charged dilaton black hole. Besides, one should
note that the dynamical solution is obtained only for special
case with γ = b2−16a2

2 (b �= 4a).

5.2 Solution in other coordinate system

One can take the transformation u = u(U ), and then observe
other evolution ways of matter field and the spacetime. For
example, after choosing u = u0 tanh(κ U ), one can obtain
an exact time-dependent solution describing the gravitational
collapse to a charged dilaton black hole at the infinite time
U → +∞.

Here we introduce the solution in following coordinate
system to study the related properties. After considering the
transformation

u
2p
k −1

k

(
u

2p
k Q2( + 1) + 4�( − 1)

)du → dU, (83)

one can find that the Maxwell field is not time-dependent, i.e

Aμdxμ = 2p QRdU. (84)

The above transformation takes the form

U =
ln

(
u2p/k Q2( + 1) + 4�( − 1)

)

2pQ2( + 1)
. (85)

or equivalently

u = u(U ) =
(
e2pQ2(+1)U

Q2( + 1)

)k/2p

. (86)
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Then this solution can be simplified as

ds2 = − f (U, R)dU 2 + 4g(U )RdUdR + R2dψ2, (87)

f (U, R) =
(

− 8
(
u

2p
k Q2 + 4 �

)
p22Ru

p
k (−1)

− M( + 1)

)
Ru− 2p

k , (88)

φ(U, R) = k ln(R) + p ln(u), g(U ) = 2 u
p
k (−1) p.

(89)

For the extra matter source, only the dilaton field is time-
dependent. This means that the dilaton field drives the evo-
lution of spacetime. The parameter p is also arbitrary, which
characterizes the evolution of dilaton field and spacetime.

5.3 Global properties of dynamical solution

We firstly calculate some geometrical quantities to under-
stand the geometrical features of the time-dependent solu-
tion Eqs. (87, 88, 89). Noting that the conditions Eq. (78)
are always used in the following discussion. Considering the
Cotton tensor, there exist some non-vanishing components.
For example,

CRuR = MQ(+1)( − 2)( + 1)(+3)/2

16pR3

exp

(
− p( + 1)2Q2U

)
(90)

is not vanishing when (M �= 0, Q �= 0,  �= 2). This indi-
cating that the metric is non-conformally flat [58].

On the other hand, one can calculate the polynomial cur-
vature invariants to study the singularities. Here we focus on
the Ricci scalar, while other higher order curvature invariants
have similar properties and more complicated forms hence
are not listed here. From the Ricci scalar

R ≡Rμνg
μν

= − MQ2( + 1)(+1)

16p2 R(+2)
exp

(
− 2p( + 1)Q2U

)

+
(
Q

R

)(+1)

( + 1)(−1)/2

×
[

4( + 1)� exp

(
− p( + 1)2Q2U

)

+ exp

(
− p(2 − 1)Q2U

)]
, (91)

it is easy to find that when U → 0, the spacetime has a
singularity at R = 0 when (M �= 0, Q �= 0). Then from

the metric function f (u, R) Eq. (81), one can find that only
when � < 0, there exist black hole horizons. As u is finite,
the dilaton field is finite for U = 0, which indicates that the
system is a dynamical AdS black hole at the beginning. The
global structure at U = +∞ (i.e. u → 0) is more subtle. If
p < 0, the Ricci scalar is singular at U = +∞ (i.e. u → 0),
which can not be protected by a radial horizon, and hence
the cases are not physically acceptable. This indicates that
the parameter p should be positive.

Besides, from the metric function f (U, R) Eq. (88), we
can get the effective time-dependent “Vaidya mass” mea-
sured at infinity as

M(U ) = Mu− 2p
k = M

Q2( + 1)

e2pQ2(+1)U
. (92)

When u → 1, i.e. U → U0,U0 = ln(Q2(+1))

2pQ2(+1)
, one can

get M(u) → M , hence the system actually takes finite time
U = U0 to reach the static dilaton AdS black hole with γ =
b2−16a2

2 and the mass M . When U = 0,� < 0, the system
is a dynamical AdS black hole with mass MQ2(+ 1) at the
beginning. Actually, when the time U increases, the mass of
black hole decreases, and when U → +∞ (with p > 0) i.e.
u = 0, the black hole mass is vanishing. Equivalently, when
the time u increases, the mass of black hole increases, and
the black hole mass is vanishing at the beginning u = 0 (with
p > 0).

To sum, for time u = u0, the time-dependent solution
with (γ = b2−16a2

2 , b > 4a,  > 1, k < 0, p > 0) charac-
terizes the charged black hole formation in three dimensions
(while the charged black hole perishes when time U = U0

increases.). Moreover, The dynamical system should be an
AdS black hole, which is consistent with the static cases in
lase two sections.

5.4 No dynamical Chan–Mann solution under the collapse
of dilaton field

One may be interested in the case b = 4a, in order to find
the time-dependent solution of Chan–Mann charged dila-
ton black hole Eq. (18). For this case, the equation Eq. (73)
reduces to

(4� R2 + Q2)(γ k + 4a)Rγ k2+4akφ1(u)4a+1g(u)

= γ R
γ k2

2 +1∂uφ1(u), (93)

which only has the solution

(γ k + 4a) = 0, ∂uφ1(u) = 0, (94)
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i.e.

γ = −4a

k
, (95)

φ1(u) = φ0, (96)

where φ0 is a constant. After choosing p, , φ0 properly, one
will find that this is just the static Chan–Mann charged dilaton
solution. However, this means that there is no time-dependent
solution of Chan–Mann charged dilaton black hole.

Now we try to understand this. As the Einstein–Maxwell–
Dilaton action Eq. (1) with b = 4a is equivalent to string
action Eq. (2) via taking a conformal transformation [51],
while the later one can be lift to (3 + 1) dimensions Einstein
action with cosmological constant by the Kaluza–Klein the-
ory [49,50] (see [59] for a review). The (2 + 1) dimensional
metric is accordingly a sub-manifold of (3 + 1) dimensional
spactime. Actually, for static solutions, one could always
obtain dilaton solutions arising from (3 + 1) dimensional
gravity [60–62], achieved by a compactification of solu-
tions with cylindrical symmetry in (3+1) dimensions; Also,
embedding the (2+1)dimensional solutions in (3+1)dimen-
sions leads to new rotating solutions with cylindrical sym-
metry. If the (2 + 1) dimensional submanifold takes an evo-
lution, the (3 + 1) dimensional spacetime will become time-
dependent. However, there is no extra matter source in (3+1)

dimensions driving an evolution of the Einstein spacetime.
Hence one can not expect the existence of time-dependent
solution of Chan–Mann charged dilaton black hole. Actually,
one can consider the Vaidya-like solution [33] describing the
formation of Chan–Mann charged dilaton black hole. For the
charged dilaton solutions with b �= 4a, they could not be lift
to (3 + 1) dimensions, hence characterize the properties of
Einstein–Dilaton theory; for the time-dependent solution in
this case, the dilaton field could drive the evolution of the
spacetime.

5.5 The gravitational collapse of a dilaton field and the
Cosmic Censorship Conjecture

In three dimensions, the gravitational collapse of a scalar field
is studied in [47], where the causal structure and the Penrose
diagram of uncharged dynamical black hole with scalar are
given. When studying the causal structure of the charged
case in this paper, the discussion becomes too complicated.
The difficulty is palpable. Actually, one may hope to follow a
similar procedure obtaining the Penrose diagram of the static
charged black hole to study the dynamical case. Namely after
takeing a coordinate transformation (u, R) → (u, v) such
that

dv = du + 2ε
A(u, R)

B(u, R)
dR, (97)

the line element may be brought to the Kruskal form ds2 =
−B(u, R(u))dudv + R(u, v)2dψ2. Unfortunately, the con-
dition Eq. (97) does not have an integral in closed form, so
an explicit expression for R = R(u, v) is out of reach.

In order to obtain a some pictures about the spacetime of
the charged dynamical dilaton black hole solution, we are
interested in studying the gravitational collapse of a dila-
ton field in the context of the Cosmic Censorship Conjec-
ture (CCC [63]) in this paper. We will follow the discussion
about the gravitational collapse of matter fields in the general-
ized Vaidya spacetime [64,65], where a general mathematical
framework is developed to study the conditions on the mass
function of matter fields so that future directed non-spacelike
geodesics can terminate at the singularity in the past. The
nature (a locally naked singularity or a black hole) of the
collapsing solutions can be characterized by the existence of
radial null geodesics coming out of the singularity [66,67].
When approaching the singularity (R = 0, u = 0) along
the radial null geodesic, if the slope of radial null geodesics
X0 = limR=0,u=0

u
R = limR=0,u=0

du
dR is positive, the sin-

gularity will be observed in the interior of black hole, which
corresponds to the case that the strong Cosmic Censorship
Conjecture (sCCC) fails [64,65]. The existence of the appar-
ent horizon, which is the boundary of the trapped surface
region in the spacetime also determines the nature of the
singularity. If at least one value of the limiting positive val-
ues X0 is less than the slope of the apparent horizon at the
central singularity (R = 0, u = 0), then the singularity is
locally naked with the outgoing radial null geodesics escap-
ing from the past to the future. This breaks the weak Cosmic
Censorship Conjecture (wCCC) [64,65].

As we are interested in the collapse of a dilaton field, we
firstly introduce a coordinate system with an arbitrary evolu-
tion ways of dilaton field φ = k ln(R) + �(T ) by taking the
transformation p ln(u) → �(T ). Then the solution becomes

ds2 = − f (u, R)
u2�̇2

p2 dT 2+4g(u)R u�̇

p
dT dR + R2dψ2,

(98)

where u = u(T ) = e�(T )/p, �̇ = d�(T )
dT .

It is easy to calculate the equation for outgoing radial null
geodesics

dT

dR
= 4pg(u)R

u�̇ f (u, R)
= 8k

A

�̇B
, (99)

A = e�(−1)/k
[
e2�/k Q2( + 1) + 4�( − 1)

]
, (100)

B =
[

− 82R2(e2�/k Q2 + 4�)e�(−1)/k − M( + 1)

]
.

(101)
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One should note that there exist the conditions

k < 0,  > 1 (102)

for the dynamical solution, which is very important in the
following discussions. Then the slope of radial null geodesics
approaching the singularity (R = 0, T = 0) along the radial
null geodesic should be

X0 = lim
R=0,T=0

T

R
= lim

R=0,T=0

dT

dR
= 8k lim

R=0,T=0

A

�̇B
.

(103)

Considering the different evolution of the dilaton field: (1)
limR=0,T=0 �(T ) = const.; (2) limR=0,T=0 �(T ) = −∞;
(3) limR=0,T=0 �(T ) = +∞, the discussion about sCCC
could be divided into several cases:

• (1) For the case with limR=0,T=0 �(T ) = �0: X0 could
be simplified as

X0 = 8k

[−8M( + 1)] lim
R=0,T=0

A(�0)

�̇
, (104)

where A(�0) = A|�=�0 . There exist three subcases:

– If �(T ) = �0 + ζT , we get X0 = 8k A(�0)[−8Mζ(+1)] .
When ζ A(�0) > 0, X0 > 0 hence the sCCC fails;
while the sCCC of the subcase with ζ A(�0) < 0
always holds.

– If �(T ) = �0 + ζT η, η > 1, i.e. �̇ = 0, it leads to
X0 → +∞, which corresponds to the case that the
sCCC breaks.

– If �(T ) = �0 + ζT η, 0 < η < 1, we find �̇ → ∞
and X0 = 0, thus the sCCC holds.

• (2) For the case with limR=0,T=0 �(T ) = −∞: one can
directly get �̇ → +∞, A(�0) → +∞. After applying
the L ’Hospital’s rule, X0 takes the limit as +∞, which
indicates that the sCCC breaks.

• (3) For the case with limR=0,T=0 �(T ) = +∞: i.e. �̇ →
−∞, as A(�0) → 0, one can find X0 = 0 implying that
the sCCC holds.

Then we consider the wCCC. The apparent horizon of the
dynamical spacetime is defined by f (u, R) = 0. Thus we
can calculate the slope of the apparent horizon at the central
singularity (R = 0, T = 0) as

XAH =
(

dT

dR

)
AH

= 8k2

M( + 1)
lim

R=0,T=0

C

�̇D
, (105)

C = e2�(−1)/k
(
e2�/k Q2 + 4�

)2

, (106)

D =
[
Q2( + 1)e�(+1)/k + 4�( − 1)e�(−1)/k

]
. (107)

The conditions destroying the wCCC is 0 < X0 < XAH .
Similarly, we can find the following cases:

• (1) For the case with limR=0,T=0 �(T ) = �0: XAH

reduces to

XAH = 8k2

M( + 1)
lim

R=0,T=0

C(�0)

�̇D(�0)
, (108)

where C(�0) = C |�=�0 , D(�0) = D|�=�0 . Hence it
still contains three subcases. For simplicity, here we only
discuss the cases that the wCCC breaks. The results are
as follow:

– When�(T ) = �0+ζT , we get XAH = 8k2C(�0)
M(+1)ζD(�0)

.
As C(�0) > 0, The condition 0 < X0 < XAH for a
failed wCCC leads to 0 <

A(�0)
8ζ

< − C(�0)
ζD(�0)

.

– If �(T ) = �0 + ζT η, η > 1, i.e. �̇ = 0, it leads to
XAH → −∞ × D(�0). If D(�0) ≥ 0, we obtain
XAH = −∞ < X0, for which the wCCC does not
breaks.

– If �(T ) = �0 + ζT η, 0 < η < 1, we get �̇ → ∞
and XAH = 0 = X0, thus the wCCC does not breaks
as well.

• (2) For the case with limR=0,T=0 �(T ) = −∞: one can
derive that XAH = −∞ < X0, which corresponds to the
subcase that the wCCC does not breaks.

• (3) For the case with limR=0,T=0 �(T ) = +∞: it corre-
sponds to XAH = 0 = X0, implying that the sCCC does
not fail.

From the discussion above, it is obvious that the evolu-
tion of dilaton field does affect the nature of the dynamical
spacetime.

6 Conclusion

In this paper, we present the static charged dilaton solu-
tions and black hole formation in three dimensions. There
are always two families of solutions of physical interest: the
famous Chan–Mann charged dilaton solution with b = 4a
and another charged dilaton solution with b �= 4a (One can
look at Table 1 for different parameter choices of solutions).
We discuss their geometrical properties, the horizon struc-
ture and the causal structure. The parameter bounds for the
existence of static black holes are summarized in Table 2.
Besides, we find:
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Table 1 The parameters for solutions

BHs Parameters Horizon function

Chan–Mann k = − 4a
γ+8a2 , N = 2γ

γ+8a2 (N �= 2
3 ) Equation (19)

b − 4a = 0 k = − 1
3a , γ = 4a2, (N = 2

3 ) Equation (20)

Another charged k = − 2(b−4 a)

2 γ+(b−4 a)2 , N = 2(b−4 a)2

2 γ+(b−4 a)2 , βN = q2(bk+2)

�λ2(N−bk−2)
Equation (45)

(N + 2bk + 2 �= 0, bk + 2 �= 0)

b − 4a = − N
k k = − 8a

γ+32 a2 , N = 2γ

γ+32 a2 , βN =
(

1− N
2

)
q2

�λ2
(

3N
2 −1

) Equation (46)

(N + 2bk + 2 = 0)

3 k = − 2
b , N = 2(b−4a)

b , γ = 2(b − 4a)a,� = 0 Equation (47)

(bk + 2 = 0)

Dynamical k = 2
4a−b , N = b−4a

b Equation (88)

b2 − 16a2 = 2γ

Table 2 The parameter bounds for the existence of static black holes.
There only exist black holes with � < 0

BHs Parameter bounds

Chan–Mann Q = 0: � < 0, 2
3 ≤ N < 2, M > 0

Q �= 0: � < 0, 2
3 ≤ N < 2, M ≥ Mex

Anther charged Q = 0: � < 0, N = bk + 2, 2
3 ≤ N < 2, M > 0

Q �= 0: � < 0, N + 2 bk + 2 = 0, 0 < N < 2
3

or max{0,−2(bk + 1)} < N < bk + 2,−2 < bk < 0

• There exist (non-)extremal black holes and black holes
with negative mass for Chan–Mann solution, while there
exist only black holes with a single event horizon for
another dilaton solution.

• The (un)charged black holes of this two families both
have a negative cosmological constant, which is consis-
tent with the No-Go theorem in three dimensions [48].

The time-dependent solution is also presented (See Table 1),
which can characterize the three dimensional charged black
hole formation in Einstein–Dilaton gravity. Especially, there
is no exact time-dependent solution describing the gravi-
tational collapse to the Chan–Mann charged dilaton black
hole, which is a submanifold of 3 + 1 dimensional Einstein
spactime based on the viewpoint of the Kaluza–Klein theory,
therefore no extra matter source can drive an evolution of the
spacetime. Finally, we discuss the gravitational collapse of a
dilaton field in the context of the CCC, and summarize the
conditions for breaking the CCC in Table 3. It is clear that
the evolution of dilaton field does affect the properties of the
dynamical spacetime.

For the future tasks, one can apply T-duality to the static
charged dilaton black holes, in order to obtain rotating
charged black hole solutions in Einstein–Maxwell–Dilaton
gravity. Considering the Einstein–Maxwell–Dilaton gravity

Table 3 The conditions for breaking the Cosmic Censorship Conjec-
ture. These conditions are all related close to the evolution of a dilaton
field

CCC The conditions

Strong �(T ) = �0 + ζT , ζ A(�0) > 0

�(T ) = �0 + ζT η, η > 1

limR=0,T=0 �(T ) = −∞
Weak �(T ) = �0 + ζT , 0 <

A(�0)
8ζ

< − C(�0)
ζD(�0)

with the fluid source, one can construct the Vaidya-like solu-
tion describing the formation of Chan–Mann charged dilaton
black hole. Besides, we will consider the effect of dilaton
field on the physical properties of black holes, including the
causal structure and black hole thermodynamics. Based on
the AdS/CFT correspondence, it is also interesting to use the
charged time-dependent AdS black hole solutions to study
non-equilibrium thermalization of certain strongly-coupled
field theory.
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